

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 109–115 | 109

Improve Offensive Language Detection with Ensemble Classifiers

Ekin Ekinci*1, Sevinc Ilhan Omurca2, Semih Sevim3

Submitted: 14/03/2020 Accepted: 22/04/2020 DOI: 10.1039/b000000x

Abstract: Sharing content easily on social media has become an important communication choice in the world we live. However, in

addition to the conveniences it provides, some problems have been emerged because content sharing is not bounded by predefined rules.

Consequently, offensive language has become a big problem for both social media and its users. In this article, it is aimed to detect

offensive language in short text messages on Twitter. Since short texts do not contain sufficient statistical information, they have some

drawbacks. To cope with these drawbacks of the short texts, semantic word expansion based on concept and word-embedding vectors are

proposed. Then for classification task, decision tree and decision tree based ensemble classifiers such as Adaptive Boosting, Bootstrap

Aggregating, Random Forest, Extremely Randomized Decision Tree and Extreme Gradient Boosting algorithms are used. Also the

imbalanced dataset problem is solved by oversampling. Experiments on datasets have shown that the extremely randomized trees which

takes word-embedding vectors as input are the most successful with an F-score of 85.66%.

Keywords: BabelNet, ensemble classifiers, offensive language, short text classification, Twitter, Word2Vec

1. Introduction

As a result of social media being a part of our daily lives, the way

people interact with each other has been radically reshaped.

Social media has become an important tool to connect the people

all over the world. This is because it allows its users to share the

content they want quickly, efficiently and in real-time. However,

user-created content shared on social media is not always

organized by the rules. In fact, nowadays, content written in an

offensive language has become widespread on social media.

Offensive language is defined as message which contains

insulting or threatening expressions written by one person to

another. The severity of this problem is increasing each day;

consequently, it is very important to deal with this problem in

terms of government policy, social media terms and policies and

online community plans. At this stage, there is a need for

effective methods.

Social media generates a large amount of data daily as mentioned

above. Therefore, it is very difficult to manually determine

offensive language on the social media even by an expert. Such a

“@BreitbartNews Good” language on Twitter, we can easily say

that this language is not offensive. However, we cannot say that

every content is clear and there are millions of content waiting to

be analysed. Classification techniques in machine learning are

quite successful in analysing such languages in social media [1].

In the last few years, several studies engaged with prediction of

offensive languages in social media especially in Twitter has

been realized [2-5]. Although this type of environments includes

many raw data from user posts, which is useful for text

classification tasks, it brings about some disadvantages.

Traditionally for classification task, long texts are used in the

literature [6, 7]. In social media texts, the situation is the

opposite.

In social media, users write short text messages of 200 characters

or less. This type of texts, usually written with the word of mouth

behaviour, contains abbreviations, emoticons, misspellings,

symbols, slangs and so on, that make classification more difficult

[8]. Thus, we face with shortness, sparsity, and misspelling and

informal writing as three main drawbacks of short text messages

[9, 10]. Short texts contain a small number of words for

representation. There are not enough features for statistical

modelling and not contain sufficient statistical information [11].

Therefore, the features are very sparse and this leads to low

accuracy of the statistical model. Misspelling and informal

writing: short texts commonly contain misspellings and noises.

These drawbacks pose challenges to achieve superior

classification accuracy. Therefore, the short text classification

problem is still an important field of study for researchers.

Liu et al. [12] applied part of speech (pos) tagging for feature

selection and used HowNet lexicon to improve classification of

microblogs in Chinese. Jiang et al. [13] classified sentiments of

tweets with Support Vector Machines (SVM) by incorporating

target based syntactic features and context of tweets. For short

text classification in English and Korean, Kim et al. [14]

proposed language independent semantic (LIS) kernels. These

kernels can capture the similarity between texts successfully and

do not need grammatical tags and lexical databases. Wang et al.

[15] devised semantic clustering and convolutional neural

network (CNN) based short text classification model. In their

model, semantic clustering was realized with fast clustering

algorithm and obtained semantic units from word-embeddings

were given as input to the CNN. In another work, Wang et al.

[16] classified short texts by using word-embedding clustering

and CNN. Sotthisopha and Vateekul [17] used fast semantic

expansion on multichannel CNN. Semantic expansion was

obtained by clustering word-embeddings with mini batch K-

Means++ algorithm. When these studies and more are examined

1Dogus University, Faculty of Engineering / Software Engineering

 ORCID ID: 0000-0003-0658-592X
2Kocaeli University, Faculty of Engineering, Computer Engineering

ORCID ID: 0000-0003-1214-9235
3Kocaeli University, Faculty of Engineering, Computer Engineering

ORCID ID: 0000-0002-2486-7704

* Corresponding Author Email: ekinekinci.61@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 109–115 | 110

in detailed, it is observed that for short text classification task,

single classifiers achieve successful results. However, improving

these results is always a research problem.

