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Abstract: Search and rescue environments could be dangerous for humans due to risks for potential structural breaking down and leakage 

of hazardous materials. Using robots in these environments would be an appropriate solution to reduce these risks. The National Institute 

of Standards and Technology (NIST) proposed reference test areas for measuring autonomous navigation capabilities of mobile robots. In 

this paper, we present a PointNet application for semantic classification of ramps through point cloud data of reference test arenas. Since 

the walls and terrain carry important semantic information for robot navigation, they are also considered. The previous studies that address 

the semantic classification problem mostly used image and/or 2D laser range data. However, the image data may not be suitable for dusty 

and poorly lightened search and rescue environments and 2D laser range data may not represent 3D geometry of the objects. Since point 

cloud data have the ability to describe 3D geometry and it is not affected by the negative aspects of these environments, it could be 

appropriate to classify ramps, walls, and terrain. Eskisehir Osmangazi University (ESOGU) laboratory building is modelled in GAZEBO 

simulation environment. Then, the ESOGU RAMPS dataset is generated through navigating a Pioneer P3-AT mobile robot with Asus 

Xtion Pro sensor in this environment. The robot is controlled via Robot Operation System (ROS). The dataset contains two types of ramp 

(inclined and flat), terrain and wall classes. The PointNet is applied to train and test the dataset. The metric and visual results are presented 

to analyze the classification performance of the PointNet. 
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1. Introduction 

As robotic and computer vision improves, robots have been used 
in many application areas. One of these application areas is search 
and rescue missions. These missions could be challenging because 
robots must operate in dirty, dull, and dangerous environments. In 
addition, robots must have adequate abilities such as situation 
awareness and autonomous navigation for performing tasks. It is 
necessary to constantly measure the efficiency of the developed 
algorithms for improving these capabilities of robots. On the other 
hand, search and rescue environments are not frequently 
encountered and construction of these environments in the 
laboratory is both costly and difficult. In order to bring a solution 
to this situation, organizations such as RoboCup and DARPA have 
organized competitions related to search and rescue tasks. In these 
competitions, robots have been evaluated with certain standards 
[1]. The National Institute of Standards and Technology (NIST) 
proposed reference test areas for measuring autonomous 
navigation capabilities of mobile robots [2]. Figure 1 depicts 
examples of NIST reference test areas. 

Over the years, robots have increased autonomous navigation 

capabilities thanks to competitions. These improvements have 

encouraged the researchers for using robots in more difficult 

arenas. In recent years, the competition arenas have involved more 

crossing and continuous ramps instead of flat terrain. Additionally, 

3D terrain classification task, which requires advanced sensing and 

reasoning skills, has been introduced [3]. In order to cope with 

these difficulties while navigating autonomously, robots must have 

adequate information about ramps, walls, and terrain. This 

information can improve robot navigation in various ways: 1) 

Robots can adjust their velocity by using ramp slope to navigate 

more reliably. 2) Robots can choose appropriate waypoints to 

avoid losing their balances while passing through the ramps. 3) 

Robots can improve the maps by including ramps, walls, and 

terrain. Then, these maps may be utilized to generate path plans. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Continuous Ramp Example            (b) Crossing Ramp Example  

Fig. 1. Examples of NIST reference test areas [4] 

The main motivation of this study is to classify ramps in 

environments like reference test areas via a deep learning 

technique. Since the walls and terrain carry important semantic 

information for robot navigation, they are also considered. To the 

best knowledge of the authors, there is no dataset for NIST 

standard ramps. In this study, we introduce such a dataset, namely 

ESOGU RAMPS. Firstly, ESOGU laboratory building that 

includes continuous, crossing, and flat ramps, walls, and terrain is 
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modelled in GAZEBO [5] simulation environment. A Pioneer P3-

AT mobile robot with Asus Xtion Pro sensor is used in collecting 

3D point cloud data. The robot is controlled via ROS [6]. Then, the 

dataset was labelled. The dataset was trained and tested using 

PointNet [7]. The metric and visual results demonstrate that the 

PointNet classified ramps, walls, and terrain with an overall 98% 

classification rate.   

The rest of the paper is organized as follows: In Section 2, we 

summarize previous works about 3D point cloud segmentation and 

deep learning techniques to classify 3D objects. In Section 3, 

PointNet architecture is explained. The ESOGU RAMPS dataset 

is introduced in Section 4. We present experimental results in 

Section 5 and conclude with Section 6. 

