

International Journal of

Intelligent Systems and Applications in Engineering

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019 7(4), 222–226 | 222

Rolling in the Deep Convolutional Neural Networks

Derya Soydaner*1

Submitted: 15/11/2019 Accepted : 12/12/2019 DOI: 10.1039/b000000x

Abstract: Over the past years, convolutional neural networks (CNNs) have achieved remarkable success in deep learning.

The performance of CNN-based models has caused major advances in a wide range of tasks from computer vision to

natural language processing. However, the exposition of the theoretical calculations behind the convolution operation is

rarely emphasized. This study aims to provide better understanding the convolution operation entirely by means of diving

into the theory of how backpropagation algorithm works for CNNs. In order to explain the training of CNNs clearly, the

convolution operation on images is explained in detail and backpropagation in CNNs is highlighted. Besides, Labeled

Faces in the Wild (LFW) dataset which is frequently used in face recognition applications is used to visualize what CNNs

learn. The intermediate activations of a CNN trained on the LFW dataset are visualized to gain an insight about how CNNs

perceive the world. Thus, the feature maps are interpreted visually as well, alongside the training process.

Keywords: Convolutional Neural Networks, Deep Learning, Image Processing

1. Introduction

Convolutional neural networks (CNNs) are a specialized kind of

neural network for processing data that has a known grid-like

topology [1]. They have been used in image recognition since the

1980s. Over the years, with the aid of the increase in

computational power and the amount of available training data

CNNs have achieved significant performance on some complex

tasks such as visual perception, voice recognition and natural

language processing [2]. Since the early 2000s, CNNs have been

applied with great success to the detection, segmentation and

recognition of objects and regions in images [3]. During this

period, several architectures have been proposed such as LeNet

[4], AlexNet [5], DenseNet [6], ResNet [7], VGG [8], Inception

and GoogLeNet [9]. The aim of this study is to shed light on the

common working principles and calculations behind the

convolutional layers of these successful architectures. Because it

is often said that deep learning models are black boxes. Although

this is generally true for certain types of deep learning models, it

is definitely not true for CNNs [10]. The convolution operation

and backpropagation in CNNs can be expressed clearly. Besides,

the representations learned by CNNs can be extracted and

displayed visually.

In deep learning literature, there exists a genuine interest in

understanding and visualizing CNNs. For example, a

comprehensive survey of several representative CNN

visualization methods is provided [11]. In another study, a novel

visualization technique that gives insight into the function of

intermediate feature layers and the operation of the classifier is

introduced [12]. They use these visualizations to find model

architectures that outperform AlexNet on the ImageNet

classification benchmark. Also, three visualization methods

namely inversion, activation maximization and caricaturization

are studied [13]. Two visual tools are introduced to interpret

neural networks [14]. Besides, in order to classify knowledge

representations in high convolutional layers a new method to

modify a traditional CNN into an interpretable CNN is proposed

[15]. By using three different methods, a comparison of heatmaps

on three datasets is demonstrated [16]. More recently, existing

activation maximization methods are reviewed and a probabilistic

interpretation for these methods are discussed [17]. In

comparison with these recent studies, this work is focused on

understanding CNN training process in addition to the meaning

of convolutional layers. CNNs are examined on a face

recognition task to make them more interpretable.

In this work, a brief background information about CNNs is

given in Section 2. Additionally, convolution operation on images

is explained in detail as well as how the backpropagation

algorithm works for CNNs. In Section 3, the interpretation of

convolutional layers is examined by visualizing intermediate

activations of convolutional layers. Finally, in Section 4,

conclusions are drawn.

2. Convolutional Neural Networks

In 2012, a special CNN architecture called AlexNet won the

ImageNet object recognition challenge [5]. This study is accepted

as a breakthrough in deep learning literature. On the other side,

the underlying idea of CNNs dates back to Cognitron [18] and

Neocognitron [19]. Also, if one looks further back into the

history, the idea of the structure of convolutional layers is

inspired from the discoveries about the mammalian vision system

[20-22]. Neurophysiologists David Hubel and Torsten Wiesel

showed that certain neurons in the mammalian visual cortex

responded selectively to images and parts of images of specific

shapes. In their experiments, they found that certain neurons fired

rapidly when a cat was shown images small lines at one angle and

that other neurons fired rapidly in response to small lines at

another angle. Later work revealed that other neurons were

specialized to respond to images containing more complex shapes

such as corners, longer lines, and large edges [23].