Based on the assumption that “Using a single classifier is not

enough to represent whole problem space." ensemble classifiers,

combine the output of individual base classifiers (SVM, Decision

Tree, and so on) [18, 19]. The success of the method depends on

both the ability to combine accurate predictions and the ability to

reduce errors from the base classifiers. Because all of these,

ensemble classifiers have been frequently used for short text

classification task [8, 20-23].

In this study, for classifying offensive language in short texts, we

compare semantic word expansion methods by using decision

tree and decision tree based ensemble classifiers. For the

experiments, the Offensive Language Identification Dataset

(published for SemEval-2019 Task 6), which is about Identifying

and Categorizing Offensive Language in Social Media

(OffensEval) is used. We concentrate on sub-task A; it is about

discrimination between offensive (OFF) and non-offensive

(NOT) languages. The highest achievement for this task is the

work of Liu et al. [24] with F-score of 0.8286.

In ensemble classification, creating diversity among classifiers is

very critical for accuracy. Since offensive language classification

is a challenging task, to create diversity two semantic

enhancement way is provided. In the step of expansion, word-

embedding vectors and BabelNet concepts are used. BabelNet

concepts are used for the first time for this task in the literature.

Also the dataset is imbalanced and classification models cope

with the problem of between class imbalance frequently. In this

study, this problem is also addressed and over-sampling is

applied to the dataset. Classification models are compared over

raw, concept based and word-embedding based expanded

datasets. The experimental results show that while similar

accuracy has been observed for raw and concept expanded

datasets, word-embedding based ensemble models outperform

existing classification methods.

The rest of paper is organized as follows. In section 2, literature

about classification of offensive language in short texts is

summarized. In Section 3, pre-processing steps, semantic

expansion methods and text representation and oversampling are

explained. In Section 4, ensemble classification algorithms are

mentioned. In Section 5, conduction of experiments and

experimental results are given in detailed. Finally, discussions

and conclusions for the future work are summarized in Section 6.

2. Literature Review

In this section we present a brief summary of the previous works

in the context of offensive language classification on official

dataset (sub-task A) of the shared task SemEval 2019 Task 6:

Identifying and Categorizing Offensive Language in Social

Media [3].

Zampieri et al. [3] utilized SVM, bidirectional Long Short-Term-

Memory (BiLSTM) and CNN to realize sub-task A. CNN

achieved best results with F-score of 0.80. Mitrovic et al. [5]

proposed C-BiGRU which is combination of CNN with a

bidirectional Recurrent Neural Network (RNN). In their model,

Word2Vec was used for capturing similarity between words. C-

BiGRU was capable of classifying tweets based on long-term

dependencies. With this model they got F-score of 79.40%.

Kebriaei et al. [25] experienced traditional machine learning

methods, deep learning methods, combination of them and an

augmentation method for sub-task A. They used different features

such as content-based, sentiment-based, TF-IDF and hate-based

to improve classification performance. They achieved best results

using augmentation method with F-score of 0.76. Aggarwal et al.

[26] represented posting space with word-embeddings and

applied Multi-Layer Perceptron (MLP) and BERT for

classification. Best results were obtained by using BERT with F-

score of 0.798. Rani and Ojha [27] trained SVM with unigram,

bigram, trigram and 4-gram and provided F-score of 78.58%.

Patraş et al. [28] applied rule based approaches to determine

whether the language was offensive or not and achieved a

maximum F-score of 0.6446. Kapil et al. [29] used CNN-

BiLSTM-Attention and achieved an F-score of 0.7594. Bansel et

al. [30] tried LSTM with pre-processing, LSTM with pre-

processing and lexicon and LSTM with hashtag parsing methods

for sub-task A and obtained F-score of 0.7327 with LSTM+

hashtag parsing. Balasubramanian et al. [31] carried out 2D-CNN

with Word2Vec Learned Embeddings and 1D-CNN with GloVe.

2D-CNN had better F-score of 0.7382. Thenmozhi et al. [32]

applied LSTM with Normed Bahdanau and Scaled Luong

attentions. They got best F-score of 0.5341 with Scaled Luong.

