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Abstract: Tree-seed algorithm (TSA) is a nature-inspired metaheuristic optimization algorithm. TSA was originally designed and 

introduced for solving continuous optimization problems. In this study, TSA was modified with transfer functions so as to solve binary 

optimization problems. Continuous search space was mapped to binary search space with transfer functions. Four S-shaped and four V-

shaped transfer functions were used for discretization. Uncapacitated facility location problem (UFLP) is a pure binary optimization 

problem. In order to measure the performance, 15 different sized (small, medium, large and extra-large) UFLPs were solved with eight 

different binary TSAs in this study. Experimental results has shown that S-shaped transfer functions are better than V-shaped transfer 

functions on these problem sets.  
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1. Introduction 

Optimization problems are divided into two main groups according 

to the type of decision variables. These are continuous and discrete 

optimization problems. Discrete optimization problems are 

divided into two main groups as binary discrete and permutation 

coded discrete. Binary optimization problems have two different 

decision variables which are 0 and 1. Tree-seed algorithm (TSA) 

was proposed by Kiran [1] for solving continuous (real-valued) 

optimization problems. In literature, binary versions of TSA [2, 3] 

were proposed. In these studies, similarity measures and logic 

gates were used for creating binary variables. Due to there are 

many studies in literature, only the studies performed with particle 

swarm optimization (PSO), differential search algorithm (DSA) 

and TSA were mentioned. Kennedy and Eberhart [4] were 

proposed binary particle swarm optimization (BPSO) algorithm 

which uses the sigmoid function as a transfer function. Sevkli and 

Guner [5] were solved UFLP with BPSO In this study, the sigmoid 

function was used for mapping continuous search space to binary 

search space. In order to improve the performance, a local search 

mechanism was integrated to the BPSO. BPSO has outperformed 

the genetic algorithm (GA) and evolutionary simulated annealing 

(ESA). Sahman et al. [6] were solved UFLP by using BDSA. 

BDSA was tested on UFLP for four transfer methods (bijective, 

surjective, elitist1 and elitist2). Elitist2 transfer method achieved 

better solutions than the others. BDSA was compared other 

population based heuristic algorithms (CPSO and ABCbin) and 

BDSA obtained better solutions especially for the big scale UFLP. 

than Nezamabadi-pour et al. [7] introduced a new binary PSO 

algorithm and called as NBPSO in 2008. NBPSO used a speed-

based sigmoid function to convert real-valued variables to binary 

values. In addition, NBPSO was developed and methods such as 

Guaranteed Convergence BPSO (GCBPSO) and Improved 

NBPSO (INBPSO) were proposed. A different rate update 

equation was proposed for GCBPSO. INBPSO controlled the 

stagnation of the algorithm and a stagnation control parameter 

changed the sigmoid function. Guner and Sevkli [8] proposed 

discrete particle swarm optimization (DPSO) to solve the UFLP. 

The authors of this study were hybridized the proposed method 

with a local search mechanism to improve the results. Yuan et al. 

[9] proposed a newly developed dual PSO (IBPSO) method to 

solve the unit commitment (UC) problem by integrating lambda 

iteration method with BPSO. In order to confirm the success of the 

IBPSO method, other methods in the literature were compared on 

UC systems with a unit number of 10-100. Experimental results 

showed that IBPSO was better than other known methods in the 

literature in terms of lower production cost and shorter calculation 

time. Saha et al. [10] adapted PSO for binary optimization 

problems in their studies. The binarization process was performed 

by taking continuous values. The inertia weight, a special 

parameter of PSO, was set to decrease in the range of 0.9 - 0.4 

depending on the number of iterations. Since it operated with 

continuous values, it was possible to produce values close to the 

targeted optimum values. In the study of Bansal and Deep [11], a 

new modified BPSO (MBPSO) algorithm was proposed for 

solving the 0-1 knapsack problem (KP) and multidimensional KP 

(MKP). Compared to the basic BPSO, this improved algorithm 

proposed a new probability function in the solution of KPs to 

preserve and make the diversity of the flock more exploratory. The 

sigmoid function was used to normalize the particle velocity. 

