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Abstract: Many studies have been conducted on the estimation of weight losses of industrial tools; however, these investigations are scarce. 

And there is no prediction study on the weight loss of industrial punches. An artificial neural network model (ANN) was proposed in order 

to establish relationships with the field data including input parameters as punch diameter, punch stroke, stroke noise, and punch 

temperature and output parameter as weight loss of punch. Effect of each parameter on the weight loss of industrial punch was analyzed 

with the developed model. An empirical formula was also obtained with the generalization capabilities of the ANN system. Analysis results 

showed that the estimation results are in good agreement with the field data. And these numerical results with high efficiency can make it 

possible to use the neural designs for real-life industrial punch estimation applications. 
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1. Introduction 

Forming with die and punch has an essential place in the 

production of many sectors such as automotive. Developments in 

die design and manufacturing have both increased their lifetime 

and increased the quality of punching and cutting by enabling a 

more precise and cost-effective production process. The cutting 

process during material punching occurs plastic deformation, 

cutting and breaking stages. From the previous studies; the 

punching parameters, type, thickness, die clearance and piercing 

forces of the workpiece can see to affect the hole form (Fig. 2) [1-

3]. To combat today's markets, long-lasting dies and punches, less 

waste, better quality production should be made. The quality of the 

parts affected by piercing parameters and punch wear is generally 

assessed by criteria such as hole edge geometry and burr height. 

The punch material and geometry can be held responsible for the 

rapid and excessive wear of the punches [4-10]. Due to the 

mechanical properties of the workpiece and the punch material, 

excessive stresses and major wear events occur during cutting. 

These tribological phenomena can be explained as adhesion, 

transfer between friction elements, fatigue and fatigue due to micro 

fractures. To maintain hole quality when these events occur, 

punches and dies must be replaced at optimum time. Corroded 

punches, which adversely affect the hole geometry, should be 

changed at the appropriate time to control production costs. Better 

hole quality can be obtained by selecting the punching and cutting 

parameters of the punch and workpiece materials accordingly [6-

8]. In previous studies, much work has been done, such as tool life, 

wear, cutting clearance and material thickness, except for 

examining the hole quality of the products [9, 10]. However, there 

is no study investigating the relationship among diameter, wear, 

temperature and noise. 

Due to the mechanical properties of the workpiece and the punch 

material, excessive stresses and major wear events occur during 

cutting. Therefore, traditional heat treatments are realized to 

increase the production speed and service life of die components 

made of such as cold work tool steels DIN 1.2080, 2379 running 

under large loads. So, the mechanical properties and abrasion 

resistance can be increased by heat treatment [3, 4]. 

Artificial neural networks (ANNs) are widely used to model the 

comportment of the brain functions and human nervous system 

[11,12]. In may engineering disciplines, the ANN systems are 

utilized with high accuracy to predict and evaluate the output factor 

[13-15]. 

2. Materials and Methods 

2.1. Field Studies (Piercing Experiments) 

In this work 1.2-mm-thick, the EN 14301 stainless steel sheets in 

dimensions of 250×250 mm were used. The chemical content and 

strength values of stainless steel are presented in Table 1 and 2. 

The piercing processes were carried out using a 25-ton capacity 

Trumpf TR 240 punch machine and 160 strokes per minute.  

The piercing operations were performed under dry conditions in 

this industrial application. The cutting clearance used was as 12% 

of the workpieces thickness. The parts were measured at 5,000th, 

10,000th, 15,000th, 20,000th, 25,000th and 30,000th strokes. 

Table 1. Chemical content of EN 14301 stainless steel (wt.%) 

C Mn Si Cr S P Ni Balance  

0.58 1.62 0.15 19.0

6 

0.0

3 

0.09 9.67 68.81 

 

Table 2. The strength values of EN 14301 stainless steel 

Tensile 

strength 

(Mpa) 

Yield 

strength 

(Mpa) 

Hardness  

(HRB) 

Density  

(gr/cm3) 

505 215 70 8 

 

The punches was designed to Ø5x100 mm, Ø6x100 mm and 

Ø7x100 mm  in dimentional. They were made of DIN 1.2080 tool 

steel. Table 3 presents chemical composition and Table 4 
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mechanical properties of punches (provided by the supplier). 