Sarracen and Rosso [33] utilized BiLSTM-RNN, CNN and

ensemble of these models and these models took word-

embeddings as input. When the classification results were

compared, it was seen that CNN achieved better F-score of 0.66.

Han et al. [34] proposed RNN with Gated Recurrent Unit (GRU)

and modified sentence offensiveness calculation (MSOC) for

classifying offensive language. The best F-score of 0.6899 was

obtained with RNN. Wang et al. [35] built K-max pooling CNN

with meta embedding and global learning rate (CLR) to improve

classification performance. When the results were examined, it

was seen that proposed method achieved F-score of 0.8024. Liu

et al. [24] achieved the most successful classification results for

this task with F-score of 0.8286. They trained BERT with only 3

epochs and classified offensive language as offensive or not

offensive. Indurthi et al. [36] applied three different sentence-

embedding methods to discriminate offensive and not offensive

content. Among these methods, Deep Contextualized Word

Representations (ELMo) provided F-score of 0.6436. Oberstrass

et al. [37] also used ELMo with LSTM and obtained F-score of

0.767. Swamy et al. [38] ensembled vote of L1-regularised

Logistic Regression, L2-regularised Logistic Regression, Linear

Support Vector Classification (SVC), Stochastic Gradient

Descent (SGD), and Passive Aggressive (PA) classifier and

ensemble model achieved F-score of 0.7434.

3. Feature Engineering

3.1. Pre-processing

Twitter data has structural anomalies involving shortness of

tweets, abbreviations, special characters, symbols and emoticons,

character repetitions, capitalized words, white spaces and typos.

These anomalies complicate obtaining useful information from

data. Therefore, we need more preprocessing steps to clean raw

data.

First, to translate tweets to standard English text we use the

dictionary which was prepared by The University of Texas

Computer Science Department. This dictionary comprises of

abbreviations, typos-that are often used on Twitter-and their

expanded and correct forms. In addition, we remove urls,

emoticons, numbers, punctuations and Twitter notations like

hashtags (#), retweets (RT) and user mentions that are accepted

as noise from texts. After we convert all dataset to lowercase, we

realize stemming process by using Stanford CoreNLP framework

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 109–115 | 111

[39]. We take an original tweet from dataset like the following:

“@USER Liberals donâ€™t give a sh!t. They have no souls.”, it

is converted to “liberal do give shit they have no soul” after pre-

processing. Another tweet is look like this: “@USER @USER

Go home youâ€™re drunk!!! @USER #MAGA #Trump2020

ğŸ‘ŠğŸ‡ºğŸ‡¸ğŸ‘Š” and after pre-processing it takes the

following form: “go home you be drunk maya trump by”.

3.2. Concept Generation

Word sense ambiguity (WSA) is a major challenge need to be

solved for Natural Language Processing (NLP) tasks. For a

computer system, there is no difference between banks in the

following sentences: “His bank account is rarely over one

million.” and “He is sitting on the river bank across the forest”.

However, while in the first sentence bank is defined as financial

intuition and money, in the second sentence bank is defined as

beach and coast. These words which are used to define the real

sense, are called as concept. Concept is the smallest semantic unit

with a unique meaning that defines the real sense of a word. So

concept extraction is required for disambiguation.

BabelNet, which uses WordNet, Wikipedia, OmegaWiki, Open

Multilingual WordNet and Wiktionary infrastructures for

extracting million concepts and named entities for 50 languages,

is a multilingual semantic network [40]. BabelNet provides an

important semantic network for its users for disambiguation.

In this study, to handle the real sense of the words for accurate

classification and short text problem effectively we expand each

tweet with its concepts by using BabelNet. For example,

5concepts of “Trump” is “current President of the United States”.

We change tweet “Trump” into “Trump current President of the

United States” hence the tweet is expanded.

3.3. Word-Embedding Vector Generation

It is very vital for NLP tasks to learn the Word2Vec which is a

dense, low-dimensional and real-valued vector for a word [41].

Apart from this, the basic assumption behind Word2Vec is words

that appear in similar contexts tend to be semantically similar

[42]. Overall, word vector is presented as a solution to WSA

problem as well as BabelNet.

In our study, we model every tweet with its context vector by

using skip-gram because of its ability to achieve powerful

training and give accurate results for large datasets. Skip-gram

predicts the neighbor words of input word within a certain

window size. On the other hand, to create vector representation of

tweets we utilize pre-trained word-embeddings, which is trained

on Google News dataset. For each word in tweets, the window

size is set to five, considering the number of features will be too

large. For example, 5-dimensional word vector of “Trump” is

“Donald, Baker, Rockefeller, Rogers, Larry”. We change tweet

“Trump” into “Trump Donald Baker Rockefeller Rogers Larry”

hence the tweet is expanded.