2. Related Work 

Recently, fast and easy 3D model construction of indoor and 

outdoor environments becomes possible because of sensors such 

as Kinect and LIDAR. Thus, extracting meaningful information 

from the 3D models has gained importance in the computer vision 

and robotics communities. To achieve this, segmentation and 

classification problems have been studied as an active subject. 

Segmentation is defined as grouping points according to their 

characteristics, whereas the classification is aiming to assign the 

points to the classes. Many different methods have been proposed 

for these problems and popular algorithms are reviewed by Grilli 

et al. [8]. This study divides them into 5 different categories as 

edge-based [9], region growing [10], model fitting [11, 12], hybrid 

method [13], and machine learning. These methods, except 

machine learning, do not require a training phase. In addition, they 

can easily be implemented via the open source point cloud libraries 

such as PCL [14]. For these reasons, these methods are widely used 

in robotic applications. Previous attempts on 3D point cloud 

segmentation have been quite successful only under certain 

constraints. For example, region-based methods such as region 

growing [10] suffer from the time complexity and they are 

sensitive to points that are selected to start the growing process. 

RANSAC [11] is fast, accurate, and robust against noise, but the 

closeness of the points in the whole of the scene should be almost 

the same. Since RANSAC provides easy implementation, it is 

preferred in robotic applications. In our previous work [15], 

RANSAC was applied to point cloud data to segment ramps, walls, 

and terrain. Then, the segments were classified semantically 

according to the plane equation. In classical machine learning, 

firstly, descriptors that are appropriate to the characteristics of the 

3D model are determined and then the attributes are obtained. 

According to these attributes, the point cloud is segmented into 

meaningful parts. The limitation of this approach is largely 

dependent on the descriptors and not suitable for complex data 

[16]. In addition, it tends to over-fitting because 3D descriptors are 

very high dimensional [17]. 

With deep learning being popular, it is possible to obtain task- 

specific attributes from the models. Inspired by the effective results 

of CNN architectures in 2D, deep learning techniques are adapted 

for 3D data. When the recent studies are examined, CNN 

architectures that are applied to 3D models are separated into three 

different structures: 1) Volumetric CNN (3D CNN), 2) Multi-view 

CNN (MVCNN) and 3) Geometric (Spectral) CNN. ShapeNet [18] 

was the first 3D CNN implementation to apply deep learning on 

3D models and demonstrated that the attributes learned by deep 

learning are more effective than hand-crafted attributes. This work 

represents 3D geometric shapes as a probabilistic distribution 

using a convolution deep-belief network over the voxel grid. 

VoxNet [19] is a simple 3D CNN structure with fewer parameters 

and it can classify point clouds faster and more effectively. 3D 

CNN should deal with the trade-off between spatial resolution and 

computational cost. Since the convolution of 3D voxels increases 

in cubic proportions with respect to spatial resolution, the 

computational cost is greatly increased. Therefore, the resolution 

has to be kept in small proportions. Moreover, as the resolution 

increases, the increased sparsity of the grid structure prevents 

effective learning of filters [20]. The MVCNN architectures 

employed the standard CNN and their input is 2D images of 

different views obtained from 3D models. The features obtained 

from each image are combined for better recognition rate [17]. 

MVCNN provides greater accuracy rates than 3D CNN models. 

However, MVCNN architectures lead to the loss of important 

structural information in the 3D structure [21]. Geometric 

(Spectral) CNN architectures generalize the CNN architecture to 

non-Euclidean areas such as manifold or graph [22]. In [23], 

Bruma transformed the convolution concept to the spectral field. 

In this architecture, a spectral convolution layer similar to the 

classical Euclidean convolution layer was introduced. In this way, 

the grid was replaced by weighted graphs while CNN was 

generalized for the graphs. Since spectral CNN structures are 

Fourier-based, they are domain-dependent. Therefore, a model 

learned with this architecture cannot be easily transferred to 

another [24]. In addition to the implementation of the deep learning 

architecture to the graphs, it is generalized to the 3D models 

represented by the manifold such as meshes. Masci [25] developed 

the first CNN on meshed structures. The mixed model MoNet [22], 

which can be applied for graphs or manifold structures, uses the 

parametrical structure rather than manual weighted functions. 

In contrast to the aforementioned studies, there are multi-layer 

perceptron (MLP) architectures that accept the raw point cloud [7, 

26, 27]. PointNet [7], an effective and simple architecture for 

unstructured point cloud, was the first study in this field and 

pioneered for other studies. The architecture yields successful 

outcomes for object classification, object segmentation, and 

semantic segmentation problems. PointNet does not take into 

account the neighborhood of points for the local characteristics. 