Table 3. Chemical composition of DIN 1.2080 tool steel (wt.%) 

C Mn Si Cr S P Ni Balance 

2.09 0.17 0.01 
12.3
5 

0.00
1 

0.01
5 

0.21 85.14 

 

Table 4. Mechanical properties of DIN 1.2080 tool steel 

Tensile strength 

(MPa) 

Yield strength 

(MPa) 

Hardness 

(HRC) 

Density 

(gr/cm3) 

970 850 28 7.86 

 

The heat treatment of the 2080 tool steel has carried out with salt 

bath in the vacuum heat treatment furnace. This operation has 

involved hardening and tempering (Fig. 1) [16, 17]. 

 

Fig. 1. A schematic presentation of the heat treatment schedule consisting 

of the hardening, tempering cycles of the punches (DIN 1.2080) 

 

The PCE-778 Laser Thermometer is a device used to measure 

temperature using an infrared laser at a specified distance. This 

non-contact measuring Laser Thermometer is suitable for 

measuring up to 800 °C (Fig. 2b). The technical specifications of 

the temperature measuring instrument are given in Table 5. At the 

end of each stroke, temperature measurements were taken from a 

fixed location and at a distance of 3 m. The punch temperatures 

were measured three times and averaged.  

The PCE-318 noise instrument was used measure the punching 

noise of the punch machine at a distance of 3 m. The PCE-318 

noise device was used to measure punching noise of the punching 

machine using at 3 m distance. This measuring device is suitable 

for measuring up to 26-100 dB and 70-130 dB (Fig. 2a). The 

technical specifications of the noise measuring instrument are 

given in Table 6. At the end of each stroke, punching noise 

measurements were taken from a fixed location and at a distance 

of 3 m. The punching noises were measured three times and 

averaged. 

Weight loss of the punches to assess the wear resistances were 

measured on the sensitive scale of 1×10−3 g (ELEL 200 S). The 

weight losses of the tools were measured at the end of each stroke. 

They were measured after cleaning. This process was repeated 

three times and averaged. 

 

 

 

Table 5.  Technical specifications of the PCE-778 Laser Thermometer 

measuring instrument 

Technical Properties 

Optical Resolution 12: 1  

Measurement 

Range 
-40 °C ... 800 °C / -40 °F ... 1472 °F  

Measurement 

Sensitivity 

-40 °C ... 0 °C: ±4 °C 0 ... +400 °C: ±1.5 °C 

+400 °C ... +800 °C: ±2 °C  

Resolution  0.1 °C at 0 ... +199.9 °C 1 °C at > 199.9 °C  

Emission  0.1...1 (adjustable)  

Spectral  8 ... 14 mikron  

Transaction Terms 0 ... +50 °C, RH 10 % ... 90 %  

Storage conditions -20 °C ... +60 °C, RH < 80 %  

Power source 9V battery  

Laser  Class 2  

 

The HOYTOM 1003 test machine was used for makro hardness 

evaluation of samples prepared in accordance with the required 

standard. The main load 1.5 kN for 20 seconds was applied after a 

preload of 0.1 kN. The average of five measurement values was 

used as hardness value. 