3.4. Term Weighting

Term Frequency-Inverse Document Frequency (TF-IDF) is one

of the most widely used weighting schemes in the vector space

model. It is the most preferred model in the literature because of

its simplicity and powerful structure. TF-IDF weights each term

in the corpus based on its inverse document frequency. This

means that the more documents a term occurs in, the less likely it

is discriminative, and less weight is assigned to this term.

Formula for TF-IDF is depicted as in (1) below.

i

j,ij,i
n

N
logtfd (1)

The left side of the equation above is weight of the term i in

document j. While the first term in the right side of the equation

expresses the frequency of term i in document j, second term

expresses the idf value of term i. In the second term, N in the

nominator is number of documents and ni in the denominator is

the number of documents term i occurs.

3.5. Oversampling

In classification tasks, quality of the training data is always an

important factor for improving classification accuracy. However,

class imbalance distribution is a common problem and an

emerging issue in many real world data [43]. Class imbalance

occurs when the most of the data belongs to the majority class,

while a small part of it belongs to the minority class. This means,

if the whole training data is used for classification task, the task is

results with misclassification of unseen data in terms of minority

class. In such a case, reducing the imbalance in training data can

be a solution.

Oversampling reduces the imbalance in training data by

duplicating or creating samples from minority class [43]. With

synthetic minority oversampling technique (SMOTE), number of

samples are increased by using one of the k nearest instances of

sampled instance and random interpolation of both of them [44].

4. Ensemble Construction Techniques

In recent years, multiple classifier systems also called ensemble

classifiers have become increasingly important for machine

learning and computational intelligence community due to their

robustness and effectiveness in real-world applications. The

underlying idea behind these classifiers is to create a stronger

classifier from multiple weak classifiers [45].

Ensemble creation is generally performed in four steps as given

below [46].

• A labeled dataset is given as input to ensemble

classifiers.

• Base classifier is used to learn relation between input

features and output feature and form a model from relation.

• Diverse classifiers are generated.

• Finally results of diverse classifiers are combined.

The most common approaches in ensemble classifiers are

Adaptive Boosting (AdaBoost), Bootstrap Aggregating

(Bagging), Random Forest, Extremely Randomized Decision

Tree (Extra-trees) and Extreme Gradient Boosting (XGboost)

which are implemented as decision tree.

The proposed ensemble model is shown in Fig 1 below.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 109–115 | 112

Fig 1. Images showing the visual symptoms cause by fungal disease

4.1. AdaBoost

AdaBoost, which was first introduced by Freund and Schapire, is

a popular ensemble algorithm based on reweighting of training

data [47]. The main idea behind AdaBoost is to concentrate on

samples that are harder to classify. The algorithm starts by

assigning the same weight to each sample, and then increases the

weights of the misclassified samples, while decreasing the

weights of the correctly classified samples, serially, at each

iteration [48].

4.2. Bagging

Bagging, which was developed by Breiman is based on

resampling of training data [49]. In this model, resampling is

realized with selection of a set of samples randomly from the

training set to comprise new training sets. Then base classifiers

are applied to resampled datasets in parallel and obtained results

are aggregated by using majority voting approach.

4.3. Random Forest

Random Forest is another ensemble method devised by Breiman

that utilizes ensemble of several unpruned decision trees [50].

Random Forest, one of the most successful ensemble methods in

the literature, trains decision tree classifiers on bootstrapped

samples like bagging [51].

4.4. Extra-trees

Extra-trees were proposed by Geurts et al. that is based on

randomization and construct totally randomized trees [52]. As in

RF, also extra-trees construct ensemble of unpruned decision

trees based on top-down strategy. This ensemble model chooses

cut-points randomly and builds the trees by using all training

data.

4.5. XGBoost

Chen and Guestrin developed XGboost as gradient boosted based

decision tree ensembles for sparse data [53]. XGBoost algorithm

with its successful results has become very popular for real

world-applications. The main reason why this algorithm is so

successful is its scalability, generalization performance and faster

learning features. This greedy algorithm ranks the data according

to eigenvalues [54].

