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Abstract: Solving time-dependent heat conduction problems through a conventional solution procedure of iterative root-finding method 

may sometimes cause difficulties in obtaining accurate temperature distribution across the heat transfer medium. Analytical root-finding 

methods require good initial estimates for finding exact solutions, however locating these promising regions is some kind of a black-box 

process. One possible answer to this problem is to convert the root-finding equation into an optimization problem, which eliminates the 

exhaustive process of determining the correct initial guess. This study proposes an Eagle Strategy optimization framework based on 

modified mutation equations of Barnacles Mating Optimizer and Differential Evolution algorithm for solving one-dimensional transient 

heat conduction problems. A test suite of forty optimization benchmark problems have been solved by the proposed algorithm and the 

respective solution outcomes have been compared with those found by the reputed literature optimizers. Finally, a case study associated 

with a transient heat conduction problem have been solved. Results show that Eagle strategy can provide efficient and feasible results for 

various types of solution domains. 
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1. Introduction 

Nature-inspired algorithms have been an active research area for 

decades not only for researchers developing dexterous algorithm-

based solution strategies but also for practitioners and engineers 

working on finding efficient methods for solving real-world design 

problems. Swam-Intelligence and population-based methods 

consist of a huge part of the nature-inspired algorithms, whose 

main inspiration is drawn from natural events or behaviors. Firefly 

Algorithm [1], Cuckoo Search [2], Particle Swarm Optimization 

[3] and some recently proposed optimizers [4-6] are prominent 

examples of these methods. They have significant and deliberate 

advantages over conventional deterministic methods, therefore 

their feasible applications reach almost all fields ranging from 

electric load dispatch problems [7] to PEM fuel cell parameter 

estimation cases [8]. Swarm-based algorithms use some kind of 

nondeterministic stochastic methods, which are built upon 

mathematical models simulating random-walks. A proper balance 

between the effects of deterministic components and stochastic 

random walks surprisingly evolves into a successful metaheuristic 

algorithm as there are plenty of instances evident in the literature 

[9-11]. 

Metaheuristic algorithms are known for their efficiency and 

effectiveness in solving challenging optimization algorithms. Most 

metaheuristics can probe the search space to finding the optimum 

solution to the problem however, obtaining the global optimum 

point may not be guaranteed due to the stochastic nature of the 

algorithms. They do not require extensive problem information to 

be solved and effectively search large domains of trial solutions 

with relatively minimum computational effort.  Success in finding 

the optimal solution depends on the structural concept on which 

the natural paradigm is imitated. For instance, Particle Swarm 

Optimizer mimics the flocking behaviors of birds and fishes 

obeying a simple mathematical formulation describing the spatial 

movements of the particles to iteratively improve the candidate 

trial solutions until the termination criterion is satisfied. 

Differential evolution utilizes algorithm-specific genetic operators 

to create a mutated solution by manipulating the current solution. 

Then, a sample candidate vector with the best fitness value 

obtained after successive iterations is selected as the global answer 

to the problem. Harmony search [12] is another metaheuristic 

inspired by a musician who aims to find perfect harmony in his or 

her composition. A physics-based metaheuristic called Charged 

System Search [13] imitates the governing rules of the Columb and 

Newtonian laws of physics. Biogeography based Optimization 

applies the mathematical foundations of biogeographical concept 

to form an iterative solution procedure devised to solve 

optimization problems [14].  

Metaheuristics can be considered as a high-level problem-solving 

strategy responsible for selecting sub-level heuristics that can 

maintain sufficiently possible answers to a related optimization 

problem, particularly for cases wherein domain information is 

insufficient or computation capacity is limited [15].  According to 

the No Free Lunch theorem [16], there is a clear statement that the 

performance of any two algorithms is equivalent when their 

solution accuracies are averaged to all optimization problems. That 
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is, an optimization algorithm may converge to the optimal solution 

of a problem but may fail in another case.  To conquer these 

drawback, different researchers propose different metaheuristics 

showing some specific features and capabilities to provide feasible 

candidates those having the ability to improve the previous 

solutions. Furthermore, an algorithm should avoid quick 

convergence raised from the entrapment of the local optimum 

points. A successful algorithm should also diversify the candidate 

solutions as much as possible to explore the unvisited paths on the 

search domain. Recent researches on algorithm development focus 

on these two important algorithm-specific features those need to 

be deeply analyzed and investigated. The literature on 

metaheuristics has been crowded with persistent claims of novelty 

and superiority over the precedent methods. Although there have 

been developed high-quality researches featuring a promising 

future for the upcoming studies, most of the raised claims have 

been unproven and unverified due to the lack of conceptual 

elaboration and insufficient numerical experiments made on the 

proposed algorithms [17]. 

A successful metaheuristic should combine the favorable merits of 

exploration and exploitation, those of which perform in a harmony 

to obtain accurate solutions. As mentioned above, an efficient 

algorithm should be able to probe the most important search 

regions where the global solution may reside in. An algorithm 

should also be capable to jump out of the local optimum points 

which eliminate stagnation in the search process and avoid 

premature convergence. These two capabilities respectively show 

the exploration and exploitation performance of a metaheuristic 

optimizer. A good synergy between them possibly increases the 

solution accuracy, however, there is no credible theoretical 

knowledge or framework in literature as to how to create a 

plausible balance between these two terms [18]. Despite lack of 

information, empirical knowledge and extensive observations and 

evaluations on literature studies suggest that the convergence 

speed of an optimization algorithm increases with too much 

emphasis on exploitation while too much exploration reducing the 

convergence rate.  

Most of the literature considers the hybridization of different 

algorithms to maintain a dexterous interplay between the 

exploration and exploitation phases of an algorithm. Hybrid 

algorithms are constructed in such a way that each constituent 

method maximize their advantages while eliminating algorithm-

specific deficiencies. Singh et al. [19] hybridized the Salp Swarm 

Algorithm (SSA) with Sine-Cosine Algorithm to enhance the 

search capacity of those optimizers. In the concept of this 

hybridization, SSA is performed as a global explorer while SCA is 

used as a local exploiter. Numerical results of the engineering 

design problems obtained from the proposed hybrid reveal that 

global convergence is greatly boosted up through this created 

synergy. A hybrid algorithm composed of Firefly Algorithm and 

Particle Swarm Optimization was proposed by Aydilek [20]. The 

main aim behind this hybridization was to benefit from the strong 

points of these two algorithms to get rid of their intrinsic 

algorithmic deficiencies. Son et al. [21] proposed using hybrid 

adaptive Differential Evolution and Jaya algorithm for extracting 

unknown parameters of Bouc-Wen hysteresis model. A reputed 

mutation scheme of DE/rand/1 is concurrently operated with 

manipulation equations of the Jaya algorithm to equalize the 

workload between intensification and diversification. Emperor 

Penguin Optimization is hybridized with Salp Swarm Algorithm to 

enhance the exploration capacity of both methods. A multi-

population solution strategy was proposed in which valuable 

information is exchanged in each iteration to reach the global 

answer to the problem [22]. Because of the incompetencies of the 

Biogeography-based algorithm in dealing with a complex real-

world optimization problem, this algorithm was hybridized with 

Shuffled Frog Leaping Algorithm. Two novel contributions are 

proposed, including a new migration operator and an improved 

mutation scheme is included to ameliorate the probing mechanism 

of the hybrid method [23].  

This study aims to take advantage of the merits of Eagle Strategy 

(ES), which was developed by Yang and Deb [24] to be utilized as 

a practical framework for dealing with nonlinear optimization 

problems. Eagle Strategy will be investigated in detail by 

combining modified mutation schemes of Differential Evolution 

[25] and Barnacles Mating Optimization [26]. Within this 

framework, updated manipulation equations of Differential 

Evolution will perform as local search agents responsible for 

exploiting the promising regions while Levy flight [2] and Lozi 

chaotic map [27] enriched modified mutation scheme of Barnacles 

Mating Optimizer dealing with the exploration of unvisited paths 

of the search domain. Eagle strategy in terms of optimization 

framework has been applied to many literature optimizers 

including Differential Evolution [28,29], Particle Swarm 

Opimization [30,31], and Jaya Algorithm [32] to enhance probing 

efficiency of the algorithm through the iteratively exchanged 

population information between the hybridized algorithms. 

Several novelties are also evident in this study. One is that this is 

the first application of Barnacles Mating Optimizer on a hybrid 

optimization algorithm. Another contribution to the literature is to 

create a synergy between these optimizers to form a two-stage 

based solution procedure, which has not been accomplished in the 

previous studies yet in any type of hybridization method. 

Optimization performance of Eagle strategy-based hybridization is 

verified on forty benchmark functions consisting of unimodal and 

multimodal test problems. Finally, a transient heat conduction 

problem will be solved by the proposed Eagle Strategy based 

algorithm to eliminate the deficiencies raised from the traditional 

root-finding methods, many of which may sometimes lack from 

misleading initial estimates to find the exact roots of the nonlinear 

equations. 

2. Eagle Strategy 

Eagle Strategy is an optimization framework, not an algorithm, 

aimed to combine at least two different optimization algorithms. It 

is a nature-inspired solution procedure mimicking the two-stage 

hunting strategy of eagles. In nature, eagles experience a two-stage 

foraging strategy including a roaming stage and a chasing stage. In 

the roaming stage, an eagle searches a large domain of space to 

observe prey. Once the prey is observed, the chasing stage takes 

place and the eagle swiftly shifts into chasing action to catch the 

sighted prey as soon as possible. These consecutive actions can be 

conceptualized into a two-stage optimization framework in which 

the first stage dealing with the exploration of the whole search 

domain while the latter stages are devoted to fine-tuning the 

promising solution obtained in the preceding actions. The main 

idea behind this kind of hybridization is to maintain a compromise 

set of actions to balance between the global and local search 

mechanisms. One can easily apply any type of optimization 

algorithm in different stages of the successive iterations. 