Based on this, the PointNet++ (adaptive PointNet) [26] 

architecture that uses the PointNet model has been proposed. In 

this architecture, local features that capture geometric structures 

from small neighborhoods are extracted. However, determining 

this neighborhood parameter is not a trivial problem. Recently, 

studies have been conducted to examine different neighborhood 

relations based on PointNet architecture. Instead of taking a single 

neighborhood to increase the semantic content of the model, 

mechanisms have been developed to increase the content, taking 

into account multiple neighborhoods of the same center [27].  

In this study, we mainly focus on the classification of simple 

structures such as wall, terrain, inclined ramp, and flat ramp. Since 

many 3D sensors give a raw point cloud for the model of the scene, 

we aim to use raw data. In this way, we could avoid performing 

preprocessing steps such as conversion to graph or manifold and 

voxelization. When the previous studies are analyzed, 3D CNN 

architectures are only used for object classification problems and 

they require voxelization pre- processing.  
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Fig. 2. The simplified model of the classification problem

Moreover, the voxel resolution is an important parameter 

because there is a trade-off between computational cost and 

model sensitivity. In MVCNN architectures, the surface model 

must represent point cloud. The features are extracted through 

images taken from the surface model and thus it does not fully 

represent the 3D geometry. Geometric CNN architectures that 

use graphs or manifolds also require pre-process, such as 

neighborhood determination or surface modeling. It is also a 

challenging problem to generalize since it is eigen-based. On the 

other hand, the PointNet architecture is applied directly to the 

raw point cloud without requiring any pre-processing. In 

addition, it does not require the determination of difficult 

parameters such as the radius and the number of neighborhoods, 

unlike PointNet++. For these reasons, PointNet is simple and 

easy to use end-to-end deep learning architecture and it is 

appropriate to classify simple structures such as wall, terrain, 

inclined ramp, and flat ramp. 

3. The PointNet Architecture  

Point cloud data could be problematic due to its unstructured 

format to feed deep learning architectures. In order to overcome 

this problem, some researchers transform the data into regular 

formats such as voxels or images before applying to the 

architectures. The PointNet is the first simple end-to-end deep 

learning architecture, which accepts point cloud without the 

necessity of preprocessing. Besides the PointNet is simple and 

fast, it produces better or closer result compared to CNN 

architectures.  

Point cloud is composed of n points {𝑝𝑖|𝑖 = 1, … , 𝑛} in which 

each point lies in the 3D Euclidean space corresponds to a vector 

consisting of xyz coordinates. These vectors can be extended by 

adding global or local features such as color, normal, and 

curvature. Although it has a simple data structure, some 

difficulties arise when attempting to process: 1) The points are 

in an unstructured form. Therefore, the architecture should be 

invariant from all possible permutations for point cloud set. 2) 

Since the neighborhood points can be related to each other; the 

relationship between the neighborhood points must be 

considered. 3) Transformations could be applied to points, thus 

the architecture should be robust against these transformations. 

PointNet architecture designed considering these challenges 

provides capabilities such as independence from permutations, 

invariance under transformation, and capturing local features. 

The simplified representation of the PointNet model for the 

classification problem is given in Figure 2. It accepts 𝑁𝑥𝐷0 {𝑁: 

number of points, 𝐷: feature dimension} point cloud set as input. 

The input transformation has a mini PointNet network (T-net) 

that standardizes the point cloud according to rotation before the 

feature extraction process. Then, multi-layer perceptron (MLP) 

is applied to extract the features. Similar to the input 

transformation in spatial space, the feature transformation 

architecture ensures that the features learned from the point 

cloud are independent from transformation. The standardized 

features are mapped to a higher dimension through the MLP 

weight matrices shared in each consecutive layer. 

The transition from point-based features to model-based features 

is achieved thanks to the maximum pooling method on the local 

features extracted for each point in the point cloud model. In 

addition, maximum pooling method allows the architecture to be 

independent of the point order. Summarizing process is executed 

to acquire global features for the classification problem.   