Beheshti et al. [12] proposed the memetic dual PSO approach. 

Binary hybrid topology PSO (BHTPSO) was integrated with 

quadratic interpolation and called as BHTPSO-QI. In this study, 0-

1 MKPs were used for comparison. The results were compared 

with BPSO and binary gravitational search algorithm (BGSA). The 

success of the proposed method was demonstrated within the 

framework of convergence speed and solution accuracy. Cinar et 
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al. [2] proposed XOR logical gate based binary TSA (XORTSA) 

in their studies. XORTSA used the XOR logic gate to create new 

binary individuals. XORTSA was compared with BPSO [4] on 

large scale (250, 500 and 1000 dimensions) binary optimization 

problems. The test set included five numerical benchmark 

functions. The results showed that XORTSA produced better 

solutions than BPSO. Cinar and Kiran [3] developed three different 

versions of TSA (LogicTSA, SimTSA and SimLogicTSA) in their 

studies. UFLP was used for performance measurement. Small (16 

dimensions), medium (25 dimensions), large (50 dimensions) and 

very large (100 dimensions) UFLPs were effectively resolved. The 

experimental results showed that SimLogicTSA was better than 

SimTSA and LogicTSA. SimLogicTSA compared with artificial 

bee colony [13, 14], PSO [4, 9, 14] and differential evolution [15] 

variants. SimLogicTSA proved its success by producing 

competitive solutions.  

TSA which used transfer functions for binarization was not 

proposed in the literature yet. In this study, four S-shaped and four 

V-shaped transfer functions which are primitive but also effective 

methods were used for mapping continuous search space to binary 

search space.  

The remainder of the paper is structured as follows: Section 2 

presents a brief introduction to TSA. The transfer functions are 

described in Section 3. Section 4 discusses the basic principles of 

the eight different binary versions of TSA. The UFLP is mentioned 

in Section 5. Section 6 is dedicated for the experimental results and 

discussions. Finally, Section 7 concludes the work and suggests 

some directions for future research. 

2. Tree-Seed Algorithm 

TSA is a nature-inspired, population-based, stochastic, 

metaheuristic optimization algorithm. TSA was proposed by Kiran 

[1] based on the relationship between trees and seeds for the 

solving of continuous optimization problems. Trees and seeds are 

possible solutions of an optimization problem. TSA is started with 

a random tree population and during the iterations new seeds are 

created for each tree. The number of seeds of each tree is 

determined randomly, but not less than one. Random seeds number 

should be between 10% and 25% of the total number of trees. 

Seeds are created with two different mechanisms. These 

mechanisms are selected with search tendency (ST) parameter. ST 

is a random number which is between 0 and 1. Two seed 

production equation (Eq.1 and Eq.2) are given as follows: 

 

𝑆𝑘,𝑗 = 𝑇𝑖,𝑗 + 𝛼𝑖,𝑗  𝑥 (𝐵𝑗 − 𝑇𝑟,𝑗)                                                          (1)  

 

𝑆𝑘,𝑗 = 𝑇𝑖,𝑗 + 𝛼𝑖,𝑗  𝑥 (𝑇𝑖,𝑗 − 𝑇𝑟,𝑗)                                                        (2)  

 

where, 𝑆𝑘,𝑗 is jth dimension of the kth seed reproduced from ith 

tree , 𝑇𝑖,𝑗  is the jth dimension of ith tree, 𝐵𝑗  is jth dimension of 

achieved best tree location so far, 𝑇𝑟,𝑗 is jth dimension of the rth 

tree which is selected randomly in population, 𝛼𝑖,𝑗 is scale factor 

that is randomly generated in the range of [-1,1]. A greedy 

selection is carried out between the seeds of each tree in the search 

process and the best seed is determined. If the solution quality of 

best seed is better than its own tree, the tree dries and the best seed 

substitutes that tree. TSA algorithm is executed until the 

termination criteria are met. The pseudocode of TSA is given in 

Fig.1. For the detailed information readers can look at these [1-3, 

16-20] studies. 