5. Experimental Setup

5.1. Dataset

In realized experiments, we use subset of the Offensive Language

Identification Dataset which was provided in SemEval 2019 Task

6, to evaluate our models. This dataset contains 13240 tweets

which are tagged as offensive or not offensive. The number of

tweets are increased to 14000 by oversampling. Offensive tagged

tweets contain profanity, offensive and hate speeches. 4640

tweets are labeled as offensive and the rest of the tweets are

labeled as not offensive. After preprocessing step input data is

expanded with concepts obtained from BabelNet and word-

embeddings obtained from Word2Vec separately. Thus, we

create three different dataset representations to build and test our

classification models. The first dataset is established with only

raw data while the second and the third one are separately

established by adding concepts and word-embedding vectors. The

varying number of features in the established datasets are

summarized in Table 1.

Table 1. Summary of datasets

Dataset Number of features

Raw 12156

Raw+BabelNet 65100

Raw+Word2Vec 39693

5.2. Evaluation Measures

In the experiments, the F-score measure is used to evaluate

classification models. F-score is harmonic mean of precision and

recall values. Precision (p) is used to measure quality of positive

predictions and is obtained by dividing number of correctly

classified positive samples (tp) to sum of correctly (tp) and

incorrectly (fp) classified positive samples. Recall (r) is used to

measure quantity of correct positive predictions and is obtained

by dividing number of correctly classified positive samples (tp) to

sum of correctly classified positive samples (tp) and incorrectly

classified negative samples (fn). Precision does not contain

number of fn and likewise recall does not contain number of fp.

That’s why we used F-score to take more accurate measurements

from our models.

rp

rp
2scoreF

 (2)

5.3. Conduction of Experiments and Results

In our study, we develop decision tree and decision tree based

ensemble classifiers to classify offensive tweets. Besides

traditional bagging and bosting models we also use RF, extra-

trees and XGBoost classifiers. In the implementation of

classification and oversampling processes we utilize scikit-learn

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 109–115 | 113

and imbalanced-learn libraries in python. We split three input

datasets into training and test set using a ratio of 80% for training

data and 20% for test data. We use Gini index for node split

criterion to overcome overfitting problem in decision tree

learning. We stop splitting a node to reduce overfitting if

impurity decreases lower than 10-4 in decision tree, Bagging and

AdaBoost. The reason why we choose 10-4 is sparsity. Because of

sparsity, impurity decreases slightly at each node.

Bagging and AdaBoost are established with 100 base classifiers.

Sub-datasets are half the size of the entire dataset and are selected

with bootstrapping. In here bootstrap is used to reduce variance.

Random forest and extra-trees are established with 200 base

classifiers. While splitting nodes, feature space is partitioned

randomly into sub-spaces because of overfitting. Size of each

subspace is equal to square root of the size of the original feature

space.

Same as RF and Extra-trees, we establish XGBoost with 200 base

classifiers. On XGBoost, tree depth is limited with 30 and the

learning rate is selected as 10-1. Results are combined by

averaging probabilistic prediction of each single classifier. Based

on these parameter values, the evaluation results of whole models

based on F-score are given in Table 2.

As shown in the Table 2 ensemble models affect the success of

classification algorithms in a positive way. Tree based ensembles

are superior to decision tree model. Extra-trees is the most

successful model among all models and extended dataset with

Word2Vec increases the performances of all models. BabelNet

extended datasets don’t influence over model performance a lot

and their performance are close to trained models with raw

datasets.

Performances of BabelNet and Word2Vec extended datasets over

classification models are examined and we have seen that context

based extension is very effective concept based extension in

terms of offensive language detection. Because of high number of

features in BabelNet extended dataset decreases model

performance very much.

Table 2. Classification results (F-score)

Ensemble techniques
Datasets

Raw Raw+BabelNet Raw+Word2Vec

Adaboost 73.85% 73.06% 80.29%

Bagging 76.02% 75.55% 81.63%

Random Forest 81.53% 81.42% 84.31%

Extra-trees 84.62% 83.74% 85.66%

XGBoost 74.33% 75.03% 81.76%

Decision Tree 67.28% 67.56% 77.77%

6. Conclusion

The use of offensive language is one of the major social media

problems of today. To address this problem effectively many

methods have been tried in the literature and some of them have

been concluded accurately. However, in terms of researchers

there is always a quest for the better. Therefore, we aim to

improve offensive language detection in Twitter and to achieve

this we use ensemble methods.

Short texts are problematic for classification tasks. Herewith, the

original data set has been expanded in two different ways to solve

the short text problem and to create different views of data. We

expanded original dataset with concepts that obtained from

BabelNet and word-embedding vectors from Word2Vec. Three

datasets are given as input data to decision tree and decision tree

based ensemble models which are bagging, boosting, RF, extra-

trees and XGBoost.