1 Statistics, Mimar Sinan Fine Arts University, İstanbul – 34380, TURKEY

ORCID ID : 0000-0002-3212-6711

* Corresponding Author Email: derya.soydaner@msgsu.edu.tr

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019 7(4), 222–226 | 223

Similarly, CNNs learn features hierarchically from images [24].

They classify an image by combining simpler definitions such as

corners and edges. Because it is difficult for a computer to

understand the meaning of an image represented as a collection of

pixel values. Deep learning resolves this difficulty by breaking

the desired complicated mapping into a series of nested simple

mappings, each described by a different layer of a model. In a

CNN architecture, the image defined by pixels is in the input

layer. Then a series of hidden layers extracts increasingly abstract

features from the image [1]. This is the main idea of CNNs.

A typical CNN architecture is composed of convolutional and

pooling layers followed by several fully-connected layers. The

well-known LeNet-5 is shown in Fig. 1 as an example of the

general CNN architecture. While convolutional layers extract

feature maps, pooling layers reduce the spatial size of

representations. Thus, the pooling layer shrinks the size of feature

maps to improve statistical efficiency and reduces memory

requirements for storing the parameters [1].

Fig. 1. LeNet-5 architecture [4]

In the convolutional layers the units are organized into planes,

each of which is called a feature map. Units in a feature map each

take inputs only from a small subregion of the image, and all of

the units in a feature map are constrained to share the same

weight values. If the units are considered as feature detectors,

then all of the units in a feature map detect the same pattern but at

different locations in the input image. Due to the weight sharing,

the evaluation of the activations of these units is equivalent to a

convolution of the image pixel intensities with a kernel

comprising the weight parameters. As detecting multiple features

is essential in order to build an effective model, there will

generally be multiple feature maps in the convolutional layer,

each having its own set of weight and bias parameters [25].

2.1. Convolution Operation

Convolution is a specialized kind of linear operation. CNNs are

simply neural networks that use convolution in place of general

matrix multiplication in at least one of their layers [1].

Convolving a 3x3 kernel over a 4x4 input using 1x1 strides is

shown in Fig. 2. In this example, a 2x2 output is produced as a

result of the convolution operation completed in four steps.

Convolution is performed by multiplying the elements of the

input corresponding to each element of the kernel. The first

element of the 2x2 output is computed by taking summation of

the results of this multiplication. The kernel starts on the leftmost

part of the input feature map and slides by steps of one until it

touches the right side of the input. Then, the kernel slides down,

goes to the leftmost part and repeat the same process again. Thus,

the kernel passes over the all input feature map [26]. For each

convolutional layer, this operation is repeated as the number of

filters. Thus, the forward pass is completed in CNNs.

Fig. 2. A convolution operation example [27]

2.2. Convolution Operation on RGB Images

In CNNs, convolution operation can be performed in two

different situations: An input image or a feature map produced by

another convolutional layer may be convolved with a kernel. In

both cases, the number of channels of the kernel and its input

must match. Consider an RGB image as input. As RGB images

have 3 channels, in order to convolve a kernel with an RGB

image, the kernel must have 3 channels as well. Convolving a

2x2x3 kernel over a 3x3x3 input is shown in Fig. 3. The

difference between this operation and the example given in

previous subsection is that convolution is performed multiplying

the elements of each kernel channel corresponding numbers from

the red, green and blue channels of input. The elements of the 2x2

output are computed by taking summation of these multiplied

results.

Fig. 3. A convolution operation example on an RGB image

In general, more than one filter is used in convolutional layers. In

that case, a feature map is obtained by convolution operation for

each filter. Then, these feature maps are concatenated to

constitute the output. For example, in Fig. 3, if there are 5 filters

instead of 1, the output will be 2x2x5. The number of filters

determines the number of output channels.

2.3. Backpropagation in Convolutional Neural Networks

The backpropagation procedure [28] to compute the gradient of

an objective function with respect to the weights of a multilayer

stack of modules is nothing more than a practical application of

the chain rule for derivatives. The key insight is that the gradient

of the objective with respect to the input of a module can be

computed by working backwards from the gradient with respect

to the output of that module (or the input of the subsequent

module) [3]. CNNs are some of the first working deep networks

trained with backpropagation [1]. In CNNs, in addition to the

forward pass, the backward pass is also performed by

convolutions. When the forward pass is completed, the loss

gradient from the previous layer must be calculated to move the

loss backwards. The key insight is that this calculation is

performed by convolution operation. In order to explain the

backpropagation for convolutional layers, convolving a 2x2

kernel (F) over a 3x3 input (X) is shown in Fig. 4.

