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Abstract: Automated-detecting intelligent programs and methods are developing to find out diseases in medicine in recent years. 

Developing new methods and improving existing ones are currently ongoing research. One of the most important health problems is heart 

diseases for all people in the world. Electrocardiography (ECG) is a diagnosis tool that gives substantially functional information about 

heart and cardiac system. In this work, it is primarily aimed at developing an intelligent system based on ECG signal processing, analysis, 

and classification via a hybrid machine learning model. This work uses 837 ECG signal fragments that includes 7 different classes shared 

in MIT-BIH Arrhythmia database for one lead. The ECG signals are applied on a preprocessing to smooth signals and correct baselines. 

Q, R and S waves (QRS) complex on ECG signals are segmented based on k-means clustering and tracking local extrema points. Feature 

extraction and selection are then performed, and a dataset is created by calculating measurement parameters for each QRS points separately. 

Training sets and test sets based on 8-fold cross validation are generated. A hybrid model based on machine learning models including 

decision tree (DT), k-nearest neighbor (KNN), random forest (RF), naïve bayes (NB), linear discriminant analysis (LDA), support vector 

machines (SVM) and quadratic discriminant analysis (QDA) is developed to classify cardiovascular diseases (CVD) into 7 different classes 

such as normal sinus rhythm (NSR), atrial premature beat (APB), atrial fibrillation (AFIB), premature ventricular contraction (PVC), 

ventricular bigeminy (VB), left bundle branch block beat (LBBBB) and right bundle branch block beat (RBBBB). Sensitivity, specificity, 

accuracy, and Matthews correlation coefficient (MCC) of detection of QRS complex are obtained respectively as 94.75%, 95.96%, 95.57% 

and 0.90. Sensitivity, specificity, accuracy and MCC of classification of CVD classes are obtained respectively as 92.33%, 92.50%, 

92.41%, 0.85.  
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1. Introduction 

Cardiovascular diseases (CVD) come first all around the world 

according to World Health Organization (WHO) statistics [1]. 

Even though preventions have been taken as much as possible in 

order to save people’s lives, estimations conclude that up to 90% 

of CVD can be preventable [2].  

Electrocardiography (ECG) is a basic, accessible, and non-

invasive method used for detection of CVD. ECG graphically 

records electrical activities of hearts during systole and diastole. 

The fact that ECG uncovers substantially important information 

about hearts in a simple, fast, and non-invasive ways brings about 

growing use of it [1,2].  

P wave, Q wave, R wave, S wave and T wave stand for P, Q, R, S 

and T points of PQRST complex on ECG signal fragments. 

PQRST complex corresponding to each heartbeat are observed 

throughout each heartbeat. Schematic representation of PQRST 

complex is shown in Fig. 1. 

PQRST complex is such an informative clue that many studies in 

the literature analyse PQRST complex instead of long-duration 

ECG signal [3,4]. The most developed topics related to ECG signal 

analysis in the state of art are classified as ECG beat detection and 

classification [4-7], deep learning [4,8-10], principal component 

analysis [4,11,12], higher order statistics [4,13,14], feature 

selection and dimensionality reduction [4,15-18], noise [4,19-21], 

discrete wavelet transform [4,11,20], independent component 

analysis [4,11] and machine learning [4,19,23-25]. 

Fig. 1. Schematic representation of PQRST complex. 

Inspired by these works, analysis and classification, this work 

makes a six-fold contribution association with ECG signal 

processing, analysis, and classification: 

1. A novel method based on denoising filters, consecutive 

difference method, pixel tracking and k-means clustering 

method is developed to detect locations of R peaks on ECG 

signals. 

2. A hybrid model based on machine learning models is developed 

to classify CVD on ECG signals into 7 different classes such 

as normal sinus rhythm (NSR), atrial premature beat (APB), 
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atrial fibrillation (AFIB), premature ventricular contraction 

(PVC), ventricular bigeminy (VB), left bundle branch block 

beat (LBBBB) and right bundle branch block beat (RBBBB). 