Fig. 3. The PointNet architecture of the semantic segmentation problem 

The PointNet architecture can be used for object classification, 

part segmentation, and semantic segmentation problems. In this 

study, we focused on the architecture of the semantic 

segmentation problem. Unlike the other problems, the input of 

the architecture for semantic segmentation consists of larger 

scenes. Therefore, instead of using the whole scene it divides the 

scene into certain blocks and feeds the architecture with the 

points inside the blocks. This process prevents the loss of data 

substantially because the architecture requires a certain number 

of points. Since the scene is divided into blocks, input and 

feature transformations are not required. Figure 3 shows a 

detailed representation of the model for semantic segmentation 

problem of PointNet architecture. It accepts 𝑁𝑥𝐷0 {𝑁: number 

of points,  𝐷0: input feature dimension} point cloud block set as 

input. In the first layer, 1𝑥 𝐷0 stride and 1𝑥 𝐷0𝑥1𝑥64 weight 

matrices are used to merge input features. Consecutive CNN 

(MLP with shared weight) layers include 1x1 stride and 

1𝑥1𝑥𝐷𝑛−1𝑥𝐷𝑛 weight matrices to learn 𝐷𝑛 dimensional feature 

instance, in Figure 3, the third CNN layer’s weight matrix 

is 1𝑥1𝑥64𝑥128 (1𝑥1𝑥𝐷2𝑥𝐷3). Learned local features for each 

point are summarized with the maximum pooling method and a 

single feature is obtained for the point cloud. Global features of 

the point cloud are acquired after fully connected layers. While 

global features are appropriate for the classification problem, 

local characteristics are also needed to summarize the 

relationships between points for segmentation. After point-wise 

local features and global features are concatenated for each 
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point, the feature extraction step is applied again with CNN 

layers. Thus, the score for 𝐿 class (𝐿: class number) of N points 

is obtained. PointNet uses rectified linear unit (ReLU) as 

activation function, batch normalization, drop out before the last 

layer and cross-entropy loss function.from 𝐷𝑛−1 dimension 

where n indicates the layer number.  For   

4. The ESOGU RAMPS Dataset 

To construct the ESOGU RAMPS dataset, Gazebo simulation 

environment and ROS robot interface are used. In the first stage, 

we modelled ESOGU Electrical & Electronics Engineering 

Laboratory Building in Gazebo simulation environment. Then, 

we exploited hector_nist_arenas_gazebo ROS package [28] to 

include ramps into the simulation environment (Figure 4). A 

Pioneer P3-AT mobile robot with Asus Xtion Pro RGB-D sensor 

is used to create the dataset. We employed Robot Operating 

System (ROS) to control the robot [6]. 

Fig. 4. ESOGU Electrical & Electronics Engineering Laboratory 

Building Gazebo Model 

In the second stage, we located the robot in different positions 

and orientations and captured scenes via PCL [14]. In these 

scenes, points must belong to one of the four classes: wall, 

terrain, inclined ramp, and flat ramp. Figure 5 shows examples 

for wall, terrain, inclined ramp, and flat ramp classes. In ESOGU 

RAMPS dataset, there are 681 scenes. The dataset is partitioned 

into two parts for training and test. The training set contains 581 

scenes. In the test set, there are 100 scenes. In both sets, the 

percentage of points belonging to the wall class, terrain class, 

inclined ramp class, and flat ramp is 50%, 18%, 24%, and 8%, 

respectively.  

In the last step, we labelled the dataset. Figure 6 shows examples 

from the labelled dataset. The right column of the figure depicts 

examples of ground truth of the scenes. In these figures, blue, 

red, magenta, and yellow represent inclined ramps, walls, flat 

ramps, and terrain classes, respectively. In the left column, the 

corresponding RGB images are indicated.   

Fig. 5. Examples for wall plane, terrain plane, inclined plane,  and 

straight plane classes 

  

 

   

   

Fig. 6. Example scenes from ESOGU RAMPS dataset 

5. Experimental Work 

We used PointNet architecture to classify ramps (inclined and 

flat), terrain and wall classes in the ESOGU RAMPS dataset. To 

prepare the dataset for the PointNet architecture, each point 

cloud is divided into 1𝑚2 blocks in the xy plane and independent 

of z dimension. In a point cloud, each point represented with a 

6-dimensional ( 𝑥, 𝑦, 𝑧, 𝑥′,  𝑦′, and 𝑧′) vector. In the vector, x, 

y, and z indicate point coordinates while 𝑥′, 𝑦′,  and 𝑧′ depict 

their normalized coordinates respect to maximum point. If the 

number of points in these blocks is less than 500, the set is 

discarded. In addition, upsampling or downsampling is applied 

by using random selection because PointNet accepts a fixed 

number of points. Thus, the number of points in each block is 

fixed at 4096. In the training stage, the following parameters are 

used: the  number of points is 4096, batch number is 12, epoch 

is 50, the learning rate is 0.001, momentum is 0.9, optimizer type 

is Adam, decay step is 300000, and decay rate is 0.5. 