 

Fig. 2. a) Noise measurement device, b) Laser thermometer device 

 

Table 6.  Technical specifications of the PCE-318 noise measuring 

instrument 

Technical Properties 

Standards 
IEC651 Type 2, ANSI S1.4 Type 2  

IEC61672-1: 2002 2. class  

Frequency range 31,5 Hz… 8 Khz 

Measurement Range 26… 130 dB / Resolution  1 dB 

Microphone 
½ inch electrode condenser 

microphone 

1. Display 4 position LCD display 

Data update every 0.5 seconds 

Screen 2 50-segment bar chart 

Data update  every 50 ms  

Measuring ranges Lo: 26 ... 100 dB Hi: 70 ... 130 dB 

Sensitivity 
Reference conditions 94 dB and ± 1,5 

dB at 1 Khz 

Fixing Standard mounting for a tripod 

Power supply 
9 V battery (generally for 50 hours of 

operation) 

Working 

temperature 
0 ... +50 °C 
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2.2. Artificial Neural Network Development 

Quasi- Newton was utilized as the training algorithm in the ANN 

system for the weight losses estimation. Eighty-six datasets were 

utilized for the improvement of the proposed ANN system. Data 

classification of ANN models was carried out as proposed: 80% of 

the data for training and 20% for testing Quasi- Newton method 

using the gradient data in each iteration calculates an approximate 

value of the inverse Hessian. Teaching algorithm is presented in 

Table 7. 

Table 7. Training algorithm information 

Description  Value 

Training rate method Brent method 

Training rate tolerance 0.006 

Min. parameters increment form 1e-009 

Mx. Selection loss increases 100 

Min. loss increase 1e-012  

Max. training time 4000 

Max. iterations number 1000 

The ANN system was proposed with four input parameters. These 

parameters are punch temperature, punch stroke, punch diameter 

and stroke voice. The other factors that may affect the weight 

losses of punch such as punch material, cutting clearance were kept 

constant and ignored in field studies. The ANN structure is given 

Fig. 3. The number of layers in the neural network is 2. The 

architecture of this neural network can be written as 4:3:1. 

 

Fig. 3. ANN structure 

 

Table 8. Order selection algorithm 

Description Value 

Minimum order 1 

Maximum order 15 

Trials number 5 

Tolerance 0.01 

Selection loss goal 0 

Maximum selection failures 7 

Maximum iterations number 1000 

 

A scaling layer, a neural network and an unscaling layer form the 

structure of the ANN. The complexity, represented by the numbers 

of hidden neurons, is 3. Incremental order was used as order 

selection algorithm. Details of this algorithm is presented in Table 

8.  ANN model performance was tested with Sum Squared Mistake 

(SSM), Mean Squared Mistake (MSM), Root Mean Squared 

Mistake (RMSM), Normalized Squared Mistake (NSM) and 

Minkowski Mistake (MM) methods. Proposed network errors are 

shown in Table 9. 

Table 9. Proposed network errors 

 Training Selection Testing 

Sum squared error 2.47631e-010 0.0942242 0.141491 

Mean squared error 2.25119e-011 0.0314081 0.047163 

Root mean squared 

error 
4.74467e-006 0.177223 0.217172 

Normalized squared 

error 
3.72273e-010 7.18793 2.27548 

Minkowski error 9.09183e-008 0.209518 0.274712 

 

The rule of the parameters provides a hint about the complexity of 

the estimation pattern. Parameters norm were 2.6. This value was 

not very high, and the model was also stable. The neural 

parameters norm was used as the regularization method. It was 

applied to control the complexity of the neural network by 

reducing the value of the parameters. Neural parameters norm 

weight was obtained as 0.001. Neural Designer software was 

utilized during the development of ANN system. 

3. Discussions 

3.1. Field Study Results 

The heat treatment of the 2080 tool steel involved hardening and 

tempering. The hardness of the punch was measured 58 HRC after 

heat treatment. The heat treatment procedure was seen to increase 

the hardness of the DIN 2080 tool steel material. Also the increased 

hardness was increased wear resistance. The researchers have 

known that the hardening and tempering for the samples in the heat 

treatment processing procedure were influential on mechanical 

properties and microstructure changes [14, 15].  