3. Textural features appeared in the literature some of which are 

standard deviation, mean value, median value, energy value, 

correlation value, homogeneity value [26] based on x and y 

coordinates of QRS points, contrast value based on x 

coordinates of QRS points and pulse are calculated separately 

for feature extraction and selection. Hence, a 837x40 dataset 

is created based on these measurement features. 

Subsequently, training sets and test sets are created based on 

8-fold cross validation. 

4. Although P and T waves carry information on ECG signal 

analysis in medicine, ECG signals are analyzed without using 

P and T waves, PR segment, PR interval, ST segment and QT 

interval in this work. 

5. Automated detection of QRS complex and classification of 

CVD on ECG signals with a high sensitivity, specificity, and 

accuracy as fast as possible are realized in this work. 

6. The main contribution of the study is to control and identify 

emergency cases using a hybrid system based on machine 

learning and present results for healthcare staff. This creates 

time for healthcare staff to evaluate ECG signal changes in a 

fast and accurate ways. 

2. Materials 

In this work, the MIT-BIH arrhythmia dataset compatible with 

Matlab and reached at Physio.net (http://www.physionet.org) is 

utilized in order to obtain ECG signals [27,28]. In this dataset, 

there are 1000 ECG signal fragments taken from 45 patients whose 

ages range between 23 and 89 and 17 different classes with normal 

sinus rhythm, pacemaker rhythm and 15 types of cardiac 

dysfunctions. However, 837 ECG signal fragments and 7 different 

classes are used in this work since other classes are not sufficient 

and qualified from the standpoint of machine learning models, 

training sets and test sets. Hence, 163 ECG signal fragments are 

excluded. All ECG signals were recorded at a sampling frequency 

of 360 Hz and gain of 200 adu/mV. Each signal contains 10-s 

samples. Each signal is 3600x1 in size [4]. A description about this 

dataset including ECG signals is shown in Table 1. 

Table 1. A description about the MIT-BIH arrhythmia dataset including 

ECG signals [4]. 

Class Number of fragments 

NSR 283 

APB 66 

AFIB 135 
PVC 133 

VB 55 

LBBBB 103 
RBBBB 62 

Total 837 

 

NSR is a class name that heart works normally. APB is an 

abnormal contraction of the heart after an electrical conduction 

from the atrium before the ventricles contract normally. It 

generally occurs in conditions such as hypoxia, anxiety, digital 

intoxication. In AFIB, instead of the normal contraction of the 

atria, it starts to tremble as a result of rapid and abnormal electrical 

stimulation. In general, these beats pass to the ventricles, 

increasing the heart rhythm and the risk of embolism. PVC is the 

abnormal contraction of a ventricle as a result of abnormal 

electrical stimulation from the ventricle. It occurs due to reasons 

such as excess adrenaline, increased calcium concentration and 

cardiomiopathies. VB is a cardiac arrhythmia in which there is a 

single ectopic beat or an irregular heartbeat following each regular 

heartbeat. Often this is due to ectopic beats that occur frequently 

enough to be one after each sinus beat. Electrolyte imbalance 

occurs in situations such as hypoxia. LBBBB and RBBBB are 

caused by a delay in the electrical conduction paths during the 

heartbeat, on the right and left. In this case, the heart has difficulty 

pumping regular and sufficient blood to the body. We also 

encounter situations such as cardiomypathy, heart muscle 

infections, heart attacks, hypoxia, and embolism [29]. 

A software program is developed using Matlab 2018a program via 

a computer containing 4.00 GHz-i7 CPU and 32 GB RAM.  

837 ECG signal fragments were evaluated by a clinical expert. All 

QRS points and CVD were manually marked. Sensitivity, 

specificity, accuracy, F1 score and MCC values of segmentation 

of QRS complex and classification of CVD are calculated and 

compared with clinical expert. 