 

 

1. The initialization of algorithm. 

2. Set the parameters (N, ST) of algorithm. 

3. Generate trees randomly in search space. 

4. Searching with seeds 

5. Create new seeds via Eq.1 or Eq.2 

6. Selection of best solution 

7. Testing termination condition 

8. Reporting the best solution 

Fig 1.  The pseudocode of TSA 

In additionally, the flowchart of TSA is given in Fig.2. 

 

Fig 2.  The flowchart of TSA 

3. Transfer Functions 

Transfer functions are used to map continuous search space to 

binary search space. Mirjalili and Lewis [21] proposed four S-

shaped and four V-shaped transfer functions. The mathematical 

models of functions are given in Eq.3 to Eq.10.  

 

𝑆1(𝑥) =
1

1 + 𝑒−2𝑥                                                                                (3) 

 

𝑆2(𝑥) =
1

1 + 𝑒−𝑥                                                                                 (4) 

 

𝑆3(𝑥) =
1

1 + 𝑒(−
𝑥
2

)
                                                                              (5) 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(2), 111–117  |  113 

𝑆4(𝑥) =
1

1 + 𝑒(−
𝑥
3

)
                                                                              (6) 

 

𝑉1(𝑥) = |𝑒𝑟𝑓 (
√2

𝜋
)|                                                                          (7) 

 

𝑉2(𝑥) = |tanh (𝑥)|                                                                             (8) 
 

𝑉3(𝑥) = |
(𝑥)

√1 + 𝑥2
|                                                                            (9) 

 

𝑉4(𝑥) = |
2

𝜋
𝑎𝑟𝑐 𝑡𝑎𝑛 (

𝜋

2
𝑥)|                                                            (10) 

 

4. Binary Tree-Seed Algorithms 

In this study, four S-shaped and four V-shaped transfer functions 

are carried out to TSA algorithm. These methods are named as 

TSA1 to TSA8. TSA1 to TSA4 is used S1 (Eq.3) to S4 (Eq.6) as a 

transfer function respectively.  TSA5 to TSA8 is used V1 (Eq.7) to 

V4 (Eq.10) as a transfer function respectively.   

After creating of trees or seeds, the continuous values are sent to 

transfer function. Then the returned value is compared to a random 

number which is between 0 and 1. If this returned value is smaller 

than this random number the binary value is set as 0 otherwise the 

binary value is set as 1. The four S-shaped transfer functions are 

shown in Fig 3.  

 

Fig 3.  S-shaped transfer functions 

The four V-shaped transfer functions are shown in Fig 4. 

 

 

Fig 4.  V-shaped transfer functions 

As you have seen in Fig.3 and Fig.4, these functions are named 

according to their shapes.  

5. Uncapacitated facility location problem (UFLP) 

The UFLP is one of the widely studied and NP-Hard discrete 

location problem. The UFLP includes locating an undetermined 

number of facilities to minimize the sum of costs and the variable 

costs of serving the market demand from these facilities. The 

mathematical model of the problem is as follows: 

 

min 𝑓 = ∑ 𝑓𝑖𝑦𝑖

𝑖∈𝑛

+ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗∈𝑚𝑖∈𝑛

                                                 (11) 

 

∑ 𝑥𝑖𝑗 = 1

𝑖∈

, 𝑗 = 1, … , 𝑚                                                          (12) 

 

𝑥𝑖𝑗 ≤ 𝑦𝑖                𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑚                                    (13) 

 

𝑥𝑖𝑗 , 𝑦𝑖 = 0,1     𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑚                                       (14) 

 

In UFLP, total cost depends on 𝑚 customers and 𝑛 facility in a 

specific location. This problem can be represented as a graph with 

(𝑚 + 𝑛) nodes and 𝑚 ∗ 𝑛 edges [22]. The cost of opening facility 

j and the cost of serving to customer i from facility j are represented 

𝑓𝑗  and 𝑐𝑖𝑗 respectively. If the i-th facility is open, 𝑦𝑖 = 1, otherwise 

𝑦𝑖 = 0. If the open facility i is in service to the j-th customer, 𝑥𝑖𝑗  

is 1, otherwise, it will be 0. The main idea of the problem is to 

minimize the total cost under the condition of satisfying all 

customers demands. For the test, the problems which are given in 

the Table 1 are used. 