When the experimental results are analyzed, it can be concluded

that the most successful classification is obtained with extra-trees

classifier where word-embedding vectors are given as the input to

classifier with F-score of 85.66%.

References

[1] K. Denecke and W. Nejdl, “How valuable is medical social media

data? Content analysis of the medical web,” Inform Sciences, vol.

179, no. 12, pp. 1870–1880, May. 2009.

[2] M. Wiegand, M. Siegel, and J. Ruppenhofer, “Overview of the

GermEval 2018 Shared Task on the Identification of Offensive

Language,” in Proc. KONVENS, Vienna, Austria, 2018,

pp. 1–10.

[3] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, and R.

Kumar, “Predicting the Type and Target of Offensive Posts in Social

Media,” in Proc. NAACL-HLT, Minneapolis, Minnesota, USA, 2019,

pp. 1415–1420.

[4] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, and R.

Kumar, “SemEval-2019 Task6: Identifying and Categorizing

Offensive Language in Social Media (OffensEval),” in Proc.

SemEval, Minneapolis, Minnesota, USA, 2019,

pp. 75–86.

[5] J. Mitrovic, B. Birkeneder, and M. Garnitzer, “nlpUP at SemEval-

2019 Task6: A Deep Neural Language Model for Offensive

Language Detection,” in Proc. SemEval, Minneapolis, Minnesota,

USA, 2019, pp. 722–726.

[6] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up? Sentiment

classification using machine learning techniques,” in Proc. EMNLP,

Philadelphia, USA, 2002, pp. 79–86.

[7] P-W. Liang and B-R. Dai, “Opinion Mining on Social Media Data,”

in Proc. MDM, Italy, 2013, pp. 91–96.

[8] S. Sevim, S. İlhan Omurca, and E. Ekinci, “An Ensemble Model

using a BabelNet Enriched Document Space for Twitter Sentiment

Classification,” IJISAE, vol. 10, no. 1, pp. 24–31, Oct. 2018.

[9] Z. Faguo, Z. Fan, Y. Bingru, and Y. Xingang, “Research on Short

Text Classification Algorithm Based on Statistics and Rules,” in

Proc. ISECS, NW Washington, DC, USA, 2010,

pp. 3–7.

[10] I. Alsmadi and K. H. Gan, “Review of short-text classification,”

IJWIS, vol. 15, no. 2, pp. 155–182, June. 2019.

[11] J. Tang, X. Wang, H. Gao, X. Hu, and H. Liu, “Enriching short text

representation in microblog for clustering,” Front Comput Sci, vol. 6,

no. 1, pp. 88–101, Jan. 2012.

[12] Z. Liu, W. Yu, W. Chen, S. Wang, and F. Wu, “Short Text Feature

Selection for Micro-blog Mining,” in Proc. ACL-HLT, Portland,

Oregon, USA, 2011, pp. 151–160.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 109–115 | 114

[13] L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao, “Target-dependent

Twitter Sentiment Classification,” in Proc. CiSE, Wuhan, China,

2010, pp. 1–4.

[14] K. Kim, B-S. Chung, Y. Choi, S. Lee, and J-Y. Juang, “Language

independent semantic kernels for short-text classification,” Expert

Syst Appl, vol. 41, no. 2, pp. 735–743, Feb. 2014.

[15] P. Wang, J. Xu, B. Xu, C-H. Liu, H. Zhang, F. Wang, and H. Hao,

“Semantic Clustering and Convolutional Neural Network for Short

Text Categorization,” in Proc. ACL- IJCNLP, Beijing, China, 2015,

pp. 352–357.

[16] B. Wang, J. Xu, B. Xu, G. Tian, C-L. Liu and H. Hao, “Semantic

expansion using word embedding clustering and convolutional neural

network for improving short text classification,” Neurocomputing,

vol. 174, no. B, pp. 806–814, Feb. 2016.

[17] N. Sotthisopha and P. Vateekul, “Improving Short Text Classification

Using Fast Semantic Expansion on Multichannel Convolutional

Neural Network,” in Proc. IEEE/ACIS SNPD, Busan Gwang'yeogsi ·

South Korea, 2018, pp. 182–187.

[18] B. V. Dasarathy and B. V. Sheela, “A Composite Classifier System

Design: Concepts and Methodology,” Proceedings of the IEEE, vol.

67, no. 5, pp. 708–713, May. 1979.

[19] E. Ekinci and H. Takçı, “Comparing Ensemble Classifiers: Forensic

Analysis of Electronic Mails,” in Proc. INSODE, Antalya, Turkey,

2013, pp. 167–173.