Therefore, it will be more advantageous to benefit from the merits 

of each algorithm at different phases within the proposed 

framework. In the original study in which Eagle Strategy was 

firstly coined, it was proposed that global search is maintained 

employing the random walks governed by Levy flights [33], then 
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the promising solutions are updated by local search algorithm of 

Firefly Optimization. However, efficient local optimizers of 

simplex search and hill-climbing methods can be alternatively 

applied in the latter stages to polish the so-far-best-obtained 

solution in the course of iterations. The optimization success of 

these local search methods highly depends on the quality of the 

initial estimates. Consecutive stages of the algorithm switch on and 

off according to the quality of the iterative candidate solutions. The 

success of the Eagle Strategy based optimization framework relies 

on the dexterity of the global and local search mechanisms, 

respectively responsible for diversifying the sample solutions as 

much as possible and exploiting the fertile regions in the search 

domain. The global explorer in the framework should produce 

enough randomness to effectively diversify the trial solutions and 

reach the unvisited paths in the search domain. This relatively slow 

processing search mechanism accelerates as iterations proceed and 

the solution gradually converges. Moreover, the local optimizer 

should efficiently avoid the local optimum points within the 

minimum number of function evaluations to speed up convergence 

to the global optimum solution.  

In this study, it is considered to take advantage of the optimization 

capabilities of the modified and amended mutation schemes of 

Barnacles-Mating Optimizer (BMO) and Differential Evolution 

(DE) algorithms. In the first stage, the required randomization is 

maintained by Levy flight and chaotic random numbers enriched 

probing equation of BMO to scatter the population individuals 

across the search domain. In the second stage, modified DE 

variants of DE/rand/1 and   DE/best/1 are ensembled together to 

form an effective local optimizer, whose mutation equations are 

amended by the chaotic random nuımbers generated by Lozi map 

and onezero() function which produces one or zero and applies this 

number to a population member. The next section provides the 

essentials of Barnacles-Mating Optimizer and Differential 

Evolution algorithms and their mutual hybridization to construct 

an efficient optimization framework based on the foundations of 

Eagle Strategy. 

2.1. Barnacles-Mating Optimizer 

Inspired by the characteristic mating process of barnacles, this 

method simulates the Hardy-Weinberg [34] principles to generate 

versatile off-springs in the concept of BMO.  Barnacles are 

hermaphroditic species, which explains that they have both male 

and female reproductions. A typical feature that distinguishes this 

living being from the other types is that they are known for their 

relatively large penises compared to their body size, which is 

seven or eight times larger to cope with their sedentary life-style 

mostly taking place nearby the rocks and corals [35]. A barnacle 

searches for a partner within the reach of its penis to copulate and 

secretes a sperm into the mantle cavity of its partner. For 

barnacles living in solitude, sperm-cast mating takes place where 

the released sperm floating the water is captured by the partner to 

fertilize its eggs. BMO algorithm is built upon these mating 

behavior to solve challenging optimization problems. Off-spring 

generation is occurred obeying the main principles of Hardy-

Weinberg. Consider two alleles D and M standing for Dad and 

Mum with selection frequencies respectively f(D)=p and f(M)=q. 

Under these circumstances, the expected genotype frequencies 

under normal mating conditions can be expressed as follows: 

genotype frequency for DD homozygotes is f(DD)=p2, genotype 

frequency for MM homozygotes is f(MM)=q2, genotype 

frequency for DM homozygotes is f(DM)=2pq. Schematical 

representation of forming genotypes for the next off-spring 

generation is illustrated in Figure 1. Rectangular areas that 

represent the genotype frequencies in Figure 1 show that the sum 

of each frequency is p2+2pq+q2=1 so that p+q=1. This equation 

explains the governing mechanism behind off-spring generation, 

which is mainly based on the genotype frequencies p and q of 

parents.  

Fig. 1. Schematic view of Punnet square 

The algorithm is initialized with populating the candidate 

barnacles’ vectors in the form of the below-given matrix 

representation 

 

 𝑋 = [
𝑥1

1 ⋯ 𝑥1
𝐷

⋮ ⋱ ⋮
𝑥𝑁

1 ⋯ 𝑥𝑁
𝐷

]                                                                    (1) 

 

Where X is the barnacles' population, N represents the size of the 

population and D is the number of decision variables of the 

considered optimization problem. After the initialization process, 

all population individuals are evaluated and sorted based on their 

corresponding fitness value where the best individual stays on the 

top while the worst one is located at the bottom. This algorithm 

aims to give a balance to intersification and diversification phases 

phases relying on the procedure visually explained in Figure 2. 

Barnacles population composed of ten individuals is represented in 

the matrix form in Figure 2. In the BMO algorithm concept, the 

best solution is located at the top of the population as was 

mentioned before. Consider that the penis size of the barnacles is 

seven times larger than its body length, which means that penis 

length (pl) is equal to seven. This implies that barnacle #1 can mate 

with barnacles #2 to barnacles#7 in the current iteration. If 

barnacle#7 opts to select barnacles #9 for mating, then it will 

exceed the predefined limit set by the penis length. So sperm-cast 

mating is occurred rather than normal mating to generate an 

offspring population. Below given equations explain how a simple 

selection mechanism works to produce candidate solutions 

Fig. 2.    BMO mating mechanism 

𝐷𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑋)                                                        (2) 

𝑀𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑋)                                                       (3) 
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Where randperm() shuffles the members of the barnacle's 

population (X) to create Dad (Dbarnacle) and Mum (Mbarnacle) to be 

mated to generate off-springs. Generating trial solutions in this 

algorithm is a bit different than the other evolutionary algorithms 

in the literature. Since there is not defined specific formula or set 

of equations to be used for mutation, the algorithm relies on 

genotype frequencies of the barnacles to generate offsprings. The 

following equations are responsible for producing candidate 

barnacle off-springs 

 𝑥𝑖
𝐷𝑛𝑒𝑤 = 𝑝 ⋅ 𝐷𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒

𝐷 + 𝑞 ⋅ 𝑀𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒
𝐷     𝑖𝑓  𝑘 ≤ 𝑝𝑙                  (4)     

𝑥𝑖
𝐷𝑛𝑒𝑤 = 𝑀𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒

𝐷 × 𝑟𝑎𝑛𝑑(0,1)        𝑖𝑓  𝑘 > 𝑝𝑙                        (5) 

Where p is a uniform random number defined in the range [0,1] 

and q=1-p; Dbarnacle and Mbarnacle  respectively stand for the vector 

symbolizing dad and mum of the generated off-spring; k is the 

absolute value of the difference between Dbarnacle and Mbarnacle 

vectors expressed by the following equation:  

𝑘 = |𝐷𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒 − 𝑀𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒|                                                        (6)  

The inheritance behavior of the parents is controlled by the 

numerical values of the genotype frequencies. For example, let p = 

0.65 which implies that newly generated off-spring respectively 

inherits %65 and %35 of characteristic features of dad’s and 

mum’s. BMO initializes the barnacles' population randomly within 

the prescribed search boundaries and sorts the population 

individuals according to their corresponding fitness values in such 

a way that the best barnacles staying on top while the worst ones 

are located at the bottom. Equations (4) and (5) shuffle the 

barnacles' population by changing their respective row elements to 

derive a new mutated dad and mum vectors.  New off-springs are 

produced based on Eq. (6) and Eq. (7). Exploration and 

exploitation which are two main features of BMO controlling the 

solution diversity and efficiency are maintained by these two 

equations. Eq. (6) enables the algorithm to diversify the search 

space by using the merits of Gaussian distributed random numbers 

and mutation vectors of parents. Eq. (7) exploits the promising 

regions where the best barnacles in the population reside in. This 

equation governs the local search mechanism guided by the penis 

length (pl) parameter which decides the number of neighboring 

populations to be mated for the current iteration.  

2.2. Differential Evolution 

Differential Evolution (DE) is a population based evolutionary 

algorithm. This algorithm draws significant interest from the 

research community because of its outstanding performance in 

solving real-world complex optimization problems from different 

domains. DE was firstly conceptualized by the technical report 

completed by Storn [36] then followed by the base study [25] in 

which all different aspects of the proposed algorithm were 

discussed. Some of the past literature approaches [37,38] reached 

a consensus that DE is considered to be a powerful and competitive 

member of population-based metaheuristics. DE applies three 

different operators to obtain the global solution of the optimization 

problem it deals with. These are mutation, crossover, and selection 

mechanisms that playing important role in sampling trial solutions. 

At each iteration, these three operators are executed independently. 

After initializing population members within the predefined upper 

and lower bounds, iterative solutions are obtained by commencing 

the mutation phase in which mutant solutions are produced by 

using mutation operators. Then, trial solution vectors are sampled 

utilizing a crossover operator allowing a cooperative interaction 

between the mutated vector and its related target vector. Finally, 

the selection mechanism makes a comparison between the trial 

solution and target solution to maintain the survival of the fittest 

vector. An individual with having a fitter solution among these two 

vectors is going to be used for the upcoming iteration.  The next 

section will explain these algorithm steps in details: 

D-dimensional N-sized population members are represented as 

𝑀𝑖
𝐺 = {𝑚i,1

𝐺 , 𝑚𝑖,2
𝐺 , . . . , 𝑚𝑖,𝐷

𝐺 } where i=1,2,3,….,N symbolizes the 

population size; D refers to the dimensionality of the problem and 

G denotes the current generation. Based on the target vector 𝑀𝑖,𝑗
𝐺  

to be manipulated, a mutant vector can be produced employing the 

below given six well-known mutation strategies: 

"rand/1" → 𝑌𝑖
𝐺 = 𝑀𝑛1

𝐺 + 𝐹 × (𝑀𝑛2

𝐺 − 𝑀𝑛3

𝐺 )                                  (7) 

“rand/2” → 𝑌𝑖
𝐺 = 𝑀𝑛1

𝐺 + 𝐹 × (𝑀𝑛2

𝐺 − 𝑀𝑛3

𝐺 ) 

+𝐹 × (𝑀𝑛4

𝐺 − 𝑀𝑛5

𝐺 )                                                                     (8) 

"best/1" → 𝑌𝑖
𝐺 = 𝑀𝑏𝑒𝑠𝑡

𝐺 + 𝐹 × (𝑀𝑛1

𝐺 − 𝑀𝑛2

𝐺 )                             (9) 

best/2 → 𝑌𝑖
𝐺 = 𝑀𝑏𝑒𝑠𝑡

𝐺 + 𝐹 × (𝑀𝑛1

𝐺 − 𝑀𝑛2

𝐺 ) + 𝐹 ×              

(𝑀𝑛3

𝐺 − 𝑀𝑛4

𝐺 )                                                                               (10) 