Table 1. The test suite used for comparison of the methods. 

Problem name Problem size Cost of optimal solution 

cap71 16x50 932,615.75 

cap72 16x50 977,799.40 

cap73 16x50 1,010,641.45 
cap74 16x50 1,034,976.98 

cap101 25x50 796,648.44 

cap102 25x50 854,704.20 
cap103 25x50 893,782.11 

cap104 25x50 928,941.75 

cap131 50x50 793,439.56 
cap132 50x50 851,495.33 

cap133 50x50 893,076.71 

cap134 50x50 928,941.75 
capA 100x1000 17,156,454.48 

capB 100x1000 12,979,071.58 
capC 100x1000 11,505,594.33 

 

6. Experimental Results and Discussion 

In experiments, population size is taken as 50 and ST is taken as 

0.5. In this study, population size and ST analyses have not been 

studied because our aim is to determine the best transfer function 

for binary optimization. The continuous search space is limited 

with -10 and +10. The comparisons of algorithms have made with 

GAP values. GAP has been calculated as in Eq.15: 

𝐺𝐴𝑃 =
𝑓(𝑠𝑜𝑙) − 𝑓(𝑜𝑝𝑡)

𝑓(𝑜𝑝𝑡)
𝑥100                                                      (15) 

where 𝑓(𝑜𝑝𝑡) is the optimum solution of the problem, 𝑓(𝑠𝑜𝑙) is 

the mean solution obtained by 30 independent runs of algorithm. 

The experimental results of low dimensional problems (cap71, 

cap72, cap73 and cap74) are presented in Table 2, Table 3, Table 

4 and Table 5. All methods reached the cap71 problem optimal 

solution. 
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TSA1, TSA2, TSA3, TSA4, TSA5 and TSA6 reached the cap72 

problem optimal solution. TSA7 solved cap72 problem with 0.01 

GAP value and TSA8 solved cap72 problem with 0.04 GAP value.  

S-shaped transfer functions reached the cap73, cap74, cap101 and 

cap 102 problems with no GAP. On the other hand, V-shaped 

transfer functions did not reach the optimal solutions in cap73, 

cap74, cap101 and cap 102 problems. 

As seen in Table 10, Table 11, and Table 12 only TSA1 solved 

related problem optimally. The cap134 problem solved by TSA1 

and TSA2 optimally.  

TSA1, TSA2 and TSA3 solved the cap103 problem optimally. The 

other methods did not reach the optimal solution of cap103 

problem. V-shaped transfer functions solved the cap103 problem 

with about 5% GAP value. 

As seen in Table 9, S-shaped transfer functions solved the cap104 

problem optimally. V-shaped transfer functions moved away from 

the optimal solution for cap104 problem. 