Fig. 4. Convolving a 2x2 kernel (F) over a 3x3 input (X)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019 7(4), 222–226 | 224

In this example, a 2x2 output (O) is produced. The calculations of

the elements of this output obtained by the forward pass are given

in the following equations:

𝑂11 = 𝑋11𝐹11 + 𝑋12𝐹12 + 𝑋21𝐹21 + 𝑋22𝐹22 (1)

𝑂12 = 𝑋12𝐹11 + 𝑋13𝐹12 + 𝑋22𝐹21 + 𝑋23𝐹22 (2)

𝑂21 = 𝑋21𝐹11 + 𝑋22𝐹12 + 𝑋31𝐹21 + 𝑋32𝐹22 (3)

𝑂22 = 𝑋22𝐹11 + 𝑋23𝐹12 + 𝑋32𝐹21 + 𝑋33𝐹22 (4)

At the end of the forward pass, a loss value (L) is computed to

backpropagate from the output back to the input by using a loss

function. To perform the backward pass, 𝜕𝐿/𝜕𝑋 and 𝜕𝐿/𝜕𝐹 must

be computed using the chain rule. Thus, the loss can be

backpropagated to the other layers. 𝜕𝐿/𝜕𝐹 is used to update filter

F. On the other side, 𝜕𝐿/𝜕𝑋 becomes the loss gradient for the

previous layer when X is the output of the previous layer [29].

𝜕𝐿/𝜕𝐹 is computed in two steps. The first step is to find the local

gradient, 𝜕𝑂/𝜕𝐹. The calculations for the local gradients for 𝑂11

for the example in Fig. 4 are given in (5). As seen from the

equations, the first element of the output is differentiated with

respect to the elements of F. Similarly, the local gradients can be

computed for all the output elements. After finding the gradients,

for every element of F, a general rule to compute 𝜕𝐿/𝜕𝐹 by using

the chain rule is shown in (6).

𝜕𝑂11

𝜕𝐹11
= 𝑋11,

𝜕𝑂11

𝜕𝐹12
= 𝑋12,

𝜕𝑂11

𝜕𝐹21
= 𝑋21,

𝜕𝑂11

𝜕𝐹22
= 𝑋22 (5)

𝜕𝐿

𝜕𝐹
=

𝜕𝐿

𝜕𝑂
∗
𝜕𝑂

𝜕𝐹
 (6)

The expansion of (6) is given between equations (7) and (10). In

these expansions, if the results obtained in (5) are substituted to

𝜕𝑂/𝜕𝐹, it is seen that (6) is equivalent to a convolution operation

between input X and the loss gradient 𝜕𝐿/𝜕𝑂.

𝜕𝐿

𝜕𝐹11
=

𝜕𝐿

𝜕𝑂11
∗
𝜕𝑂11

𝜕𝐹11
+

𝜕𝐿

𝜕𝑂12
∗
𝜕𝑂12

𝜕𝐹11
+

𝜕𝐿

𝜕𝑂21
∗
𝜕𝑂21

𝜕𝐹11
+

𝜕𝐿

𝜕𝑂22
∗
𝜕𝑂22

𝜕𝐹11
 (7)

𝜕𝐿

𝜕𝐹12
=

𝜕𝐿

𝜕𝑂11
∗
𝜕𝑂11

𝜕𝐹12
+

𝜕𝐿

𝜕𝑂12
∗
𝜕𝑂12

𝜕𝐹12
+

𝜕𝐿

𝜕𝑂21
∗
𝜕𝑂21

𝜕𝐹12
+

𝜕𝐿

𝜕𝑂22
∗
𝜕𝑂22

𝜕𝐹12
 (8)

𝜕𝐿

𝜕𝐹21
=

𝜕𝐿

𝜕𝑂11
∗
𝜕𝑂11

𝜕𝐹21
+

𝜕𝐿

𝜕𝑂12
∗
𝜕𝑂12

𝜕𝐹21
+

𝜕𝐿

𝜕𝑂21
∗
𝜕𝑂21

𝜕𝐹21
+

𝜕𝐿

𝜕𝑂22
∗
𝜕𝑂22

𝜕𝐹21
 (9)