"current − to − best/1" → 𝑌𝑖
𝐺 = 𝑀𝑖

𝐺 + 

𝐹 × (𝑀𝑏𝑒𝑠𝑡
𝐺 − 𝑀𝑛1

𝐺 ) + 𝐹 × (𝑀𝑛2

𝐺 − 𝑀𝑛3

𝐺 )                                   (11) 

"current − to − pbest/1" → 𝑌𝑖
𝐺 = 𝑀𝑖

𝐺 + 

𝐹 × (𝑀𝑏𝑒𝑠𝑡
𝐺 − 𝑀𝑖

𝐺) + 𝐹 × (𝑀𝑟1

𝐺 − 𝑀𝑟2

𝐺 )                                       (12) 

In the above equations, randomization is occurred by n1, n2, n3, n4, 

and n5 which are integers between [1, N] and are also different from 

the index (i) of the current population member. F is the scale factor 

whose numerical value varies from 0 to 1 responsible for 

controlling the relative  

magnitude between the difference vector. 𝑀𝑏𝑒𝑠𝑡
𝐺  is the best solution 

in the population obtained during consecutive iterations. After 

sampled solutions are mutated, a crossover operation is put into 

practice to decide between the target vector 𝑀𝑖
𝐺   and mutated 

vector 𝑌𝑖
𝐺  to generate a set of trial solutions 𝑍𝑖

𝐺 =

{𝑧𝑖,1
𝐺 , 𝑧𝑖,2

𝐺 , . . . , 𝑧𝑖,D
𝐺 } . With using the binomial crossover operator, 

trial solutions are produced as defined in the following procedure 

𝑧𝑖,𝑗
𝐺 = {

𝑦𝑖,𝑗
𝐺     𝑖𝑓(𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅  𝑜𝑟  𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝑚𝑖,𝑗
𝐺     𝑒𝑙𝑠𝑒

                  (13)       

Where 𝐶𝑅 ∈ [0,1] is a crossover parameter that controls the 

number of individuals to be copied from the target vector 𝑀𝑖
𝐺  and 

𝑌𝑖
𝐺  to the trial vector 𝑍𝑖

𝐺  ; rand(0,1) is a uniform random number 

defined in the range [0,1];  jrand  is an integer between 1 to D, which 

ensures at least one individual in trial vector 𝑍𝑖
𝐺  should be different 

from the target vector 𝑀𝑖
𝐺 . Once the trial vector is produced, a 

selection mechanism is employed to select the fitter individuals 

among the trial vector 𝑍𝑖
𝐺  and the target vector 𝑀𝑖

𝐺 . The selection 

mechanism is performed by the following equation 

𝑀𝑖,𝑗
𝐺+1 = {

𝑀𝑖,𝑗
𝐺     𝑖𝑓   𝑓(𝑀𝑖

𝐺) ≤ 𝑓(𝑍𝑖
𝐺)

𝑍𝑖,𝑗
𝐺     otherwise 

                                      (14)  

2.3. The Proposed Method 

The Eagle Strategy framework composed of modified search 

equations of Barnacles Mating Optimizer (BMO) and Differential 

Evolution (DE). According to the base paper discussing the merits 

of BMO, it was emphasized that this algorithm can balance the 

exploration and exploitation phases efficiently. However, we 
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mainly aim to benefit from the diversification ability of BMO 

reinforced by the random numbers generated by the Levy Flights 

and Lozi chaotic map. Exploitation in which fertile areas of the 

search region are finetuned will be executed by an ensemble of 

modified mutation strategies of DE. Utilizing different mutation 

strategies for a single population has been an issue among the 

metaheuristic community for a while. With such a combination of 

different mutation equations, the algorithm will have the chance to 

explore undiscovered paths or valleys on the search domain more 

efficiently and tenaciously compared to the solution procedure in 

which only one mutation strategy is concerned with. During the 

iterative process, different DE variants used in the ensemble 

become powerful and supportive as they collaborate by sharing the 

valuable domain information using their distinctive capabilities. 

Literature studies concerning the applications of DE variants into 

a single framework show the importance to use different DE 

operators in one algorithm. Qin et al. [39] proposed a solution 

strategy based on a self-adaptive DE in which different mutation 

schemes of ensemble algorithms are dynamically selected relying 

on their success in previous iterations. In another research paper, 

Gong et al. [40] adopted an ensemble of DE variants using an 

adaptive strategy selection which involves two different methods 

including Probability Matching and Adaptive Pursuit. These two 

intelligent techniques are autonomously employed by each 

individual in the population to determine the most suitable strategy 

decided by their comparative influence on the optimization 

problem. Ali et al. [41] aimed to boost up the solution diversity by 

subdividing the entire community into independent sub-

populations and apply different mutation strategies to each 

individual in the subdivided group. This multi-population 

approach uses the domain information of the best solution.  

The proposed method is composed of two cascaded stages as 

considered in the original paper propounded by Yang and Deb 

[24]. Crude global exploration is accomplished by the modified 

search equations of BMO, which has been experienced to be an 

efficient explorer based on the extensive numerical experiments 

made on unimodal and multimodal testbeds by the authors. Here, 

in this case, Levy flight based random number generation is used 

instead of a uniform random number controlled by the genotype 

frequency for BMO. Literature comprises plenty of Levy flight 

strengthened metaheuristic algorithms whose successful 

engineering applications ranging from NOX emission prediction 

of a boiler [42] to optimal design of steel space frames [43]. This 

wide diversity in the utilization of Levy flights highly depends on 

its enormous capability to escape local optimum points as well as 

faster solution convergence, both actions result from the imposed 

intrinsic probing mechanism. The search mechanism reinforced by 

the random numbers generated by Levy flights provides beneficial 

behaviors to the base algorithm such that it allows minimizing the 

possibility to visit previously explored spaces in the solution 

domain. Therefore, this mechanism enables the algorithm to avoid 

stagnation in the fitness land space by circumventing any local 

optima in the search space thanks to the intermingled long and 

short jumps across the search domain that occurred by the Levy 

flights. This type of flight pattern takes advantage of reaching 

distant regions of the solution space without revisiting the already 

explored spaces, thereby eliminating a huge amount of 

computational burden that would be resulted from the excessive 

number of function evaluations [44]. One can see the impacts of 

Levy Flights even in the dispersion of gas molecules and 

movement of particles in fluids when turbulent flow conditions are 

prevalent     

Generation of random numbers from Levy distribution consists of 

two constructive steps. The first step is concerned with deciding 

the randomized direction of Levy Flight based on uniform 

distribution and the second step is related to producing sequential 

steps drawn from the chosen Levy distribution. Mantegna's 

algorithm [31] is considered in this study to draw a random number 

from symmetric Levy stable distribution as formulated below: 

 𝜎𝑢 = {
Γ(1+𝛽)sin(

𝜋𝛽

2
)

Γ(
1+𝛽

2
)⋅𝛽⋅2

(
𝛽−1

2 )
}

1

𝛽

                                                            (15) 

Where Γ is the gamma function and 𝛽  parameter varies between 0 

and 2. In this study, this 𝛽 parameter is taken as 1.5 [24]. Based on 

the numerical value  𝜎𝑢 obtained from Eq. (15) and 𝜎𝑣 = 1 , step 

length s can be computed by the following equation 

𝑠 =
𝑢

|𝑣|1/𝛽
                                                                                     (16) 

Where u and v are random numbers respectively following a 

Gaussian distribution of zero mean and deviation 𝜎𝑢
2 and  𝜎𝑣

2.   

The modified search equation of BMO considered in this study is 

reconstructed by merging Eq.(4) and Eq.(5) and utilizing a chaotic 

random number generator by Lozi map rather than a uniformly 

distributed random number varying in the range between 0 and 1. 

Eleven different chaotic maps are tested for random number 

generation and the Lozi map gives the best solution outcomes, 

therefore this map is considered in this phase of the algorithm.   The 

proposed modified manipulation equation responsible for the 

exploration phase of the algorithm takes the final form given in 

Algorithm 1. 

 

Algorithm 1 – Exploration phase 

𝑋1 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑋)
𝑋2 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑋1)
𝑓𝑜𝑟 𝑖 =  1 to 𝑁
       𝑓𝑜𝑟 𝑗 =  1 to 𝐷

       X𝑛𝑒𝑤
𝑖,𝑗

= (𝑋1
𝑖,𝑗

× 𝑙𝑒𝑣𝑦1
𝑖,𝑗

+ 𝑋2
𝑖,𝑗

× 𝑙𝑒𝑣𝑦2
𝑖,𝑗

) × (2 ⋅ 𝜑1
𝑖,𝑗

− 1)

       𝑒𝑛𝑑
𝑒𝑛𝑑

 

 

In the above-defined Algorithm 1, randperm() function shuffles 

the row elements of the given input matrix; X represents N-sized 

D-dimensional population individuals to be mutated for upcoming 

generations; levy1 and levy2 are two different random numbers 

drawn from Levy distribution calculated in terms of step size as 

given Eq.(16); 𝜑 is a chaotic random number generated by Lozi 

map. Lozi chaotic map [45] is a two-dimensional piecewise linear 

map whose representative dynamical equations are similar to that 

of Henon map [46] and formulated as given below: 

 
𝑥(𝑡 + 1) = 1 − 𝑎 ⋅ |𝑥(𝑡)| + 𝑦(𝑡)

𝑦(𝑡 + 1) = 𝑏 ⋅ 𝑥(𝑡)
                                         (17)  

Where the parameters considered in the above equation a and b are 

respectively 1.7 and 0.5 as suggested in Caponetto et al [45]. 