3. Methods 

The developed method includes four stages as pre-processing, 

segmentation, postprocessing and analysis. ECG signals are made 

ready for segmentation during the pre-processing stage. QRS 

complex are segmented on ECG signals during segmentation 

stage. Measurement parameters related to QRS complex are 

calculated and a dataset for machine learning methods is created 

during postprocessing stage. Classification of ECG signals are 

performed during analysis stage. The flow chart of the developed 

method in this work is shown in Fig. 2. 

As it can be from the flow chart, an ECG signal is loaded to the 

program as an input signal. In the pre-processing stage, wavelet 

signal denoising method [30], moving average filter [31] and zero 

phase filter [32] are respectively applied on the input ECG signal 

to remove noises and smooth baseline. While wavelet signal 

denoising method is performed with an 11-window size, moving 

average filter and zero phase filter are applied with a 9-window 

size. Window sizes are empirically preferred. Consecutive 

difference method [33] is then applied in order to uncover 

transition between points and find possible all local maximum 

points in an accurate way. Mathematical descriptions of methods 

are given in equations 1-4. 

𝑠(𝑛) = 𝑓(𝑛) + 𝜎𝑒(𝑛) (1) 

Where f represents input ECG signal, s represents output ECG 

signal, n takes value between 0 and length of signal, e(n) is 

Gaussian random variables between 0 and 1 and 𝜎 is variance [30]. 

𝑦[𝑖] =
1

𝑀
∑ 𝑥[𝑖 + 𝑗]

𝑀−1

𝑗=0

 (2) 

Where M is moving window size, x represents input ECG signal, 

y represents output ECG signal, i represents x coordinate of ECG 

signal and j controls x coordinates in window [31]. 

𝑌(𝑒𝑗𝜔) = 𝑋(𝑒𝑗𝜔)𝐻(𝑒𝑗𝜔) (3) 

Where X(ejω) and H(ejω) are the Fourier transforms of x[n] and h[n] 

respectively. x[n] is input ECG signal and h[n] is the filter’s 

impulse response. A zero-phase filter is a special case of a linear-

phase filter in which the phase slope is 0 [32]. 

𝑦[𝑖] = ∑ 𝑥[𝑖 + 1] − 𝑥[𝑖]

𝐿−1

𝑖=0

 (4) 

Where L is length of ECG signal, x represents input ECG signal, y 

represents output ECG signal and i represents x coordinate of ECG 
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signal [33].  

Fig. 2. The flow chart of the developed method. 

 

Segmentation stage mainly focuses on R peak detection. Knowing 

that R peaks locate at local maximum points of ECG signals, it is 

focused on detecting local maximum points on corrected signal. 

According to the pseudocode in Algorithm 1 and maximum point 

representation given in Fig. 3, all local maximum points standing 

for candidate R peaks are found. 

 

Algorithm 1. Finding all candidate R peaks 

1: function FindR(ecg) 

2: set R ← 0; 

3: set RX, RY ← []; 

4: for i ← 2 to length(ecg)-1 

5: 
if ecg(i-1) < ecg(i) and ecg(i+1) < 

ecg(i) then 

6: R = R + 1; 

7: RX[R] ← i; 

8: RY[R] ← ecg(i); 

9: end if 

10: end for 

11: return RX, RY 

12: end function 

Fig. 3. Detection of all candidate R peaks. 

Where RX represents x coordinates of R peaks and RY represents 

y coordinates of R peaks.  

Although all local maximum points are detected on ECG signal 

fragments, all of them are not R peaks of ECG signals. k-means 

clustering method is utilized to eliminate false-positive candidate 

R peaks and obtain true-positive R peaks among all local 

maximum points. The fact that K is selected as 2 separates local 

maximum points such as true-positive R peaks and false positive 

R peaks. While one cluster represents local maximum points 

whose mean value is low, another cluster represents local 

maximum points whose mean value is high. Since cluster with low 

mean value consists of false-positive R peaks, this cluster is 

removed. As a result, true R peaks are detected, x and y coordinates 

of them are stored in a list.  