𝜕𝐿

𝜕𝐹22
=

𝜕𝐿

𝜕𝑂11
∗
𝜕𝑂11

𝜕𝐹22
+

𝜕𝐿

𝜕𝑂12
∗
𝜕𝑂12

𝜕𝐹22
+

𝜕𝐿

𝜕𝑂21
∗
𝜕𝑂21

𝜕𝐹22
+

𝜕𝐿

𝜕𝑂22
∗
𝜕𝑂22

𝜕𝐹22
 (10)

𝜕𝐿/𝜕𝑋 is also computed in two steps. The first step is to find the

local gradient 𝜕𝑂/𝜕𝑋. For the example in Fig. 4, the calculations

for the local gradients for 𝑂11 are given in (11). Here, the first

element of output is differentiated with respect to the elements of

X. Similarly, the local gradients can be computed for the all

output elements. After finding the gradients, for every element of

X, a general rule to compute 𝜕𝐿 𝜕𝑋⁄ by using the chain rule is

shown in (12).

𝜕𝑂11

𝜕𝑋11
= 𝐹11,

𝜕𝑂11

𝜕𝑋12
= 𝐹12,

𝜕𝑂11

𝜕𝑋21
= 𝐹21,

𝜕𝑂11

𝜕𝑋22
= 𝐹22 (11)

𝜕𝐿

𝜕𝑋
=

𝜕𝐿

𝜕𝑂
∗
𝜕𝑂

𝜕𝑋
 (12)

The expansion of (12) including the substitution of results from

(11) is given as follows:

𝜕𝐿

𝜕𝑋11
=

𝜕𝐿

𝜕𝑂11
∗ 𝐹11 (13)

𝜕𝐿

𝜕𝑋12
=

𝜕𝐿

𝜕𝑂11
∗ 𝐹12 +

𝜕𝐿

𝜕𝑂12
∗ 𝐹11 (14)

𝜕𝐿

𝜕𝑋13
=

𝜕𝐿

𝜕𝑂12
∗ 𝐹12 (15)

𝜕𝐿

𝜕𝑋21
=

𝜕𝐿

𝜕𝑂11
∗ 𝐹21 +

𝜕𝐿

𝜕𝑂21
∗ 𝐹11 (16)

𝜕𝐿

𝜕𝑋22
=

𝜕𝐿

𝜕𝑂11
∗ 𝐹22 +

𝜕𝐿

𝜕𝑂12
∗ 𝐹21 +

𝜕𝐿

𝜕𝑂21
∗ 𝐹12 +

𝜕𝐿

𝜕𝑂22
∗ 𝐹11 (17)

𝜕𝐿

𝜕𝑋23
=

𝜕𝐿

𝜕𝑂12
∗ 𝐹22 +

𝜕𝐿

𝜕𝑂22
∗ 𝐹12 (18)

𝜕𝐿

𝜕𝑋31
=

𝜕𝐿

𝜕𝑂21
∗ 𝐹21 (19)

𝜕𝐿

𝜕𝑋32
=

𝜕𝐿

𝜕𝑂21
∗ 𝐹22 +

𝜕𝐿

𝜕𝑂22
∗ 𝐹21 (20)

𝜕𝐿

𝜕𝑋33
=

𝜕𝐿

𝜕𝑂22
∗ 𝐹22 (21)

The calculations between equations (13) and (21) are equivalent

to a full convolution operation between the loss gradient 𝜕𝐿/𝜕𝑂

and a 180-degree rotated filter [29]. After these calculations, the

kernel is updated as shown in (22). Here, the learning rate is

represented as α.

𝐹𝑛𝑒𝑤 = 𝐹𝑜𝑙𝑑 − 𝛼
𝜕𝐿

𝜕𝐹
 (22)

Convolutional layer is the core building block of the CNN

architecture. Similar to this layer, the gradients of the pooling

layer can be calculated by following the similar procedure of

using chain rule.

3. Experimental Analysis

3.1. Dataset

One of the foremost success of CNNs is face recognition [30, 31].

Therefore, the well-known Labeled Faces in the Wild (LFW)

dataset [32] is chosen to perform the visualizing experiments.