Chaotic sequences generated by the Lozi map are normalized in 

the numerical range between 0 and 1 with the below-given 

procedure 

𝑦𝑛𝑜𝑟𝑚
𝑖 =

𝑦𝑖−min(𝑦)

max(𝑦)−min(𝑦)
                                                             (18) 

Where 
iy
 stands for the ith element in the chaotic sequence; 

max(y) and min(y) are respectively the maximum and minimum 

valued element in the sequence. The exploitation phase of the 

algorithm is constructed by the ensemble of two well-known 

mutation strategies of DE including “DE/rand/1” and “DE/best/1” 
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with some modifications on mutative equations. Proposed 

modifications have been made based on the trial-and-error 

procedure. Plenty of combinatorial interactions of DE variants 

have been evaluated and benchmarked against different types of 

optimization problems involving challenging real-world design 

problems as well as unimodal and multi-modal conventional test 

problems for the exploitation phase. The below-defined procedure 

described in Algorithm 2 yields the most favorable solution 

outcomes among the contestant alternative mutation schemes and 

proposed for intensifying on the promising candidates obtained in 

the exploration phase 

 

Algorithm 2 – Exploitation phase 

X1 = randperm(X) ; X2 = randperm(X1) ;  

X3 = randperm(X2) ; X4 = randperm(X3)  

oz1=onezero() 

oz2=onezero() 
𝑓𝑜𝑟 𝑖 = 1 to 𝑁
       𝑓𝑜𝑟 𝑗 = 1 to 𝐷

                𝑖𝑓(𝑟𝑎𝑛𝑑(0,1)1 < 𝑟𝑎𝑛𝑑(0,1)2)

                        𝑋𝑛𝑒𝑤
𝑖,𝑗

= 𝑋𝑖,𝑗 + (2𝜑2
𝑖,𝑗

− 1) ⋅ 𝑜𝑧1
𝑖,𝑗

⋅ (𝑋1
𝑖,𝑗

− 𝑋2
𝑖,𝑗

)

                else 

                        𝑋𝑛𝑒𝑤
𝑖,𝑗

= 𝑋𝑏𝑒𝑠𝑡
𝑗

+ 𝑜𝑧2
𝑖,𝑗

⋅ (𝑋3
𝑖,𝑗

𝜑3
𝑖,𝑗

− 𝑋4
𝑖,𝑗

𝜑4
𝑖,𝑗

)

                 end
        end
end

 

Where rand (0,1)1 and rand(0,1)2 are random numbers different 

from each other generated by uniform distribution and  Xbest is the 

best individual in the population obtained so far. Function 

onezero() produces an integer either 0 or 1 and assigns this number 

to a random member of the population. This kind of assignment 

increases the solution diversity to some extent as experienced in 

Differential Search [47] and Artificial Cooperative Search [48] 

algorithms, which is also deduced by the extensive analysis over 

varying types of test problems. Algorithm 2, in essence, 

concurrently exploits the fertile areas employing the best solution 

Xbest and diversifies the search space within the current iteration 

thanks to the ensemble of mutation strategies of Differential 

Evolution. Numerical experiments over many test functions reveal 

that too much intensification and probing around the best solution 

eventually leads to premature convergence, therefore we choose to 

impose a balanced effect of exploration and exploitation rather 

than mere exploitation in this phase. Within this context, the first 

part of Algorithm 2 is concerned with exploration while the second 

part dealing with exploitation. Table 1 provides the pseudo-code 

of the proposed hybrid Eagle Strategy. 

Table 1. Pseudo-code representation of the proposed Eagle Strategy 

Initialization phase 

Initialize algorithm parameters 

                    N:  Population size  
                    X : Population matrix 

                    f(x) : Objective function  

                    Up and Low: Upper and lower bounds of the search space   
                    Maxiter : Maximum number of iteration  

                    While (iter < Maxiter) do 

                               //Exploration//    

                                X1 = randperm(X) 

                                X2 = randperm(X1)                              

                                for i = 1 to N  
                                      for j = 1 to D 

                                            X_new^(i,j) =(X_1^(i,j) 〖levy〗
_1^(i,j)+X_2^(i,j) 〖levy〗_2^(i,j))∙(2φ_1^(i,j)-1) 

                                   end 
                              end 

____________________________________________________ 

                                 Xnew = Boundary_check(Xnew) 
                                 X = Update(X , Xnew) 

                                 Retain the best solution (Xbest) 

____________________________________________________ 

                                  //Exploitation// 
                                  X1 = randperm(X); X2 = randperm(X1); X3 = 

randperm(X2); X4 = randperm(X3); 

                                  oz1 = onezero() 
                                  oz2 = onezero()    

                                  for i = 1 to N 

                                        for j = 1 to D 
                                              if (rand(0,1)1 < rand(0,1)2) 

                                                     X_new^(i,j)=X^(i,j)+(2φ_2^(i,j)-1)∙〖oz

〗_1^(i,j)∙(X_1^(i,j)-X_2^(i,j))  

                                              else    

                                                     X_new^(i,j)=X_best^j+〖oz〗
_2^(i,j)∙(X_3^(i,j) φ_3^(i,j)-X_4^(i,j) φ_4^(i,j))       

                                              end 
                                         end 

                                   end 

____________________________________________________ 
                                 Xnew = Boundary_check(Xnew) 

                                 X = Update(X , Xnew) 

                                 Retain the best solution (Xbest) 
                                 Update random numbers drawn from Levy flights 

(levy1,2) and Lozi chaotic map (φ_1,2,3,4) 

                                 Increment the iteration counter (iter++) 
                       end 

                       Output the best result (Xbest) 

3. Numerical experiments on benchmark 
problems 

This section deals with assessing the effectiveness of the proposed 

hybrid Eagle Strategy (EAGLE) over different types of 

optimization benchmark functions. A testbed of 40 optimization 

benchmark functions composed of unimodal and multimodal 

optimization problems will be solved by the proposed method and 

corresponding results will be compared those acquired by the 

reputable literature optimizers of  Barnacles Mating Optimizer 

(BMO) [26], Manta-Ray Foraging Optimizer (MANTA-RAY) 

[49], Harris Hawks Optimizer (HARRIS) [50], Particle Swarm 

Optimization (PSO) [3], Sine-Cosine Algorithm (SINECOS) [51], 

Butterfly Optimization (BFLY) [52], Fruit-Fly Optimization (FF) 

[50], Grey Wolf Optimization (GWO) [54], Spotted Hyena 

Optimizer (SH) [55], Crow Search Algorithm (CROW) [56], 

Differential Evolution (DE) [25], Multi-Verse Optimizer (MVO) 

[57], and Cuckoo Search (CUCKOO) [58]. Because of the 

randomness inherent in the metaheuristic algorithms, a single 

algorithm run may not be a decisive factor for performance 

judgment. 50 independent algorithm runs along with 2000 function 

evaluations have been performed for each compared algorithms to 

conquer the stochasticity. Among them, the best of 30 algorithm 

runs is considered for assessment of the prediction capability of the 

optimizers.  The majority of the metaheuristics involve adjustable 

algorithm parameters to be tuned for different optimization test 

problems. One of the main advantages of the EAGLE algorithm is 

that it includes no tuneable parameters, which eliminates the 

tedious and exhaustive process of trial-and-error based problem-

specific parameter tuning. Table 2 reports the parameter 

configuration of the algorithms that will be benchmarked against 

the EAGLE algorithm for performance evaluation. Adjustable 

parameters of the algorithms are calibrated by trial and error and 

final results are evaluated in terms of statistical analysis retained 

after successive algorithm runs. Algorithms that have not taken 

place in Table 2 have no tunable parameters. Numerical 

experiments and algorithm implementations are executed in the 

Java environment and performed on a personal computer having 

6.0 GB RAM at 2.50 GHz CPU. Benchmark problems utilized in 

this study for performance analysis are categorized into two 

different groups including multimodal and unimodal functions, 

many of those have been frequently applied for judging the 

capabilities of stochastic optimization algorithms in the literature. 

Table 3 to Table 6 report the statistical results of the unimodal and 

multimodal test functions for each compared algorithm. The mean 

and standard deviation results are given in the tables to compare 
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the effectiveness of the compared algorithms. Functions f1 to f22 

are in the category of multimodal test functions. These types of test 

functions comprise plenty of local optimum points, which makes 

them an efficient testbed for assessing the exploration capability of 

the applied algorithm. For the f1-Levy algorithm, HARRIS 

provides the best performance while EAGLE and GWO achieving 

second and third best predictions. For the f2-Ackley algorithm, 

EAGLE outperforms the remaining algorithms. EAGLE, BMO, 

and HARRIS algorithms obtain the global best solution for each 

independent run for f3-Griewank and f4-Rastrigin test functions. 

FF algorithm acquires the best robustness and accuracy for the f5-

Zakharov test function. BMO and EAGLE come with second and 

third best algorithms for this problem. EAGLE surpasses the 

compared algorithms in terms of solution efficiency for the f6-

Alpine test function. Although very similar results are obtained, 

EAGLE slightly outperforms the remaining algorithms for the f7-

Penalized1 test function. HARRIS obtains the minimum deviation 

results for the f8-Quintic function whereas EAGLE is the second-

best performer in these terms.  The predictive results obtained by 

EAGLE for the f9-Csendes test function are superior compared to 

the other approaches. BFLY retains the best predictive 

performance for the f10-Schaffer test function. EAGLE obtains the 

global best answer of f11-Inverted cosine function each algorithm 

run and becomes the best performer for this case. EAGLE and 

BMO find the global optimum solution of the f12-Wavy test 

function for each independent run.  Deviation results produced by 

the f13-Hyperellipsoid function are much better than those of the 

compared algorithms. FF algorithm is significantly superior in 

finding the optimal results for the f14-Pathological test function. 

MANTA-RAY obtains the most robust solutions for the f15- 

Salomon test function. Although predictive results obtained from 

the compared algorithms are far away from the global optimum 

solutions for f16-Ackley N4, EAGLE becomes the dominant 

algorithm in performing the exploration of the search space, 

therefore produces the minimum error deviation.  EAGLE and 

BMO obtain the global optimum solution for each consecutive run 

for the f17-Exponential test function.  HARRIS gives the minimum 

mean deviation values for the f18-Trid function while EAGLE has 

been significantly outperforming by the remaining algorithms. 

MVO generates competitive optimal results for the f19-Styblinski-

Tang function whereas results found by EAGLE are quite 

satisfactory. EAGLE yields the most accurate predictions for f20-

Yang1 and f21-Yang2 test functions while unequivocally 

outperformed by FF for the f22-Yang4 test function. It can be 

concluded from the predictive performances of the algorithms that 

EAGLE is very competitive in exploring the search space 

efficiently such that it obtains the global optimum solution of 30 

dimensional f3-Griewank, f4-Rastrigin, f12-Inverted cosine, f13-

Wavy, and f17-Exponential test functions for each algorithm run 

and comes with second or third best performing algorithm in most 

of the multi-modal test functions. The good exploration behavior 

of EAGLE can be attributed to two different facts. One fact is those 

anomalous stochastic movements of Levy flights generated by the 

long jumps over the search space. Another fact is that random 

numbers generated by chaotic Lozi map have better dynamical and 

statistical characteristics, which not only help the algorithm to 

produce more diverse sample solutions to reach unexplored 

regions in the objective landscape but also accelerates the 

convergence speed to some extent compared to the solutions found 

by stochastic random numbers with uniform distribution. 