[20] R. Xia, C. Zong, and S. Li, “Ensemble of feature sets and

classification algorithms for sentiment classification,” Inform

Sciences, vol. 181, no. 6, pp. 1138–1152, Mar. 2011.

[21] M. Tutek, I. Sekulic, P. Gombar, I. Paljak, P. Culinovic, F. Boltuzic,

M. Karan, D. Alagic, and J. Snajder, “TakeLab at SemEval-2016

Task 6: Stance Classification in Tweets Using a Genetic Algorithm

Based Ensemble,” in Proc. SemEval, San Diego, California, 2016,

pp. 464–468.

[22] Z. H. Kilimci and S. İlhan Omurca, “A Comparison of Extended

Space Forests for Classifier Ensembles on Short Turkish Texts,” in

Proc. AC-EITAI, Prague, Czech Republic, 2017, pp. 96–104.

[23] Z. H. Kilimci and S. İlhan Omurca, “Extended Feature Spaces Based

Classifier Ensembles for Sentiment Analysis of Short Texts,” Inf

Technol Control, vol. 47, no. 3, pp. 457–470, Sep. 2018.

[24] P. Liu, W. Li, and L. Zou, “NULI at SemEval-2019 Task6: Transfer

Learning for Offensive Language Detection using Bidirectional

Transformer,” in Proc. SemEval, Minneapolis, Minnesota, USA,

2019, pp. 87–91.

[25] E. Kebriaei, S. Karimi, N. Sabri, and A. Shakery, “Emad at SemEval-

2019 Task 6: Offensive Language Identification using Traditional

Machine Learning and Deep Learning approaches,” in Proc.

SemEval, Minneapolis, Minnesota, USA, 2019, pp. 600–603.

[26] P. Aggarwal, T. Horsmann, M. Wojatzki, and T. Zesch, “LTL-UDE

at SemEval-2019 Task6: BERT and Two-Vote Classification for

Categorizing Offensiveness,” in Proc. SemEval, Minneapolis,

Minnesota, USA, 2019, pp. 678–682.

[27] P. Rani and A. Kr. Ojha, “KMI−Coling a tSemEval-2019 Task6:

Exploring N-grams for Offensive Language detection,” in Proc.

SemEval, Minneapolis, Minnesota, USA, 2019, pp. 668–671.

[28] G-V. Patraş, D-F. Lungu, D. Gifu, and D. Trandabat, “Hope at

SemEval-2019 Task 6: Mining social media language to discover

offensive language,” in Proc. SemEval, Minneapolis, Minnesota,

USA, 2019, pp. 635–638.

[29] P. Kapil, A. Ekbal, and D. Das, “NLP at SemEval-2019 Task6:

Detecting Offensive language using Neural Networks,” in Proc.

SemEval, Minneapolis, Minnesota, USA, 2019, pp. 587–592.

[30] H. Bansal, D. Nagel, and A. Soloveva, “HAD-Tübingen at SemEval-

2019 Task6: Deep Learning Analysis of Offensive Language on

Twitter: Identification and Categorization,” in Proc. SemEval,

Minneapolis, Minnesota, USA, 2019, pp. 622–627.

[31] L. Balasubramanian, H. S. Kumar, G. Bandlamudi, D. Sivasankaran,

R. Sivanaiah, A. D. Suseelan, S. M. Rajendram, and M. T. N.

Thanagathai, “TECHSSN at SemEval-2019 Task6: Identifying and

Categorizing Offensive Language in Tweets using Deep Neural

Networks,” in Proc. SemEval, Minneapolis, Minnesota, USA, 2019,

pp. 753–758.

[32] D. Thenmozhi, B. S. Kumar, C. Aravindan and S. Srinethe,

“SSN_NLP at SemEval-2019 Task6: Offensive Language

Identification in Social Media using Traditional and Deep Machine

Learning Approaches,” in Proc. SemEval, Minneapolis, Minnesota,

USA, 2019, pp. 739–744.

[33] G. L. De la P. Sarracen and P. Rosso, “Deep Analyzer at SemEval-

2019 Task6: A deep learning-based ensemble method for identifying

offensive tweets,” in Proc. SemEval, Minneapolis, Minnesota, USA,

2019, pp. 582–586.

[34] J. Han, S. Wu, and X. Liu, “jhan014 at SemEval-2019 Task6:

Identifying and Categorizing Offensive Language in Social Media,”

in Proc. SemEval, Minneapolis, Minnesota, USA, 2019, pp. 652–656.