LFW is composed of 13.233 face images belonging to 5749

people. They are RGB images in different sizes. In this study,

these images are scaled to a size of 64x64. Also, LFW classes

that have at least 30 images are chosen for training. Hence, 1777

face images belonging to 34 people are used for classification

task. They are randomly divided into two subsets as 0.75 for

training and 0.25 for testing.

3.2. Implementation Details

To understand CNNs better, the intermediate activations of a

CNN architecture is visualized. Thus, the convolutional layers are

interpreted visually in addition to the exposition of

backpropagation algorithm for convolutional layers. The CNN

architecture is designed for the visualizing experiments as

follows: It includes three convolutional layers each one is

followed by a 2x2 max-pooling layer. The convolutional layers

include 32, 64 and 128 filters with 3x3 kernels, respectively.

These layers are followed by two fully-connected layers

including 128 and 256 hidden units. Lastly, the output layer is

fully-connected including 34 hidden units with softmax activation

function. The rest of the layers use ReLU. Dropout in ratio 0.50 is

applied to the fully-connected layers preceding the output layer.

This CNN architecture is trained using Adam [33] which is one

of the widely used optimization algorithm in deep learning. The

learning rate is 0.001. This network is trained 100 epochs with a

minibatch size of 128. The loss function is categorical cross

entropy.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019 7(4), 222–226 | 225

3.3. Visualizing Intermediate Activations

The intermediate activations are visualized to get an idea about

how CNNs see and interpret the world. To this end, firstly, the

CNN architecture described in the previous subsection is trained

100 epochs. The course of training process is shown in Fig. 5. At

the end of training, it achieves a classification accuracy of 83.47

on the test data.

Fig. 5. (Left) Training accuracy. (Right) Training loss.

Then, the activations of all convolutional and pooling layers are

examined using an example from the test data which is the

network is not trained on. The picture below is the input image to

examine the intermediate activations:

Fig. 6. The test image from LFW

As the representations learned by the CNN are simply

representations of visual concepts, this experiment can provide

better understanding about how successive layers transform their

input. Additionally, this gives a view into how an input is

decomposed into the different filters learned by the network [10].

The CNN architecture includes three convolutional layers, each

one is followed by a max-pooling layer. Therefore, every channel

in each of activation maps obtained from these six layers is

visualized as a 2D image. The visualizations of feature maps are

stacked side by side for each convolutional and pooling layer and

they are shown below, respectively:

 Fig. 7. The feature maps extracted from the first convolutional layer

 Fig. 8. The feature maps extracted from the first max-pooling layer

 Fig. 9. The feature maps extracted from the second convolutional layer

 Fig. 10. The feature maps extracted from the second max-pooling layer

 Fig. 11. The feature maps extracted from the third convolutional layer

 Fig. 12. The feature maps extracted from the third max-pooling layer

As seen from the visualizations, the neural network extracts

increasingly abstract features from the test image. In the deeper

layers, it becomes difficult to interpret the activations in visual.

Additionally, the sparsity of the activations increases. In the first

layer, all filters are activated by the input image. However, the

number of blank activations increases in the following layers.

This means that the pattern encoded by the filter is not found in

the input image [10]. In the first convolutional layer, the

activations keep almost all of the information in the test image.

As the activations go through deeper layers, they start encoding

higher-level features such as “mouth” or “eyes”. At the end, it

classifies the image by combining simpler definitions. It can be

seen clearly that the CNN learns features hierarchically from the

face image.

4. Conclusion

In this work, the calculations behind convolutional layers are

explored. Thus, the backpropagation for CNNs is clarified.

Besides, it is investigated how CNNs learn and perceive the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019 7(4), 222–226 | 226

world. Examining these issues is as important as building and

training new CNN architectures on various tasks. Because deep

CNNs have achieved impressive results and it is obvious that they

will have many more in the near future. To this end,

understanding and interpreting the learning process and internal

representations can provide an insight into how the model works

in addition to give hints to develop new architectures and

algorithms.

References

[1] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. The MIT

Press, 2016.

[2] A. Geron, Hands-on Machine Learning with Scikit-Learn and

Tensorflow: concepts, tools, and techniques to build intelligent

systems. O’Reilly Media, Inc., 2017.

[3] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature,

vol. 512, no. 7553, 2015.

[4] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based

learning applied to document recognition,” Proceedings of the IEEE,

vol. 86, no. 11, pp. 2278-2324, 1998.