 

 

Table 2. Parameter configurations for the compared algorithms 
Algorithm Parameter Value 

BMO Penis length (pl) 7.0 

PSO Cognitive (c1) and social (c2) factors 

Inertia weight(w1) 

c1=2.0,  c2=2.0   

Decreasing linearly from 0.6 to 0.1 

BFLY Switch probability (p) 

Modular modality (m) 

Power exponent (pe) 

p=0.8 

m=0.01 

Linearly increased from 0.1 to 0.3 

GWO Convergence parameter (a) Decreasing linearly from 2.0 to 0.0 

SH Convergence parameter (h) Decreasing linearly from 5.0 to 0.0 

CROW Flight lenght (fl), Awareness probability (AP)  fl=0.1,  AP=0.1   

DE Scale Factor (F), Crossover Rate (CR) F=0.9, CR=0.5 

MVO Wormhole Existence Probability (WEP) Decreasing linearly from 1.0 to 0.2 

CUCKOO Discovering alien egg probability (pa) 
Algorithm parameter(α) 

Algorithm parameter(β) 

pa=0.2 
α=1.0 

β=1.5 

Table 3.  Statistical results of the multimodal test functions from Levy to Ackley N4  

 f1 - Levy f2 - Ackley f3 - Griewank f4 - Rastrigin 

 Mean±Std.dev Mean±Std.dev Mean±Std.dev Mean±Std.dev 

EAGLE  1.24E+00±1.71E-01 1.22E-15±1.47E-15   0.00E+00±0.00E+00   0.00E+00±0.00E+00 

BMO 1.70E+00±2.66E-01 3.19E-11±6.63E-11 0.00E+00±0.00E+00   0.00E+00±0.00E+00 

MANTA-RAY 1.40E+00±2.92E-01 4.90E-04 ±4.05E-04  1.63E-02±5.19E-02  4.62E+01±4.97E+01 

HARRIS 7.72E-01±2.11E-01 1.68E-10±3.84E-10 0.00E+00±0.00E+00   0.00E+00±0.00E+00 

PSO  8.77E+00±3.06E+00 1.90E+00±5.37E-01  3.52E-01±1.43E-01  1.85E+02±4.18E+01 

SINECOS  3.15E+00±2.21E+00 1.84E-01±1.66E-01  1.88E-01±2.22E-01 1.47E+02±6.03E+01  

BFLY  3.21E+00±5.69E-02 1.37E-11±1.12E-12  2.19E-14±2.99E-15  4.06E-12±8.29E-12 
FF  3.11E+00±7.19E-02 2.42E-03±7.15E-06  6.58E-07±5.74E-09 2.18E-03±1.61E-05  

GWO  1.27E+00±2.15E-01 5.53E-03±1.45E-03 4.68E-06±4.66E-06 1.79E+01±5.05E+00  
SH  2.24E+00±1.46E+00 3.06E-02±2.09E-02  6.21E-02±1.00E-01 1.00E+02±5.28E+01  

CROW 1.21E+01±4.00E+00 3.39E+00±4.38E-01 7.66E-01±1.22E-01 2.80E+02±3.21E+01 

DE 1.09E+01±2.40E+00 2.86E+00±3.43E-01 7.23E-01±1.10E-01 2.50E+02±1.87E+01 
MVO 2.08E+01±8.21E+00 5.40E-01±8.76E-02 9.16E-02±3.19E-02 2.09E+02±4.01E+01 

CUCKOO 5.10E+01±1.37E+01 5.31E+00±4.96E-01 9.82E-01±5.03E-02 3.53E+02±3.55E+01 

     

 f5 - Zakharov f6 - Alpine f7 - Penalized1 f8 - Quintic 

 Mean±Std.dev Mean±Std.dev Mean±Std.dev Mean±Std.dev 

EAGLE  1.02E-01±6.81E-01 6.21E-21±9.04E-21  3.23E-02±1.41E-02  2.31E+01±4.41E+00  

BMO  6.42E-02±5.61E-01 6.63E-12±2.14E-11 2.03E-01±1.23E-01 4.76E+01±9.76E+00 
MANTA-RAY  1.91E+03±2.68E+03 9.81E-01±5.01E+00 8.23E-02±7.53E-02 5.81E+01±1.90E+01 

HARRIS  1.36E+02±1.42E+02 1.40E-10±3.38E-10 3.51E-02±1.17E-02 2.18E+01±3.57E+00 
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PSO  3.73E+02±8.54E+01  8.43E+00±3.37E+00 5.42E-01±3.48E-01 2.32E+02±2.05E+02 

SINECOS  2.72E+02±9.16E+01  2.33E+00±3.61E+00 5.43E-01±1.89E-01 1.19E+02±3.47E+01 
BFLY  6.06E+02±1.63E+02  1.32E-10±5.69E-11 8.81E-01±1.40E-01 1.29E+05±2.33E+04 

FF  1.70E-02±1.43E-04  1.82E-03±6.77E-06 1.67E+00±9.00E-06 1.16E+02±6.24E-04 

GWO  1.47E+01±9.75E+00  1.25E-02±3.85E-03 7.39E-02±4.08E-02 4.72E+01±1.20E+01 
SH  8.03E+01±6.11E+01  3.04E+00±4.67E+00 3.02E-01±1.49E-01 7.53E+02±1.53E+01 

CROW 4.54E+02±7.19E+01  1.73E+01±3.25E+00 1.21E+00±5.91E-01 9.66E+02±9.25E+02 

DE 5.42E+02±6.62E+01 1.95E+01±2.32E+00 1.90E+00±6.26E-01 3.82E+02±1.59E+02 
MVO 2.64E+02±7.93E+01 1.20E+01±3.46E+00 1.72E+00±1.06E+00 6.22E+01±1.38E+01 

CUCKOO 1.67E+03±6.74E+02 3.76E+01±5.51E+00 5.04E+00±1.25E+00 2.10E+03±1.13E+03 

  f9 - Csendes f10 - Schaffer f11 - Inverted cosine f12 - Wavy 

 Mean±Std.dev Mean±Std.dev Mean±Std.dev Mean±Std.dev 

EAGLE  1.82E-76±1.45E-75 1.43E-03±4.17E-04   0.00E+00±0.00E+00 0.00E+00±0.00E+00 

BMO 7.36E-55±4.93E-54 2.09E-03±9.76E-04 5.35E-18±4.83E-17 0.00E+00±0.00E+00 

MANTA-RAY  4.06E-01±2.29E+00 3.55E-02±1.79E-02  6.69E-06±1.25E-05  3.21E-01±2.05E-01 
HARRIS 8.59E-51±8.38E-50 1.97E-03±1.13E-03 2.30E-17±2.01E-16 7.38E-03±6.76E-02 

PSO 2.34E+03±4.48E+03  8.14E-02±1.47E-02  1.11E+01±3.65E+00 7.27E-01 ±5.20E-02 

SINECOS 1.87E+02±7.17E+02  5.12E-02±1.69E-02  2.46E-03±6.33E-01 5.73E-01±1.22E-01 
BFLY  1.98E+06±3.92E+06  7.17E-05±5.41E-04  7.16E-13±5.77E-13  6.36E-14±2.06E-14 

FF  7.74E-18±2.64E-18  1.01E-03±4.28E-03 1.46E-04±1.11E-06   1.85E-05±1.31E-07 

GWO  1.70E-09±5.14E-09  2.17E-02±3.05E-02  2.66E-02±6.79E-02  2.01E-01±4.86E-02 
SH  2.42E-01±9.55E-01  2.63E-02±1.09E-02  1.65E-01±2.82E-01  3.81E-01±1.68E-01 

CROW 1.04E+04±7.98E+03  9.81E-02±1.50E-02 2.82E+01±8.51E+00 8.15E-01±2.41E-02 

DE 4.96E+03±3.78E+03 1.19E-01±1.49E-02 2.07E+01±4.91E+00 7.35E-01±2.13E-02 

MVO 1.82E-01±2.33E-01 7.23E-02±1.93E-02 3.98E+00±8.04E-01 7.39E-01±3.52E-02 

CUCKOO 1.95E+04±1.21E+04 1.31E-01±2.01E-01 7.14E+01±1.62E+01 8.57E-01±2.05E-02 

  f13 - Hyperellipsoid f14 - Pathological f15 - Salomon f16 - Ackley N4 

  Mean±Std.dev Mean±Std.dev Mean±Std.dev Mean±Std.dev 

EAGLE  1.13E-32±4.40E-32 3.27E+00±4.01E-01   9.98E-02±1.26E-06  -6.31E+01±5.12E+00 

BMO 3.35E-18±2.56E-17 5.00E+00±4.50E-01  9.78E-02±1.60E-02 -1.71E+01±1.71E+01 

MANTA-RAY  7.97E-05±1.27E-04 5.41E+00±3.33E-01  3.63E-02±1.41E-01 -3.75E+01±1.55E+01 
HARRIS 1.33E-16±6.86E-16 3.34E+00±5.17E-01  9.98E-02±1.73E-16 -6.06E+01±1.05E+01 

PSO  7.72E+02±4.78E+02 4.20E+00±5.05E-01  1.15E+00±1.43E-01  -4.03E+01±1.21E+01 

SINECOS 1.35E+01±1.53E+01 4.79E+00±2.85E-01  7.08E-01±1.50E-01  5.06E+00±9.55E+00 
BFLY 1.00E+05±1.41E+04 4.75E+00±4.41E-01  1.01E-01±3.15E-03  5.60E+01±9.23E+00 

FF 2.92E-03±2.45E-05 3.99E-08±6.61E-10  5.97E-01±2.05E-01  8.71E+01±5.01E-01 

GWO 6.89E-03±5.34E-03 8.84E-01±4.41E-01  3.52E-01±7.51E-01 -5.49E+01±9.67E+00 
SH  1.87E-01±2.91E-01  4.71E+00±4.46E-01  5.52E-01±1.13E-01 2.76E+01±1.10E+01  