With the detection of R peaks, definition of QRS complex shown 

in Fig. 1 is utilized. Q points of QRS complex are identified by 

scanning left through all R peaks. When a point at the left direction 

of R peak is lower than two points before and after it, this point is 

hold in Q list. The pseudocode in Algorithm 2 and Q point 

representation are given in Fig. 4. 

 

Algorithm 2. Finding Q points 

1: function FindQ(ecg, RX) 

2: set Q ← 0; 

3: set QX, QY ← []; 

4: for i ← 1 to length(RX) 

5: for j ← RX[i] to ecg(x=3) 

6: 

if ecg(j-2) >ecg(j-1) > ecg(j) and 

ecg(j+2) > ecg(j+1) > ecg(j) 

then 

7: Q = Q + 1; 

8: QX[Q] ← j; 

9: QY[Q] ← ecg(j); 

10: break; 

11: end if 

12: end for 

13: end for 

14: return QX, QY 

15: end function 

Fig. 4. Detection of Q points. 

Where QX represents x coordinates of Q points and QY represents 

y coordinates of Q points.  

In the same way as identification of Q points is performed, S points 

of QRS complex are identified by scanning right through all R 

peaks. When a point at the right direction of R peak is lower than 

two points before and after it, this point is hold in S list. The 

pseudocode in Algorithm 3 and S point representation are given in 

Fig. 5. 
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Algorithm 3. Finding S points 

1: function FindS(ecg, RX) 

2: set S ← 0; 

3: set SX, SY ← []; 

4: for i ← 1 to length(RX) 

5: for j ← RX[i] to ecg(x=end-2) 

6: 

if ecg(j-2) >ecg(j-1) > ecg(j) and 

ecg(j+2) > ecg(j+1) > ecg(j) 

then 

7: S = S + 1; 

8: SX[S] ← j; 

9: SY[S] ← ecg(j); 

10: break; 

11: end if 

12: end for 

13: end for 

14: return SX, SY 

15: end function 

Fig. 5. Detection of S points. 

Where SX represents x coordinates of S points and SY represents 

y coordinates of S points.  

After detection of x and y coordinates of each QRS complex, 

feature extraction is performed to create a dataset for machine 

learning models in the postprocessing stage. Standard deviation, 

mean, median, energy, entropy and homogeneity based on x and y 

coordinates, contrast based on x coordinates of QRS points and 

pulse value are calculated separately. Thus, an 837x40 dataset is 

created as a result of analysis of 837 ECG signal fragments. 

Equations 5-11 show the mathematical description of features [26]. 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1  (5) 

Where N is total number, μ is mean and 𝑥𝑖 is i-th individual value. 

𝑀𝑒𝑎𝑛 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1   (6) 

Where N is the total number, 𝑥𝑖 is the i-th individual value and μ 

is the mean value. 

𝑀𝑒𝑑𝑖𝑎𝑛 = 𝑥𝑁+1

2

  (7) 

Where N is the total number and x
𝑁+1

2
- is 

𝑁+1

2
-th value. 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ (𝑥𝑖)2𝑁
𝑖=1   (8) 

Where N is the total number and 𝑥𝑖 is the i-th individual value. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ln (𝑥𝑖)𝑥𝑖
𝑁
𝑖=1   (9) 

Where N is the total number and 𝑥𝑖 is the i-th individual value. 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = − ∑
𝑥𝑖

1+(𝑥𝑖)2
𝑁
𝑖=1  (10) 

Where N is the total number and 𝑥𝑖 is the i-th individual value. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑥𝑖(𝑖)2𝑁
𝑖=1   (11) 

Where N is the total number and 𝑥𝑖 is the i-th individual value. 

The dataset is divided into two sets as training set with the 70% 

part of the dataset and test set with the 30% part of the dataset. The 

validity of the hybrid method is ensured by 8-fold cross validation. 