The piercing processes were carried out using a 25 ton capacity the 

punch machine and 160 strokes per minute. The piercing 

operations were performed under dry conditions in this industrial 

application. The cutting clearance used was 12% of the workpieces 

thickness. In this work 1.2-mm-thick the EN 14301 stainless steel 

sheets were used. The weight loss (mg) in the unit area (mm²) was 

evaluated as punch wear. The punch stroke and weight loss 

relationship for the 5, 6 and 7 mm diameter punches used are shows 

in Fig. 4. Increasing punch stroke increases weight losses. 

The less amount of weight loss was obtained when the diameter 

was 5 mm, and the stroke voice was less than 88 dB (Fig. 5). 

Punch temperature and punch stroke combined effects on the 

weight losses are presented in Fig. 6. Both increases in punch 

stroke and punch temperature resulted in increase of weight losses. 
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Fig. 4. Contour Plot of Punch stroke vs stroke voice (dB); Weight losses 

(mg) 

 

Fig. 5. Contour Plot of Punch stroke vs stroke voice(dB); Punch diameter 
(mm) 

 

Fig. 6. Surface Plot of Punch Temperature vs Weight losses (mg); Punch 
stroke 

3.2. Artificial Neural Network Results 

Linear regression plot of the estimated weight losses is given in 

Fig. 7. The blue line indicates the best linear and the grey line 

would indicate the perfect fit. R-squared value accounts for 92.29 

and it was found that utilized ANN model reflected a good fitting 

performance.  

Output parameter weight losses with effecting input parameters is 

presented in Fig. 8. The field study results and predicted data were 

compared. The relationship between field study results with the 

output data is not constant in proposed ANN environment. The 

main reason of this fact that each inputs significantly effect the 

neural network system. 

 

Fig. 7. Linear regression chart 

 

Fig. 8. Estimated weight losses as a function of inputs 

 

Weight losses increased with the increase in punch stroke. The 

punch temperature exceeding 24°C significantly increased the 

weight loss amounts. The minimum estimated weight loss results 

were recorded when the punch with 5 mm was used.   

The mathematical expression represented by the neural network is 

given below. The result is propagated in a feed-forward fashion 

through the scaling layer, the perceptron layers and the unscaling 

layer. The mathematical formulas as follows (Eq. 1-8): 

Scaled punch temperature = (Punch temperature -

22.2353)/2.70484     (1) 

Scaled punch stroke =2*(Punch stroke -5000)/ (30000-5000) -1

      (2) 

Scaled diameter =2*(Diameter -5)/ (7-5)-1  (3) 

Scaled stroke voice= (stroke voice -96.0429) /5.11657 (4) 

y11=tanh (0.972607-0.549997* Scaled punch temperature + 

0.797416* Scaled punch stroke+ 0.41634* Scaled diameter - 

0.4915* Scaled stroke voice    (5) 

y12=tanh (1.06284 - 0.679937* Scaled punch temperature- 

0.215442* Scaled punch stroke -1.10267* Scaled diameter + 

0.303153* Scaled stroke voice   (6) 

y13=tanh (-1.03725+ 0.0845723* Scaled punch temperature - 

0.610826* Scaled punch stroke+ 0.948722* Scaled diameter-

0.501023* Scaled stroke voice   (7) 

Scaled weight losses= (0.0313461+ 0.425691*y11-0.456221*y12-

0.681869*y13)     (8) 
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4. Conclusion 

Eighty-six datasets of previously performed field studies on weight 

of punches were analyzed in the neural network system. The 

following results can be drawn from the results of the estimation 

study: 

• The proposed ANN system approved the strong 

correlation between the input parameters and the output 

parameter weight loss amounts of punches. 

• The weight factor of the analysis was well calibrated, it 

was found that results of the analysis showed good 

correlation with the previously conducted experimental 

study results. 

• Increasing the punch temperature up to 27 ⁰C, also 

increases the weight loss amounts in the ANN analysis. 

• Minimum weight loss amount was recorded with stroke 

voice lower than 87 dB. 

• The results of the study can be evaluated by other 

artificial and mathematical systems for better 

understanding of the effects on the weight loss of 

punches.  
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