CROW 2.86E+03±1.03E+01 4.86E+00±2.99E-01 1.26E+00±1.17E-01 2.79E+00±1.36E+01 

DE 1.99E+03±5.05E+02 4.03E+00±3.18E-01 1.45E+00±1.07E-01 1.05E+00±8.18E+00 
MVO 7.55E+02±2.89E+02 3.72E+00±4.53E-01 1.03E+00±1.84E-01 -1.84E+01±1.69E+01 

CUCKOO 1.29E+04±3.59E+03 5.61E+00±2.37E-01 1.83E+00±1.83E-01 4.46E+01±1.22E+01 

     

Table 4.  Statistical results of the multimodal test functions from Exponential to Yang4  

 f17 - Exponential f18 - Trid 6 f19 - Styblinski-Tang 

 Mean±Std.dev Mean±Std.dev Mean±Std.dev 

EAGLE -1.00E+00±0.00E+00 -1.47E+02±4.25E+01  -8.43E+02±4.52E+01  

BMO -1.00E+00±0.00E+00 -2.49E+01±1.32E+01 -8.47E+02±1.03E+02 

MANTA-RAY -9.99E-01±2.36E-06  -1.07E+02±1.47E+02 -8.06E+02±5.57E+02 
HARRIS -1.00E+00±3.31E-17  -1.42E+03±1.43E+02 -8.49E+02±8.56E+01 

PSO  -5.22E-02±7.34E-02  8.51E+01±3.46E+02 -8.90E+02±5.84E+01 

SINECOS -9.91E-01±1.36E-01  5.32E+01±9.45E+01 -4.73E+02±3.88E+01 
BFLY  -5.87E-109±5.53E-108  7.55E+03±1.74E+03  3.61E+03±2.24E+03 

FF  -9.99E-01±4.09E-08  2.85E+01±3.62E-01 3.14E-01±4.70E+00 

GWO  -9.99E-01±2.74E-05 -1.32E+02±8.87E+01 -7.46E+02±6.86E+01 
SH  -9.97E-01±2.97E-03  -6.86E+00±3.83E+01 -6.48E+02±4.93E+01 

CROW -3.52E-04±1.37E-03 5.62E+02±3.88E+02 -6.64E+02±7.91E+01 

DE -8.01E-04±1.56E-03 -5.46E+02±2.71E+02 -6.69E+02±4.63E+01 
MVO -8.86E-01±3.44E-02 -5.43E+02±3.22E+02 -9.63E+02±3.81E+01 

CUCKOO -3.39E-05±7.48E-05 1.83E+03±5.78E+02 -5.42E+02±6.25E+01 

 f20 - Yang1 f21 - Yang2  f22 -Yang4  

 Mean±Std.dev Mean±Std.dev Mean±Std.dev 

EAGLE 1.24E-63±7.79E-63 1.05E-08±1.10E-08 1.65E-12±3.85E-13  

BMO 1.61E-21±8.50E-21 1.46E-05±2.17E-05 6.47E-11±1.40E-10 

MANTA-RAY 6.05E+01±2.97E+02  3.87E-05±7.37E-05 1.46E+01±2.15E+01 
HARRIS 9.66E-06±6.28E-05 1.20E-07±1.60E-07 2.95E-12±1.05E-12 

PSO 1.24E+08±5.40E+08  1.04E-07±3.97E-07 1.62E+01±2.72E+01 

SINECOS 2.89E+05±2.88E+06  3.60E-06±4.74E-06 1.80E+01±2.17E+01 
BFLY 5.29E+17±1.50E+18  8.99E-07±1.06E-06 2.98E-11±7.81E-12 

FF 4.96E-03±3.47E-03  8.91E-01±2.91E-01 -9.81E-01±6.24E-05 

GWO 2.84E-04±6.01E-04  3.05E-08±1.26E-07  1.89E-13±3.48E-13 
SH  1.58E+02±6.62E+02  8.99E-07±2.66E-06  2.17E-11±1.55E-11 

CROW 1.32E+08±6.90E+08 2.02E-06±2.33E-06  1.46E-11±1.03E-11 

DE 3.98E+08±2.50E+09 1.89E-07±1.95E-07  1.11E-11±4.34E-12 
MVO 7.67E+08±4.19E+09 2.99E-07±9.38E-07  3.44E-13±2.42E-13 

CUCKOO 6.41E+14±2.51E+15 4.17E-04±4.77E-04  1.17E-09±5.53E-10 
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Table 5.  Comparative analysis of the statistical results of unimodal test functions from Sphere to Yang 3 

 f23 -  Sphere f24 - Rosenbrock f25 - Brown f26 - Streched sine wave 

 Mean±Std.dev Mean±Std.dev Mean±Std.dev Mean±Std.dev 

EAGLE 2.76E-34±9.26E-34 2.75E+01±4.64E-01  1.11E-33±3.61E-33   3.33E-10±2.02E-10 

BMO 4.18E-21±1.51E-20 2.84E+01±2.72E-01 1.02E-19±5.24E-19 1.41E-05±2.08E-05 
MANTA-RAY 2.67E-06±1.38E-05  2.69E+02±1.29E+03  5.48E-04±1.58E-03  3.47E-01±2.41E-01 

HARRIS 8.62E-20±1.90E-19 2.85E+01±2.04E-01 5.61E-18±3.12E-17 1.65E-04±2.40E-04 

PSO 7.69E+00±4.39E+00 7.94E+03±6.99E+03 3.29E+16±2.61E+17  4.22E+01±5.70E+00 
SINECOS  1.58E-01±2.98E-01  6.55E+02±1.95E+03  1.99E+00±4.21E+00 8.94E+00±3.97E+00 

BFLY  7.14E-13±4.04E-13  1.89E+06±2.99E+06  2.38E+93±1.81E+94  3.74E-08±1.84E-08 

FF  1.10E-05±7.30E-08  2.86E+01±1.12E-02  2.12E-05±1.43E-07  6.02E+00±1.15E+00 
GWO  6.85E-05±9.26E-05  2.86E+01±6.14E-01  3.01E-04±1.90E-04 3.86E+00±6.93E-01  

SH 4.62E-03±6.08E-03  5.13E+01±5.61E+01  1.50E-01±7.78E-01  8.33E+00±5.47E+00 

CROW 2.64E+01±8.35E+00 2.39E+04±1.24E+04 9.90E+10±6.01E+11 4.41E+01±4.82E+00 
DE 1.77E+01±4.61E+00 1.69E+04±6.96E+03 1.87E+15±1.38E+16 4.74E+01±3.81E+00 

MVO 5.42E-01±1.98E-01 3.08E+02±1.95E+02 2.62E+02±1.41E+02 5.19E+01±8.43E+00 

CUCKOO 6.95E+01±1.87E+01 6.58E+04±2.62E+04 7.81E+34±8.59E+35 6.95E+01±3.80E+00 

 f27 - Powell singular f28 -  Sum of different 

powers 

f29 - Sum of squares f30 - Bent cigar 

 Mean±Std.dev Mean±Std.dev Mean±Std.dev Mean±Std.dev 

EAGLE  7.93E-32±2.74E-31 9.87E-70±5.87E-69  2.38E-33±5.54E-33  1.28E-28±3.44E-28  

BMO 2.92E-18±1.60E-17 2.12E-23±9.94E-23 8.67E-19±8.06E-18 9.57E-14±8.32E-13 
MANTA-RAY  1.54E-02±7.03E-02 2.39E+02±1.32E+03 9.14E-06±1.37E-05 5.38E-01±6.93E-01 

HARRIS 3.49E-16±1.41E-15 3.40E-16±2.31E-15 1.57E-17±8.17E-17 4.34E-12±2.23E-11 

PSO 4.78E+03±3.72E+03 4.87E+06±1.82E+07  8.98E+01±4.75E+01 6.88E+06±5.15E+06 
SINECOS  9.58E+01±2.39E+02 2.09E+04±1.17E+06  1.60E+00±2.21E+00 8.83E+04±1.76E+05 

BFLY  9.81E+05±1.76E+05  5.87E+17±1.62E+18  2.88E+03±2.22E+03 4.95E+08±4.58E+07 
FF  1.18E-03±9.42E-06  3.99E-04±4.30E-06  1.65E-04±1.23E-06 1.05E+01±8.53E-02 

GWO  1.05E-02±8.02E-03 1.29E-07±7.25E-07  9.57E-04±7.03E-04 5.26E+01±3.84E+01 

SH  3.32E+00±9.19E+00  1.98E+00±6.93E+00  4.23E-02±7.37E-02 2.57E+03±3.04E+03 
CROW 1.69E+04±9.77E+03 1.00E+08±4.13E+08 2.91E+02±8.61E+01 2.35E+07±7.31E+06 

DE 2.58E+04±8.75E+03 1.03E+07±3.95E+07 2.01E+02±5.74E+01 1.49E+07±3.50E+07 

MVO 1.13E+02±9.17E+01 5.49E+04±2.37E+05 2.99E+01±1.61E+01 4.89E+05±1.66E+05 
CUCKOO 4.71E+04±2.37E+04 7.21E+13±2.37E+14 9.16E+02±2.37E+02 6.47E+07±1.58E+07 

 f31 - Discus f32- Different powers f33 - Dixon-Price f34 - Yang 3 

 Mean±Std.dev Mean±Std.dev Mean±Std.dev Mean±Std.dev 

EAGLE  3.45E-34±7.32E-34 4.22E-26±3.36E-25  6.66E-01±4.43E-06  8.07E-01±9.79E-03  

BMO  1.88E-19±7.01E-19 4.49E-14±3.27E-13 7.00E-01±9.12E-02 5.83E-01±3.91E-01 
MANTA-RAY  4.18E-06±1.01E-05 1.45E-03±3.45E-03 9.06E-01±6.63E-01 8.84E-01±3.12E-01 

HARRIS 1.10E-15±7.51E-15 9.73E-12±2.65E-12 6.68E-01±1.56E-03 8.58E-01±1.74E-02 

PSO 1.63E+01±9.92E+00 4.50E+00±1.93E+00 2.48E+03±1.94E+03 8.71E-01±1.28E-02 
SINECOS  2.46E-01±4.64E-01 7.41E-01±9.29E-01 8.99E+01±1.71E+02 8.75E-01±1.06E-02 