A hybrid model based on machine learning models is developed to 

classify CVD on ECG signals into 7 different classes such as NSR, 

APB, AFIB, PVC, VB, LBBBB and RBBBB. Machine learning 

models with their attributes and settings are presented in Table 2. 

Table 2. Machine learning models with their attributes and settings. 

Model Attributes and settings 

DT C4.5 learning method is used. 

KNN K is identified as 2 which means class and others. 

RF The number of decision trees is identified as 100. 

NB The distribution parameter is identified as “Gaussian”. 

LDA The discriminant type is identified as “Linear”. 

SVM The kernel is designated as “Gaussian”. 

QDA The discriminant type is identified as “Quadratic”. 

 

According to the developed hybrid model, training sets and test 

sets of machine learning models are created again and again by 

focusing on only one class. Other classes are called as non-

classified. During training of NSR, 50% of training set and test set 

are composed of NSR. Another 50% of training set and test set are 

composed of AFIB, PVC, LBBBB, APB, RBBBB and VB. During 

training of AFIB, 50% of training set and test set are composed of 

AFIB. Another 50% of training set and test set are composed of 

PVC, LBBBB, APB, RBBBB and VB. During training of PVC, 

50% of training set and test set are composed of PVC. Another 

50% of training set and test set are composed of LBBBB, APB, 

RBBBB and VB. During training of LBBBB, 50% of training set 

and test set are composed of LBBBB. Another 50% of training set 

and test set are composed of APB, RBBBB and VB. During 

training of LBBBB, 50% of training set and test set are composed 

of LBBBB. Another 50% of training set and test set are composed 

of APB, RBBBB and VB. During training of APB, 50% of training 

set and test set are composed of APB. Another 50% of training set 

and test set are composed of RBBBB and VB. During training of 

RBBBB and VB, 50% of training set and test set are composed of 

VB. Another 50% of training set and test set are composed of 

RBBBB. 

Confusion matrix is used to summarize and validate results. It 

mainly consists of four parameters such as True Positive (TP), 

False Positive (FP), False Negative (FN) and True Negative (TN). 

TP stands for correctly identified conditions. FP stands for 

incorrectly identified conditions. FN stands for incorrectly rejected 

conditions. TN stands for correctly rejected conditions. 

Mathematical descriptions of sensitivity, specificity, accuracy, F1 

score and MCC are given in Equations 8-12 [34,35]. 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (10) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑥𝑇𝑃

2𝑥𝑇𝑃+𝐹𝑃+𝐹𝑁
  (11) 

𝑀𝐶𝐶 =
𝑇𝑃𝑥𝑇𝑁−𝐹𝑃𝑥𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (12) 

Experimental Results 

In this work, 837 ECG signal fragments having 3600x1 in size with 

7 different classes such as NSR, APB, AFIB, PVC, VB, LBBBB 

and RBBBB are analysed. Pre-processing stage is firstly applied 

on ECG signals. Part of one sample original ECG signal and the 

obtained ECG signal after pre-processing are shown in Fig. 6. 

In the segmentation stage, x and y coordinates of QRS complex are 

identified and segmented. One sample ECG signal for each class 

whose QRS complex are marked are shown in Fig. 7. 
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(a) 

 

(b) 

 

Fig. 6. Part of sample NSR ECG signal. a) Original, b) After pre-

processing. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

Fig. 7. ECG signals whose QRS complex are marked. a) NSR, b) AFIB, 

c) PVC, d) LBBBB, e) APB, f) RBBBB, g) VB. 

Performance metrics as sensitivity, specificity, accuracy, F1 score 

and MCC parameters related to segmentation of QRS complex (Q 

peak detection, R peak detection and S peak detection method) are 

calculated and shown in Table 3. 

Standard deviation, mean, median, energy, entropy and 

homogeneity based on x and y coordinates, contrast based on x 

coordinates of QRS complex and pulse value are calculated 

separately for each ECG signal. Thus, an 837x40 dataset is created. 