Table 2. Results of the cap71 problem over 30 independent runs 

cap71 Best Worst Mean Std.Dev. GAP 

TSA1 932615.75 932615.75 932615.75 0.00 0.00 

TSA2 932615.75 932615.75 932615.75 0.00 0.00 

TSA3 932615.75 932615.75 932615.75 0.00 0.00 

TSA4 932615.75 932615.75 932615.75 0.00 0.00 

TSA5 932615.75 932615.75 932615.75 0.00 0.00 

TSA6 932615.75 932615.75 932615.75 0.00 0.00 

TSA7 932615.75 932615.75 932615.75 0.00 0.00 

TSA8 932615.75 932615.75 932615.75 0.00 0.00 

Table 3. Results of the cap72 problem over 30 independent runs 

cap72 Best Worst Mean Std.Dev. GAP 

TSA1 977799.40 977799.40 977799.40 0.00 0.00 

TSA2 977799.40 977799.40 977799.40 0.00 0.00 

TSA3 977799.40 977799.40 977799.40 0.00 0.00 

TSA4 977799.40 977799.40 977799.40 0.00 0.00 

TSA5 977799.40 977799.40 977799.40 0.00 0.00 

TSA6 977799.40 977799.40 977799.40 0.00 0.00 

TSA7 977799.40 978876.30 977871.19 273.22 0.01 

TSA8 977799.40 978876.30 978230.16 536.59 0.04 

Table 4. Results of the cap73 problem over 30 independent runs 

cap73 Best Worst Mean Std.Dev. GAP 

TSA1 1010641.45 1010641.45 1010641.45 0.00 0.00 

TSA2 1010641.45 1010641.45 1010641.45 0.00 0.00 

TSA3 1010641.45 1010641.45 1010641.45 0.00 0.00 

TSA4 1010641.45 1010641.45 1010641.45 0.00 0.00 

TSA5 1010808.16 1014099.61 1012385.80 1401.73 0.17 

TSA6 1010641.45 1014934.15 1012500.48 1527.58 0.18 

TSA7 1010808.16 1020176.51 1014685.41 1893.28 0.40 

TSA8 1011234.36 1020176.51 1016488.86 2085.56 0.58 

Table 5. Results of the cap74 problem over 30 independent runs 

cap74 Best Worst Mean Std.Dev. GAP 

TSA1 1034976.98 1034976.98 1034976.98 0.00 0.00 

TSA2 1034976.98 1034976.98 1034976.98 0.00 0.00 

TSA3 1034976.98 1034976.98 1034976.98 0.00 0.00 

TSA4 1034976.98 1034976.98 1034976.98 0.00 0.00 

TSA5 1048308.16 1063066.66 1055812.93 4029.56 2.01 

TSA6 1040641.45 1070132.69 1055870.12 6326.78 2.02 

TSA7 1048480.20 1073603.65 1059535.17 6141.50 2.37 

TSA8 1048308.16 1070211.60 1060483.60 5114.35 2.46 

Table 6. Results of the cap101 problem over 30 independent runs 

cap101 Best Worst Mean Std.Dev. GAP 

TSA1 796648.44 796648.44 796648.44 0.00 0.00 

TSA2 796648.44 796648.44 796648.44 0.00 0.00 

TSA3 796648.44 796648.44 796648.44 0.00 0.00 

TSA4 796648.44 796648.44 796648.44 0.00 0.00 

TSA5 796648.44 800628.88 798300.24 887.57 0.21 

TSA6 797582.29 802614.03 798698.11 1152.93 0.26 

TSA7 797582.29 802282.89 799830.36 1241.32 0.40 

TSA8 797601.59 804275.73 800745.17 1347.69 0.51 

Table 7. Results of the cap102 problem over 30 independent runs 

cap102 Best Worst Mean Std.Dev. GAP 

TSA1 854704.20 854704.20 854704.20 0.00 0.00 

TSA2 854704.20 854704.20 854704.20 0.00 0.00 

TSA3 854704.20 854704.20 854704.20 0.00 0.00 

TSA4 854704.20 854704.20 854704.20 0.00 0.00 

TSA5 864914.25 879589.54 872453.54 3857.43 2.08 

TSA6 859326.91 879743.93 872523.13 4419.29 2.08 

TSA7 865056.75 880097.05 874325.96 3537.27 2.30 

TSA8 864853.88 878932.10 874124.43 2799.36 2.27 

Table 8. Results of the cap103 problem over 30 independent runs 

cap103 Best Worst Mean Std.Dev. GAP 

TSA1 893782.11 893782.11 893782.11 0.00 0.00 