BFLY  4.49E-12±7.88E-12  9.41E-11±8.23E-11 1.07E+06±1.78E+05 8.69E-01±1.08E-02 

FF  1.60E-01±4.52E-03  5.90E-04±3.89E-06 9.79E-01±1.46E-02 -9.99E-01±3.47E-07 

GWO  1.47E-04±8.32E-05  4.63E-04±3.20E-04 7.53E-01±1.48E-01  9.79E-01±4.67E-04 

SH  9.78E-03±1.52E-02  1.05E-01±1.89E-01 6.01E+00±1.46E+01  6.57E-01±1.58E-02 

CROW 3.91E+01±1.18E+01  1.04E+01±2.93E+00 1.06E+04±5.62E+03 8.59E-01±1.14E-02 
DE 3.21E+01±8.22E+00  8.39E+00±1.65E+00 6.35E+03±2.89E+03 7.86E-01±1.12E-01 

MVO 3.38E+02±1.50E+02 3.86E-01±1.77E-01 5.53E+01±3.87E+01 8.10E-02±1.86E-02 

CUCKOO 3.69E+03±2.19E+03 3.14E+01±7.62E+00 3.78E+04±1.66E+04 8.98E-01±2.13E-02 

Table 6.  Mean and standard deviation error analysis of unimodal test functions from Schwefel 2.20 to Dropwave 

  f35 - Schwefel 2.20 f36 - Schwefel 2.21 f37 - Schwefel 2.22 

 Mean±Std.dev Mean±Std.dev Mean±Std.dev 

EAGLE  3.07E-20±4.43E-20 3.42E-119±2.39E-118  2.47E-20±2.29E-20  

BMO 1.04E-10±7.04E-10 6.44E-34±4.69E-33 4.66E-11±1.55E-10 
MANTA-RAY  2.43E-05±2.33E-05 6.90E-59±1.73E-58  3.39E-05±4.84E-05 

HARRIS 3.53E-09±1.31E-08 1.02E-23±5.68E-23 6.49E-10±1.12E-09 

PSO 8.07E+00±2.05E+00 3.09E-15±1.68E-14  8.31E+00±2.47E+00 
SINECOS 1.40E-01±1.25E-01  1.16E-27±6.90E-27 1.33E-01 ±1.09E-01 

BFLY  1.74E-10±9.35E-11  3.79E-14±4.61E-14  7.29E-11±3.66E-11 

FF  1.81E-02±7.19E-05  4.01E-04±1.19E-05  1.81E-02±6.83E-05 
GWO  1.40E-02±6.43E-03  1.37E-36±7.65E-36  1.33E-02±4.24E-03 

SH 1.37E-02±9.09E-03  9.04E-65±6.31E-64  1.09E-02±6.51E-03 

CROW 1.53E+01±2.53E+00 5.33E-18±2.14E-17 1.69E+01±2.88E+00 
DE 1.31E+01±1.94E+00 4.10E-12±9.60E-12 1.58E+01±2.52E+00 

MVO 5.53E+00±1.68E+00 1.35E-04±1.38E-04 4.79E+01±1.86E+02 

CUCKOO 3.52E+01±4.49E+00 5.41E-18±9.82E-18 2.74E+05±1.57E+06 

 f38 - Schwefel 2.23 f39 - Schwefel 2.25 f40 - Dropwave 

 Mean±Std.dev Mean±Std.dev Mean±Std.dev 

EAGLE 7.09E-116±5.59E-115  8.79E+00±1.67E+00  -9.37E-01±7.54E-03  

BMO 6.25E-83±5.90E-82 1.53E+01±1.70E+00 -9.44E-01±2.12E-02 

MANTA-RAY 2.78E+04±2.48E+05  4.12E+01±8.18E+01  -7.34E-01±1.13E-01 

HARRIS 1.39E-83±1.14E-82 3.50E+00±1.28E+00 -9.36E-01±1.65E-15 

PSO  3.24E+05±4.61E+05  2.64E+02±1.54E+02  -4.79E-02±1.51E-02 
SINECOS  3.74E+05±1.48E+06  5.62E+01±8.55E+01  -2.25E-01±1.30E-01 

BFLY  2.77E+09±9.92E+08  1.52E+04±3.76E+03  -4.61E-03±7.11E-04 
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FF  2.17E-31±7.42E-33  2.38E+01±5.04E-01  -3.63E-01±2.00E-01 

GWO  2.38E-13±1.42E-12  1.37E+01±2.25E+00  -6.13E-01±7.11E-02 
SH  7.84E+01±5.69E+02  2.33E+01±8.42E+00  -2.89E-01±9.70E-02 

CROW 1.76E+06±2.19E+06 4.16E+02±1.97E+02 -3.32E-02±8.24E-03 

DE 9.69E+05±1.05E+06 4.54E+02±1.49E+02 -2.46E-02±5.06E-03 
MVO 4.82E+00±1.53E+01 2.24E+01±2.56E+01 -1.29E-01±4.32E-02 

CUCKOO 4.44E+06±7.11E+07 7.95E+02±3.02E+02 -2.93E-02±7.08E-03 

 

Table 5 and Table 6 provide the deviation results of each algorithm 

for unimodal test functions. Unimodal test functions have only one 

global optimum point and are efficient testbeds for assessing the 

exploitative performance of the algorithm on promising regions. In 

general overview, it is observed that the optimization capabilities 

of the EAGLE algorithm in solving unimodal algorithms are much 

superior compared to multimodal optimization problems. Success 

in finding competitive results for unimodal test functions can be 

attributed to the modified DE-reinforced ensemble search 

mechanism which can provide reasonable solution outcomes 

thanks to the effective balance between exploration and 

exploitation maintained in this phase of the hybrid algorithm. 

EAGLE produces better results than the other methods for the f23-

Sphere function. None of the contestant algorithms obtain the 

optimal value of the f24-Rosenbrock test function. The global 

optimal solution of this problem occupies the narrow and parabolic 

valley, which is easy to locate, however convergence to the global 

optimum point in this valley is relatively difficult. Nevertheless, 

EAGLE obtains competitive mean and standard deviation results 

for this test problem. EAGLE significantly outperforms the other 

algorithms for the f25-Brown test function. For the f26-Streched 

sine wave function, EAGLE is the best performing method while 

BFLY is the second-best method among them. Prediction 

superiority of EAGLE is so evident for f27-Powell singular, f28- 

Sum of different powers, f29-Sum of squares, and f30-Bent cigar, 

f31- Discus, and f32-Different powers test functions as this 

optimizer retains much better statistical results in terms of solution 

accuracy and persistence. Despite the inefficacy in finding the 

optimum solution of f33 -Dixon-Price, EAGLE becomes the most 

prominent algorithm among the compared methods for this case. 

None of any algorithm, except FF, even gets closer to the optimal 

solution of the f34-Yang3 test function. The prediction capability 

of EAGLE for f35-Schwefel 2.20, f36-Schwefel 2.21, f37-

Schwefel 2.22, and f38- Schwefel 2.23 is quite remarkable. 

HARRIS outperforms the compared methods for the f39-Schwefel 

2.25 test function while EAGLE becoming the second-best 

optimizer. BMO is superior to the other optimizers concerning 

finding the optimal solution of the f40-Dropwave test function, 

which is highly complex and nonlinear.    

4. Solving a transient heat conduction problem 

In this section, the one-dimensional transient heat conduction 

problem is converted into a nonlinear optimization problem and 

solved by different literature optimizers along with the proposed 

hybrid Eagle Strategy. Temperature distribution in a slab T(x,t) is 

conventionally obtained by applying the separation of variables 

method on governing equations associated with mathematical 

modeling of heat dissipation in the one-dimensional medium [59].  

One dimensional transient heat conduction in a finite medium is 

modeled as a boundary value problem whose successful solution 

is accomplished by the application of the separation of variables 

method. That is, consider a slab  0 ≤ 𝑥 ≤ 𝐿  as a heat transfer 

medium whose initial temperature is  𝑇 = 𝐹(x), dissipates heat 

through convection mechanism at times 𝑡 > 0 from boundary 

surfaces to the surrounding ambient at zero temperature. For 

generality, it is assumed that convective heat transfer coefficients 

at two boundaries are not the same. With taking into account these 

assumptions, mathematical modeling of one-dimensional heat 

conduction equation can be formulated as   

 
𝜕2𝑇(𝑥,𝑡)

𝜕𝑥2
=

1

𝛼

𝜕𝑇(𝑥,𝑡)

𝜕𝑡
 in 0 ≤ 𝑥 ≤ 𝐿,𝑡 > 0                                        (25) 

−𝑘1
𝜕𝑇

𝜕𝑥
+ ℎ1𝑇 = 0 at 𝑥 = 0,𝑡 > 0                                               (26) 

−𝑘2
𝜕𝑇

𝜕𝑥
+ ℎ2𝑇 = 0at𝑥 = 𝐿,𝑡 > 0                                                (27) 

 𝑇 = 𝐹(x)for 𝑡 = 0 in 0 ≤ 𝑥 ≤ 𝐿                                               (28) 

Where x represents the spatial coordinate of the heat transfer 

medium, t is time, L is the length of the heat transfer medium, T(x,t) 

is temperature distribution in the slab as a function of time (t) and 

space (x), 𝛼 is the heat diffusivity; k1 and k2 are thermal 

conductivities of two different boundary surfaces, h1 and h2 are 

convective heat transfer coefficients of two different boundaries.  