The dataset is separated into training sets and test sets. A 

description about training set and test set for each ECG class is 

shown in Table 4.  

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2021, 9(1), 12–21  |  17 

Table 3. QRS complex segmentation performance. 

CVD Wave 
Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

F1 score 

(%) 
MCC 

N
S

R
 R 99.91 96.57 97.66 96.55 0.95 

Q 85.96 93.46 91.08 85.96 0.79 

S 95.89 98.00 97.30 95.89 0.94 

A
F

IB
 R 99.39 99.90 99.73 99.59 0.99 

Q 90.35 95.41 93.78 90.35 0.86 

S 94.06 97.13 96.13 94.06 0.91 

P
V

C
 R 97.77 96.77 97.10 95.72 0.94 

Q 100.00 100.00 100.00 100.00 1.00 

S 99.36 99.68 99.58 99.36 0.99 

L
B

B
B

B
 

R 97.13 83.26 87.45 82.35 0.75 
Q 94.63 97.39 96.48 94.63 0.92 

S 78.59 90.37 86.71 78.59 0.69 

A
P

B
 R 100.00 99.95 99.96 99.95 0.99 

Q 95.11 97.61 96.79 95.11 0.93 
S 99.68 99.84 99.79 99.68 0.99 

R
B

B
B

B
 

R 100.00 87.94 91.63 87.95 0.84 
Q 94.99 97.55 96.71 94.99 0.94 

S 87.23 94.07 91.88 87.29 0.81 

V
B

 R 91.05 95.31 93.84 91.05 0.86 

Q 88.37 94.70 92.72 88.37 0.83 
S 95.02 97.66 96.81 95.02 0.93 

A
v

er
ag

e R 98.39 94.73 95.92 94.02 0.91 

Q 92.32 96.32 95.03 92.32 0.89 

S 93.45 96.86 95.75 93.46 0.90 

Table 4. Description of training set and test set of each ECG classes. 

CVD 
Size of 

fragment 

Size of 

training set 

Size of 

test set 

NSR 283x40 396x40 170x40 

AFIB 135x40 188x40 82x40 

PVC 133x40 186x40 80x40 

LBBBB 103x40 144x40 62x40 

APB 66x40 92x40 40x40 

RBBBB 62x40 78x40 32x40 

VB 55x40 78x40 32x40 

 

A hybrid model based on machine learning models is developed to 

classify CVD such as NSR, AFIB, PVC, LBBBB, APB, RBBBB 

and VB. According to training sets and test sets at Table 4, one 

class is selected for classification and other classes are collected in 

another class. With the 8-fold cross validation, performance 

metrics of each CVD are calculated and presented in Table 5. 

Performance metrics of hybrid model to classify ECG classes are 

calculated as 92.33% sensitivity, 92.50% specificity, 92.41% 

accuracy, 92.42% F1 score and 0.85 for MCC. According to 

performance metrics, the proposed hybrid model based on machine 

learning models to classify CVD is identified and shown in Fig. 8. 

Analysis and classification of an ECG signal takes 0.31 seconds in 

average in a full-automatedly way via the developed program. 

 

Table 5. Performance metrics of classification of CVD. 

CVD 
Performance 

metric 
DT KNN RF NB LDA SVM QDA 

NSR Sensitivity 92.62 80.74 94.26 92.10 89.96 53.69 89.14 

Specificity 86.27 78.07 88.73 75.12 82.38 94.67 81.56 
Accuracy 89.45 79.41 91.50 83.71 86.17 74.18 85.35 