TSA2 893782.11 893782.11 893782.11 0.00 0.00 

TSA3 893782.11 893782.11 893782.11 0.00 0.00 

TSA4 893782.11 894008.14 893789.65 41.27 0.00 

TSA5 925713.43 957983.51 944602.51 6821.34 5.69 

TSA6 932796.73 955436.98 945306.71 6184.05 5.76 

TSA7 915667.70 956131.88 942869.73 8834.85 5.49 

TSA8 921898.35 945552.85 936681.65 6743.93 4.80 

Table 9. Results of the cap104 problem over 30 independent runs 

cap104 Best Worst Mean Std.Dev. GAP 

TSA1 928941.75 928941.75 928941.75 0.00 0.00 

TSA2 928941.75 928941.75 928941.75 0.00 0.00 

TSA3 928941.75 928941.75 928941.75 0.00 0.00 

TSA4 928941.75 928941.75 928941.75 0.00 0.00 

TSA5 996666.01 1056124.63 1043416.64 13761.95 12.32 

TSA6 995979.66 1065748.94 1041895.90 17296.95 12.16 

TSA7 1021005.10 1055753.66 1040683.19 10248.81 12.03 

TSA8 1015610.93 1047473.25 1028136.02 8113.09 10.68 

Table 10. Results of the cap131 problem over 30 independent runs 

cap131 Best Worst Mean Std.Dev. GAP 

TSA1 793439.56 793439.56 793439.56 0.00 0.00 

TSA2 793439.56 794373.41 793571.35 302.03 0.02 

TSA3 793439.56 801288.50 797788.64 2122.31 0.55 

TSA4 794373.41 810683.10 805127.51 3259.01 1.47 

TSA5 891601.18 916713.93 907429.84 5575.12 14.37 

TSA6 898159.61 913037.89 905916.90 3860.86 14.18 

TSA7 887831.11 909439.28 900130.92 4910.04 13.45 

TSA8 878337.90 894012.36 886426.26 4275.26 11.72 

Table 11. Results of the cap132 problem over 30 independent runs 

cap132 Best Worst Mean Std.Dev. GAP 

TSA1 851495.33 851495.33 851495.32 0.00 0.00 

TSA2 851495.33 852762.88 851631.49 295.76 0.02 

TSA3 852747.03 858999.75 855949.93 1773.01 0.52 

TSA4 861964.66 872784.43 866485.60 2949.02 1.76 

TSA5 1057455.01 1095022.76 1082008.85 9430.04 27.07 

TSA6 1048057.45 1094370.63 1077153.02 10274.12 26.50 

TSA7 1047499.94 1080054.83 1067801.93 8670.13 25.40 

TSA8 1012660.58 1053884.73 1037366.75 8516.89 21.83 

Table 12. Results of the cap133 problem over 30 independent runs 

cap133 Best Worst Mean Std.Dev. GAP 

TSA1 893076.71 893732.98 893098.59 119.82 0.00 

TSA2 893076.71 893782.11 893271.35 283.40 0.02 

TSA3 893076.71 900974.43 896445.01 2080.61 0.38 

TSA4 901289.05 917933.25 909487.05 5045.37 1.84 

TSA5 1237709.98 1275605.56 1257552.68 10125.47 40.81 

TSA6 1217527.25 1268329.84 1251393.24 12559.87 40.12 

TSA7 1215038.00 1253129.93 1233365.04 10487.55 38.10 

TSA8 1166035.63 1209443.45 1188147.70 12570.36 33.04 

Table 13. Results of the cap134 problem over 30 independent runs 

cap134 Best Worst Mean Std.Dev. GAP 

TSA1 928941.75 928941.75 928941.75 0.00 0.00 

TSA2 928941.75 928941.75 928941.75 0.00 0.00 

TSA3 928941.75 948795.81 933979.28 4765.72 0.54 

TSA4 937775.05 971803.00 953869.37 10400.48 2.68 

TSA5 1453812.61 1537308.68 1504204.38 20261.49 61.93 

TSA6 1462565.30 1545216.46 1505288.23 21950.06 62.04 

TSA7 1417445.41 1516838.35 1474761.09 21495.80 58.76 

TSA8 1351365.20 1445019.10 1409441.48 20233.36 51.73 
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The extra-large problems (100 dimensions) could not solved 

optimally with proposed methods. The best results have been 

obtained by TSA1 for capA, capB and capC problems.  