[5] A. Krizhevsky, I. Sutskever and G. Hinton, “Imagenet classification

with deep convolutional neural networks,” Advances in Neural

Information Processing Systems, pp. 1097-1105, 2012.

[6] G. Huang, Z. Liu, L. Maaten and K. Weinberger, “Densely connected

convolutional networks,” Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 4700-4708, 2017.

[7] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for

image recognition,” Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 770-778, 2016.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks

for large-scale image recognition,” arXiv preprint arXiv:1409.1556,

2014.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.

Erhan, V. Vanhoucke and A. Rabinovich, “Going deeper with

convolutions,” Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp.1-9, 2015.

[10] F. Chollet, Deep Learning with Python. Manning Publications Co.,

2018.

[11] Z. Qin, F. Yu, C. Lıu and X. Chen, “How convolutional neural

network see the world – A survey of convolutional neural network

visualization methods,” Mathematical Foundations of Computing,

vol. 1, no. 2, 2018.

[12] M.D. Zeiler and R. Fergus, “Visualizing and understanding

convolutional networks,” European Conference on Computer Vision,

Springer, Cham, pp. 818-833, 2014.

[13] A. Mahendran and A. Vedaldi, “Visualizing deep convolutional

neural networks using natural pre-images,” International Journal of

Computer Vision, vol.120, no. 3, pp. 233-255, 2016.

[14] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs and H. Lipson,

“Understanding neural networks through deep visualization,” arXiv

preprint arXiv:1506.06579, 2015.

[15] Q. Zhang, Y.N. Wu and S. Zhu, “Interpretable convolutional neural

networks,” Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 8827-8836, 2018.

[16] W. Samek, A. Binder, G. Montavon, S. Lapuschkin and K-R. Müller,

“Evaluating the visualization of what a deep neural network has

learned,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 28, no.11, pp. 2660-2673, 2016.

[17] A. Nguyen, J. Yosinski and J. Clune, “Understanding neural

networks via feature visualization: A survey,” arXiv preprint

arXiv:1904.08939, 2019.

[18] K. Fukushima, “Cognitron: A self-organizing multilayered neural

network,” Biological Cybernetics, vol. 20, pp. 121-136, 1975.

[19] K. Fukushima, “Neocognitron: A self-organizing neural network

model for a mechanism of pattern recognition unaffected by shift in

position,” Biological Cybernetics, vol. 36, no. 4, pp. 193-202, 1980.

[20] D. Hubel and T. Wiesel, “Receptive fields of single neurons in the

cat’s striate cortex,” The Journal of Physiology, vol. 148, no. 3,

pp. 574-591, 1959.

[21] D. Hubel and T. Wiesel, “Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex,” The Journal of

Physiology, vol. 160, no. 1, pp. 106-154, 1962.

[22] D. Hubel and T. Wiesel, “Receptive fields and functional architecture

of monkey striate cortex,” The Journal of Physiology, vol. 195,

no. 1, pp. 215-243, 1968.

[23] N. Nilsson, The Quest for Artificial Intelligence. Cambridge

University Press, 2009.

[24] G. Hinton, S. Osindero and Y. Teh, “A fast learning algorithm for

deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527-1554,

2006.

[25] C.M. Bishop, Pattern Recognition and Machine Learning, Springer,

2006.

[26] D. Soydaner, “Training deep neural network based hyper

autoencoders with machine learning methods,” Ph.D. dissertation,

Dept. Statistics, Mimar Sinan Fine Arts University, İstanbul, Turkey,

2018.

[27] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for

deep learning,” arXiv preprint arXiv:1603.07285, 2016.

[28] D. Rumelhart, G. Hinton and R. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, pp. 533-536, 1986.

[29] P. Solai, “Convolutions and backpropagations,” Available:

https://medium.com/@pavisj/convolutions-and-backpropagations-

46026a8f5d2c, 2018.

[30] Y. Taigman, M. Yang, M. Ranzato and L. Wolf, “DeepFace: Closing

the gap to human-level performance in face verification,”

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 1701-1708, 2014.

[31] C. Garcia and M. Delakis, “Convolutional face finder: A neural

architecture for fast and robust face detection,” IEEE Transactions

Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1408-

1423, 2004.

[32] G. Huang, M. Ramesh, T. Berg and E. Learned-Miller, “Labeled

faces in the wild: A database for studying face recognition in

unconstrained environments,” University of Massachusetts, Amherst,

Technical Report, pp. 07-49, 2007.

[33] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c
https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