F1 score 89.74 79.61 91.76 85.14 86.64 67.36 85.83 

MCC 0.79 0.59 0.83 0.68 0.73 0.53 0.71 

AFIB Sensitivity 87.80 84.45 90.55 84.15 92.68 57.93 76.83 

Specificity 91.77 80.49 93.90 66.46 79.88 97.87 97.26 

Accuracy 89.79 82.47 92.23 75.30 86.28 77.90 87.04 

F1 score 89.57 82.86 92.07 77.29 87.13 71.72 85.40 

MCC 0.80 0.66 0.85 0.52 0.73 0.61 0.76 

PVC Sensitivity 87.81 78.13 88.75 80.31 68.44 97.81 91.25 

Specificity 92.19 79.38 92.50 75.63 88.44 47.19 78.75 

Accuracy 90.00 78.75 90.63 77.97 78.44 72.50 85.00 
F1 score 89.75 78.56 90.40 78.48 76.03 78.07 85.89 

MCC 0.80 0.58 0.82 0.56 0.58 0.52 0.71 

LBBBB Sensitivity 91.94 87.90 89.54 54.84 98.79 46.37 94.76 
Specificity 92.34 79.84 97.97 85.48 93.55 99.19 94.76 

Accuracy 92.14 83.87 93.75 70.16 96.17 72.78 94.76 

F1 score 92.10 84.48 93.41 62.60 96.33 62.89 94.73 
MCC 0.84 0.68 0.88 0.45 0.93 0.54 0.90 

APB Sensitivity 89.38 85.63 88.13 88.75 81.25 51.25 64.38 

Specificity 93.75 81.25 93.13 58.75 73.75 95.63 93.75 
Accuracy 91.56 83.44 90.63 73.75 77.50 73.44 79.06 

F1 score 91.36 83.78 90.38 77.12 78.36 65.75 74.69 

MCC 0.83 0.67 0.82 0.51 0.55 0.53 0.62 

RBBBB Sensitivity 95.31 77.34 96.88 82.81 83.59 100.00 NA 

Specificity 94.53 92.19 92.97 60.16 93.75 58.59 NA 

Accuracy 94.92 84.77 94.92 71.48 88.67 79.30 NA 
F1 score 94.98 83.64 95.10 74.47 88.04 83.07 NA 

MCC 0.90 0.71 0.90 0.45 0.78 0.64 NA 

VB Sensitivity 94.53 92.19 92.97 60.16 93.75 58.59 NA 
Specificity 95.31 77.34 96.88 82.81 83.59 100.00 NA 

Accuracy 94.92 84.77 94.92 71.48 88.67 79.30 NA 

F1 score 94.98 83.64 95.10 74.47 88.04 83.07 NA 
MCC 0.90 0.71 0.90 0.45 0.78 0.64 NA 
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4. Conclusion and Discussion 

In this work, 837 ECG signal fragments are analyzed performing 

segmentation of QRS complex, feature extraction, classification of 

7 different ECG classes by the proposed hybrid model based on 

machine learning models. A novel method based on denoising 

filters, consecutive difference method, pixel tracking and k-means 

clustering method is developed to detect locations of R peaks on 

ECG signals in an automated way. 40 different features are 

extracted from ECG signals mainly based on QRS complex. Thus, 

a dataset whose size is 837x40 is created. A developed hybrid 

model is trained and tested on this dataset. Even though P and T 

peaks are taken into consideration in medicine, only QRS complex 

of ECG signals are segmented instead of PQRST complex. Feature 

extraction is performed without using P and T peaks, PR segment, 

PR interval, ST segment and QT interval in this work. Automated 

detection of QRS complex on ECG signals and classification of 7 

different ECG classes via the developed program in Matlab with 

high performance metrics are performed. Overall accuracy score 

was realized as 92.41%. The proposed method for segmentation of 

QRS complex on ECG signals have obtained high performance 

metrics according to state of the art. It is quite effective as works 

in state of the art. Table 6 presents QRS complex segmentation 

works in state of the art with used dataset, methods, and results.  

 

 

 

 

 

 

 

 

Fig. 8. The proposed hybrid model. 