[35] B. Wang, X. Zhou, and X. Zhang, “YNUWB at SemEval-2019

Task6: K-max pooling CNN with average meta-embedding for

identifying offensive language,” in Proc. SemEval, Minneapolis,

Minnesota, USA, 2019, pp. 818–822.

[36] V. Indurthi, B. Syed, M. Shrivastava, M. Gupta, and V. Varma,

“Fermi at SemEval-2019 Task6: Identifying and Categorizing

Offensive Language in Social Media using Sentence Embeddings,” in

Proc. SemEval, Minneapolis, Minnesota, USA, 2019, pp. 611–616.

[37] A. Oberstrass, J. Romberg, A. Stoll, and S. Conrad, “HHU at

SemEval-2019 Task6: Context Does Matter-Tackling Offensive

Language Identification and Categorization with ELMo,” in Proc.

SemEval, Minneapolis, Minnesota, USA, 2019, pp. 628–634.

[38] S. D. Swamy, A. Jamatia, B. Gamback, and A. Das,

“NIT_Agartala_NLP_Team at SemEval-2019 Task6: An Ensemble

Approach to Identifying and Categorizing Offensive Language in

Twitter Social Media Corpora,” in Proc. SemEval, Minneapolis,

Minnesota, USA, 2019, pp. 696–703.

[39] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and

D. McClosky, “The Stanford Corenlp Natural Language Processing

Toolkit,” in Proc. ACL, Baltimore, Maryland, 2014, pp. 55–60.

[40] E. Ekinci and S. İlhan Omurca, “Concept-LDA: Incorporating

Babelfy into LDA for aspect extraction”, J. Inf. Sci., Accessed on:

Apr., 29, 2019, DOI: 10.1177/0165551519845854, [Online].

[41] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, “Learning

Sentiment-Specific Word Embedding for Twitter Sentiment

Classification,” in Proc. ACL, Baltimore, Maryland, 2014, pp. 1555–

1565.

[42] H. K. Kim, H. Kim, and S. Cho, “Bag-of-concepts: Comprehending

document representation through clustering words in distributed

representation,” Neurocomputing, vol. 266, pp. 336–352, Nov. 2017.

[43] A. Ali, S. M. Shamsuddin, and A. L. Ralescu, “Classification with

class imbalance problem: A Review,” IJASCA, vol. 7, no. 3, pp. 176–

204, Nov. 2015.

[44] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,

“A Review on Ensembles for the Class Imbalance Problem: Bagging,

Boosting-, and Hybrid-Based Approaches,” IEEE Trans. Syst. Man

Cybern. B. Cybern., vol. 42, no. 4, pp. 463–484, Aug. 2011.

[45] A. D. McDonald, J. D. Lee, C. Schwarz, and T. L. Brown, “Steering

in a Random Forest: Ensemble Learning for Detecting Drowsiness-

Related Lane Departures,” Hum. Factors, vol. 56, no. 5, pp. 986–998,

Aug. 2014.

[46] L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33,

pp. 1–39, Feb. 2014.

[47] Y. Freund and R. E. Schapire, “Experiments with a New Boosting

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 109–115 | 115

Algorithm,” in Proc. ICML, Bari, Italy, 1996, pp. 325–332.

[48] E. Ekinci, S. İlhan Omurca, and N. Acun, “A Comparative Study on

Machine Learning Techniques using Titanic Dataset,” in Proc. ICAT,

Antalya, Turkey, 2018, pp. 411–416.

[49] L. Breiman, “Bagging Predictors,” Mach.Learn., vol. 24, pp. 123–

140, Sep. 1994.

[50] L. Breiman, “Random Forests,” Mach.Learn., vol. 45, pp. 5–32, Sep.

2001.

[51] S. İlhan Omurca, E. Ekinci, B. Çakmak, and S. G. Özkan, “Using

Machine Learning Approaches for Prediction of the Types of

Asthmatic Allergy across the Turkey,” DataSCI., vol. 2, no. 2, pp. 8–

12, Dec. 2019.

[52] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”

Mach.Learn., vol. 63, pp. 3–42, Sep. 2006.

[53] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting

System,” in Proc. KDD, San Francisco, CA, USA, 2016, pp. 785–

794.

[54] Z. Chen, F. Jiang, Y. Cheng, X. Gu, W. Liu, and J. Peng, “XGBoost

Classifier for DDoS Attack Detection and Analysis in SDN-based

Cloud,” in Proc. BigComp, Shanghai, China, 2018, pp. 251–256.