 
Table 14. Results of the capA problem over 30 independent runs 

capA Best Worst Mean Std.Dev. GAP 

TSA1 17901218.35 19317907.23 18682847.39 377856.53 8.90 

TSA2 18527186.20 21441080.19 19900075.17 720750.34 15.99 

TSA3 21130150.20 28886785.69 25257118.79 2021463.71 47.22 

TSA4 26105915.24 38258724.31 34026661.93 2702142.27 98.33 

TSA5 137319380.23 148511988.23 143633915.22 2342093.44 737.20 

TSA6 139355744.27 145915742.36 142918245.56 1717088.79 733.03 

TSA7 131817357.13 141143780.96 137183168.76 2040133.47 699.60 

TSA8 120776715.78 127753872.35 125477429.26 1749344.46 631.37 

 

Table 15. Results of the capB problem over 30 independent runs 

capB Best Worst Mean Std.Dev. GAP 

TSA1 13497840.75 14247884.85 13778283.10 186079.34 6.16 

TSA2 13514010.94 14776855.82 14192575.93 304092.17 9.35 

TSA3 14767015.09 16593002.81 15618027.72 414538.36 20.33 

TSA4 16352992.73 19959663.97 18510320.30 843438.32 42.62 

TSA5 57241168.82 62345327.05 61135404.63 1040397.42 371.03 

TSA6 58285705.92 61649079.94 60571877.66 809211.78 366.69 

TSA7 55371439.59 59639236.85 57930517.62 1087008.94 346.34 

TSA8 52199418.41 54823531.13 53403028.86 661638.01 311.45 

 

Table 16. Results of the capC problem over 30 independent runs 

capC Best Worst Mean Std.Dev. GAP 

TSA1 11850518.62 12361057.46 12165873.92 133437.59 5.74 

TSA2 12040006.98 12725230.85 12411298.19 168395.95 7.87 

TSA3 12799839.02 14112120.13 13499519.44 340487.55 17.33 

TSA4 13624719.53 15866700.81 15066661.99 516194.42 30.95 

TSA5 43237453.33 45472880.49 44791753.86 492646.45 289.30 

TSA6 42267795.28 45075499.62 44247598.78 698780.34 284.57 

TSA7 41455001.09 43601611.64 42753834.91 565520.98 271.59 

TSA8 36844183.20 40464813.77 39284277.71 825845.31 241.44 

 

The convergence graphs of the problems are shown in between 

Fig.5 to Fig.19. According to the convergence graphs, the transfer 

functions are changing similarly. As seen in the figures, S-shaped 

transfer functions rapidly convergence than V-shaped transfer 

functions.  

 
Fig 5.  Convergence graph of the cap71 problem 

 

 
Fig 6.  Convergence graph of the cap72 problem 

 

 
Fig 7.  Convergence analyses of the cap73 problem 

 

 
Fig 8.  Convergence graph of the cap74 problem 

 
Fig 9.  Convergence graph of the cap101 problem 

 

 
Fig 10.  Convergence graph of the cap102 problem 

 
Fig 11.  Convergence graph of the cap103 problem 
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Fig 12.  Convergence graph of the cap104 problem 

 
Fig 13.  Convergence graph of the cap131 problem 

 
Fig 14.  Convergence graph of the cap132 problem 

 
Fig 15.  Convergence graph of the cap133 problem 

 
Fig 16.  Convergence graph of the cap134 problem 

 
Fig 17.  Convergence graph of the capA problem 

 
Fig 18.  Convergence graph of the capB problem 

 
Fig 19.  Convergence graph of the capC problem 

7. Conclusion 

In this study, four S-shaped and four V-shaped transfer function 

have been applied for UFLP by using TSA. These transfer 

functions were used in order to convert continuous search space 

(real coded values) to binary search space (binary coded values). 

In literature 15 benchmark UFLP which were studied widely have 

been tried to solve by these proposed transfer functions. According 

to experimental results, generally S-shaped transfer functions have 

been reached the optimal solutions for the small and medium scale 

UFLPs, however, the V-shaped transfer functions have not reached 

all optimal solutions for small and medium-sized UFLPs. For the 

big scale UFLP such as capA, capB and capC, TSA1 found the 

better results than the others. Results have showed that the V-

shaped transfer functions are useless for the big scale UFLPs. As a 

result, S-shaped transfer functions have been more successful than 

V-shaped transfer functions in terms of reaching the optimal 

solutions. 
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