Table 6. QRS complex segmentation comparison [36] (WT: Wavelet transformation, DWT: Discrete wavelet transform, ACL: Anterior cruciate ligament, 

VLSI: Very-large-scale integration, FIR: Finite impulse response, PPV: Positive predicted value). 

Author (Year) Database Methods Result 

Fujita et al. (2015) [37] MIT-BIH database WT 99% sensitivity 

Di Marco et al. (2011) [38] MIT-BIH database WT 99.77% sensitivity, 99.86% PPV 

Martinez et al. (2004) [39] MIT-BIH database WT 99.8% sensitivity, 99.86% PPV 

Zidelmal et al. (2012) [40] MIT-BIH database DWT 99.64% sensitivity, 99.82% PPV 

Ghaffari et al. (2011) [41] MIT-BIH database DWT-Based ACL 99.94% sensitivity, 99.91% PPV 

Subramanian (2017) [42] MIT-BIH database Multiwavelet transform 93.35% accuracy, 98.5% sensitivity 

97% PPV 

Zhang et al. (2009) [43] MIT-BIH database Mathematical morphology 99.81% sensitivity, 99.8% PPV 

Zhang et al. (2012) [44] MIT-BIH database Mathematical morphology, VLSI detector 99.76% sensitivity, 99.82% PPV 

Curtin et al. (2018) [45] MIT-BIH database Windowing algorithm  94.3% accuracy, 96% sensitivity 

97.3% PPV 

Saadi et al. (2015) [46] MIT-BIH database FIR-Based adaptive thresholds 99.9% sensitivity, 99.87% PPV 

The proposed method MIT-BIH database Consecutive difference method, 

k-means clustering, tracking local extreme 

points 

95.57% accuracy, 94.75% sensitivity 

95.96% specificity, 91.86% PPV 

MIT-BIH database includes 1000 ECG signals composing of 17 

CVD. The selected 7 CVD for this work composes of 837 ECG 

signal fragments. 163 ECG signal fragments composing of 10 

CVD are excluded from this work because each excluded CVD has 

16.3 ECG signals in average. This number is too low for machine 

learning. Thus, TN values of the developed method is balanced and 

memorization by machine learning models is prevented. Table 7 

presents CVD classification works in state of the art with used 

dataset, methods, and results. 

Feature extraction on dataset for machine learning models needs a 

clinical expert since definition and calculation of segments like ST, 

QT, PT require medical background. Feature extraction on ECG 

signals is assumed as a challenging work. The proposed method 

can supply feature extraction on QRS complex without needing 

medical background by segmenting QRS complex and calculating 

measurement parameters in a fully automated way.  

Development of the model is simple and understandable based on 

complexity. The proposed method takes 0.31 seconds in average 

in a full-automatedly way. A comparison based on execution time 

could not be done because it was not shared in the literature. 
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Table 7. CVD classification comparison [47,48]. 

Author (Year) Dataset Methods Result 

Plawiak (2018) [49] 

 

MIT-BIH database Power spectral density (using Welchs method, DFT), genetic 
ensembles based on SVM 

91.40% sensitivity 
99.46% specificity 

98.99% accuracy 

Lu et al. (2018) [50] MIT-BIH database Random over sampler algorithm, random forest, convolutional 
neural networks 

Above 99% PPV, sensitivity and 
F-score 

Nasiri et al. 

(2009) [51] 

MIT-BIH database 

of 48 records 

SVM and genetic algorithm 93% accuracy 

Dalal et al. 

(2016) [52] 

MIT-BIH database Principle component analysis and neuro-fuzzy classifier 96% accuracy 

Priyadharshni et al. 
(2015) [53] 

MIT-BIH database Improvised genetic algorithm, C4.5 and Naïve Bayes classifier Accuracy using GA= 90%, C4.5 
= 72% and Naïve Bayes =50% 

The proposed method MIT-BIH database Hybrid model based on machine learning 92.33% sensitivity  
92.50% specificity  

92.41% accuracy 

92.42% F1 score 
0.85 for MCC 
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