We evaluate the experimental results using the following 

measures: 1) Intersection over Union (IoU) refers to the ratio of 

correctly classified samples of a class to summation of the total 

number of samples and incorrectly classified samples of that 

class. 2) The recall values of inclined ramp, wall, flat ramp, and 

terrain classes. Recall refers to the ratio of correctly classified 

samples of a class to the total number of classified samples for 

that class. 3) Precision indicates the ratio of correctly classified 

samples of a class to the total number of samples of that class. 4) 

Mean Intersection of Union (MIoU) defines the mean of class-

based Intersection over Union (IoU). 5) The overall 

classification accuracy; i.e. the ratio of the number of correctly 

classified samples to the total number of samples (ACC). The 

metric and visual results are given in Table 1 and Figure 7, 

respectively. In the figure, the left column shows ground truth 

and the right column depicts the corresponding classification 

result. 
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(a) (b) 

(c) (d) 

(e)  (f)  

Fig. 7. Visual results of PointNet semantic classification. The left column shows ground truth and the right column depicts the corresponding 

classification result. 

 

Table. 1. The metric results of the PointNet 

 IoU Recall Precision MIoU ACC 

Inclined Ramp 0.946 0.983 0.961 

0.971 0.989 
Wall  0.990 0.991 0.999 

Flat Ramp 0.950 0.968 0.981 

Terrain 0.998 0.999 0.998 

 

The IoU results indicate the ratio of overlap between ground 

truth and classified data. When the IoU values in the table are 

examined, it is observed that the highest value belongs to terrain 

class. The IoU value for the terrain is supported by the recall and 

precision values of this class. The recall value of the terrain class 

depicts that the PointNet is able to classify this class with high 

accuracy. Besides, it is clear that the PointNet does not confuse 

the terrain class with other classes when we interpret the 

precision value of this class. The wall class has the second-

highest IoU value in the table. When we analyze the precision 

value of the wall class, PointNet produces almost the same result 

with terrain. The recall value of the wall class is a little lower 

than the terrain class. The reason for this is shown in Figure 7 

(b). In some cases, which are emphasized with white circle in the 

figures, the wall class points are incorrectly classified as inclined 

ramp class. A similar result to the wall class also comes out for 

the flat ramp class. However, the recall and precision values for 

flat ramp class are lower when it is compared to the wall class. 

Figure 7 (d) illustrates an example to clarify the results. The flat 

ramp class and the inclined ramp class are usually placed 

consecutively and in some cases, as shown in the figure, the 

PointNet does not accurately classify flat ramp class. The low 

precision value of the inclined ramp class indicates that this class 

tends to confuse with other classes (Figure 7 (f)). As a result, 

some incorrectly classified points were encountered between the 

inclined ramp, flat ramp and, wall classes. However, as seen 

from the numerical and the visual results, the number of these 

incorrectly classified points is very low compared to the total 

number of points. 

In training and test processes, the PointNet divides the data to 

the blocks and each block must have exactly 4096 points. When 

a block includes more than 4096 points, the PointNet applies the 

downsampling to that block. Therefore, in the figures, point-

based classification result has fewer points than the ground truth. 

6. Conclusion and Future Work 

In this study, we aimed to classify ramps in environments like 

reference test areas via a deep learning technique. Since the walls 

and terrain carry important semantic information for robot 

navigation, they were also considered. We applied deep learning 
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architecture PointNet that accepts point cloud as input for 

semantic classification of terrain, walls and especially ramps in 

search and rescue environments. To the best knowledge of the 

authors, there is no dataset for NIST standard ramps. Thus, 

ESOGU RAMPS dataset is constructed. The experimental 

results are analyzed both metric and visual. The result shows that 

the PointNet is capable to classify terrain and walls accurately. 

The inclined and flat ramps are rarely confused with walls. For 

future work, we plan to investigate the PointNet++ architecture 

to reduce the number of erroneous points. Also, we have a test 

environment which is similar to NIST test arenas in ESOGU 

Laboratory Building and we plan to construct a real dataset from 

this test environment. Then, the dataset will be applied to the 

PointNet and the PointNet++.   
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