Obeying the rules of separation of variables method, the expression 

temperature distribution in the heat transfer medium T(x,t) is 

separated in two different terms equated by the following  

 𝑇(𝑥, 𝑡) = 𝑋(𝑥) ⋅ Γ(𝑡)                                                                   (29) 

Where 𝑋(𝑥) is a space-variable function and Γ(𝑡) is the time-

variable function whose analytical formulation is given below 

Γ(𝑡) = 𝑒−𝛼𝛽2𝑡                                                                             (30) 

And the space-variable function 𝑋(𝛽, 𝑥) should satisfy the below-

defined eigenvalue problem 

𝑑2𝑋(𝑥)

𝑑𝑥2
+ 𝛽𝑋(𝑥) = 0 in 0 < 𝑥 < 𝐿                                                 (31) 

−𝑘1
𝑑𝑋

𝑑𝑥
+ ℎ1𝑋 = 0 at 𝑥 = 0                                                        (32) 

−𝑘2
𝑑𝑋

𝑑𝑥
+ ℎ2𝑋 = 0 at 𝑥 = 𝐿                                                         (33)   

 The eigenfunctions  𝑋(𝛽, 𝑥)  are orthogonal within the current 

forms of Eq.(31) to Eq. (33) That is, 

 ∫ 𝑋(𝛽𝑚, 𝑥)𝑋(𝛽𝑚, 𝑥)
𝐿

0
𝑑𝑥 = {

0     𝑓𝑜𝑟 𝑚 ≠ 𝑛

𝑁(𝛽𝑚)   𝑓𝑜𝑟 𝑚 =  𝑛
                     (34) 

Then, the solution of the set of equations described in Eq.(25) to 

Eq.(28) can be reformulated in a simplified form with the  

following expression 

 𝑇(𝑥, 𝑡) = ∑ 𝑐𝑛
∞
𝑛=1 𝑋(𝛽𝑛 , 𝑥)𝑒−𝛼𝛽𝑚

2 𝑡                                              (35) 

And reformulation of the initial temperature conditions  can be 

expressed by 

𝐹(𝑥) = ∑ 𝑐𝑛𝑋(𝛽𝑛, 𝑥)∞
𝑛=1  in 0 < 𝑥 < 𝐿                                       (36) 

Eq.(36) is the reexpression of the initial temperature condition F(x) 

defined in the interval  0 < 𝑥 < 𝐿by eigenfunctions 𝑋(𝛽, 𝑥)  of the 

eigenvalue problem. Assume that the above formulation is 

permissible and cn coefficients in Eq.(36) can be obtained by 

operating both side of the equations by the integral operator   

∫ 𝑋(𝛽n,𝑥)
𝐿

0
𝑑𝑥and taking advantage of the orthogonality property 

of the eigenfunctions, one can obtain the following equation 

 𝑐𝑛 =
1

𝑁(𝛽𝑛)
∫ 𝑋(𝛽𝑛 , 𝑥)𝐹(𝑥)𝑑𝑥

𝐿

0
                                                      (37) 

And the norm  𝑁(𝛽𝑛)expressed in Eq.(34) is given by  
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𝑁(𝛽𝑛) = ∫ 𝑋2(𝛽𝑛 , 𝑥) ⋅
𝐿

0
𝑑𝑥                                                            (38) 

Integration of Eq.(37) into Eq.(35) yields the temperature 

distribution in a slab in the final form of  

𝑇(𝑥, 𝑡) = ∑ 𝑒−𝛼𝛽𝑛
2𝑡∞

𝑛=1
𝑋(𝛽𝑛,𝑥)

𝑁(𝛽𝑛)
∫ 𝑋(𝛽𝑛 , 𝑥′)𝐹(𝑥′)𝑑𝑥′

𝐿

0
                     (39) 

In the above equation, temperature diffusion in a slab is modeled 

utilizing eigenfunction, normalized integral function, and time-

variable function. Based on the boundary conditions 

mathematically described in Eq.(31) to Eq.(33), the analytical 

solution of the eigenfunctions 𝑋(𝛽𝑛 , 𝑥) for the eigenvalue problem 

is given by 

𝑋(𝛽𝑛 , 𝑥) = 𝛽𝑛cos(𝛽𝑛𝑥) + 𝐻1sin(𝛽𝑛𝑥)                                     (40) 

The eigenvalues 𝛽𝑛 can be acquired by solving the roots of the 

following transcendental equation 

tan(𝛽𝑛𝐿) =
𝛽𝑛(𝐻1+𝐻2)

𝛽𝑛
2−𝐻1𝐻2

                                                                     (41) 

And the normalization integral 𝑁(𝛽𝑛) for the related problem is  

𝑁(𝛽𝑛) =
1

2
[(𝛽𝑛

2 + 𝐻1
2) (𝐿 +

𝐻2

𝛽𝑛
2+𝐻2

2) + 𝐻1]                                    (42) 

Where  

𝐻1 =
ℎ1

𝑘1
 and 𝐻2 =

ℎ2

𝑘2
                                                                     (43) 

One can easily conclude from the above-defined equations that 

once the eigenvalues 𝛽𝑛 are calculated from its associated 

transcendental equation, eigenfunctions 𝑋(𝛽𝑛 , 𝑥)and the 

normalization integral 𝑁(𝛽𝑛)will become known quantities. 

Thereby, temperature distribution 𝑇(𝑥, 𝑡) across the heat transfer 

medium can be obtained by using Eq.(39). However, problems 

may occur in obtaining precise solutions of the transcendental 

equation, which requires the application of the suitable algorithmic 

procedure. Different solution strategies in the literature can be 

found for solving Eq.(41) including graphical methods and 

different types of root-finding algorithms. Albeit, each different 

method has intrinsic drawbacks, complicating to obtain the 

accurate solution of the problem. Graphical methods can be 

utilized to locate the roots of the transcendental equations, 

however, it is not guaranteed to obtain the accurate position of the 

each root. Accurate values of the roots of transcendental equations 

can be alternatively determined by using derivative-based 

optimization methods such as Newton Raphson algorithm, root-

finding methods such as the Bisection algorithm, Secant methods, 

etc. However, these mentioned methods needs the correct region 

where the each root resides. There are two option to overcome this 

issue. The first option is to utilize graphical methods to locate the 

region of the roots.  The second option is to make reasonable initial 

estimates and then utilize an iterative method to find the roots. The 

second option may not be a preferable idea because it is not always 

possible to make good initial guesses. Corresponding eigenvalues 

of the each root can be found by an optimization technique to 

overcome the difficulties in determining the accurate values of the 

roots. For example, Eq.(41) can be reorganized as an optimization 

problem, 

 𝑓(𝛽𝑛) = tan(𝛽𝑛𝐿) −
𝛽𝑛(𝐻1+𝐻2)

𝛽𝑛
2−𝐻1𝐻2

                                                    (44)    

Root Mean Sqaure Error (RMSE) metric is used to formulate the 

objective function of the optimization problem, 

argmin 𝑓𝑅𝑀𝑆𝐸(𝛽𝑛) = √
1

𝑁
∑ 𝑓(𝛽𝑛)2𝑁

𝑛=1                                          (45) 

Where N is the number of transcendental roots (eigenvalues) to be 

applied for solving Eq.(39). 

 

4.1 Case study 

Consider a slab 0 ≤ 𝑥 ≤ 𝐿 whose initial temperature is 𝐹(𝑥) = 𝑇0 

constant, as simply visualized in Figure 3. Heat is dissipated into 

the ambient at zero temperature from two boundary surfaces for 

times 𝑡 > 0 . With known thermal conductivities (k1 and k2)  and 

convective heat transfer coefficients (h1 and h2) of each boundary,  

mathematical modeling of the problem can be formulated by the 

equations from Eq.(26) to Eq.(28). By solving these set of 

equations, temperature distribution T(x,t) in the heat transfer 

medium can be obtained by the following expression, which is the 

rearranged form of Eq.(39) by incorporating Eq.(40) and Eq.(42)  

𝑇(𝑥, 𝑡) = ∑ 𝑒−𝛼𝛽𝑛
2𝑡∞

𝑛=1

𝑇𝑜(𝛽𝑛cos(𝛽𝑛𝑥)+𝐻1sin(𝛽𝑛𝑥))

2[(𝛽𝑛
2+𝐻1

2)(𝐿+
𝐻2

𝛽𝑛
2 +𝐻2

2)+𝐻1]

∫ (𝛽𝑛cos(𝛽𝑛𝑥′) + 𝐻1sin(𝛽𝑛𝑥′))𝑑𝑥′
𝐿

0

                                             (46) 

Where  𝛽𝑛 eigenvalues positive roots of  Eq.(44). Assume that 

length of the slab (L) is 1.0 m; thermal conductivities of each 

boundary are respectively k1=13.0 W/m.K and k2=50.0 W/m.K; 

convective heat transfer coefficients of boundary surfaces are 

respectively h1=100.0 W/m2K and h2=200 W/m2K; thermal 

diffusivity of the slab is α=1.1E-5 m2/s, and initial slab temperature 

is taken as T0=25 ֯C. Figure 4 illustrates the sequence of normalized 

values of 𝛽𝑛eigenvalues obtained by different algorithms. It should 

be noted that several eigenvalues (n) stand for the dimensionality 

of the optimization problem, which is considered to be n=30 for 

this case. Eigenvalues obtained by the compared algorithms are 

normalized with the exact analytical solutions found by the 

Bisection root-finding method. As it is seen, respective 

eigenvalues retained by the EAGLE method fully agree with the 

exact eigenvalues while other solutions found by the compared 

algorithms are far away from the exact solutions. Deviations in the 

early eigenvalues are quite remarkable, this is because of the 

extensive nonlinearities that occurred in the defined search 

regions, which have not been well coped with the contestant 

algorithms.  Figure 5 shows the temperature distribution in the slab 

obtained by the Bisection root-finding method and compares the 

results with those found by the proposed EAGLE along with 

optimization algorithms of SH, GWO, SEAGULL, SINECOS, 

WHALE, HARRIS, PSO, and BFLY. It is observed that 

temperature distribution in the slab retained by solving Eq.(44) 

through the Bisection-root finding method for different elapsed 

times is almost identical to those found by the EAGLE algorithm. 

Other compared algorithms fail to predict accurate one-

dimensional temperature distribution due to their incapabilities in 

finding correct values of 𝛽𝑛eigenvalues.  Table 7 reports the 

statistical results of the objective function defined in Eq.(45) 

obtained for the compared algorithms. The superiority of the 

EAGLE is so evident that even the worst solution acquired by this 

method is much better than the best solution of the second-best 

performing algorithm, which is PSO for this case. Figure 6 shows 

the convergence plots of the objective functions for different 

algorithms. After 3000 iterations, the solution is converged to its 

optimum point for the EAGLE algorithm. 
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Fig. 3.  Schematic view of a heat transfer medium 

 

 

 

 

 

 

 

 

 

 

 

                                                       Fig. 4. Numerical values of normalized β parameters for the case study    

 

 

Fig. 5.  Temperature distribution along the slab found by different algorithms for the case study 
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Fig. 6.  Convergence plots for the case study  

Table 7.   Statistical results for the case study  

 

 

 

 

 

 

 

 

5 Conclusion 

This study suggests an alternative approach for solving one-

dimensional transient heat conduction problems. Rather than 

applying conventional root-finding methods to obtain the 

tendencies of temperature distribution in a heat transfer medium, 

an iterative stochastic optimization framework based on Eagle 

Strategy is proposed.  Eagle strategy is the combination of crude 

global search and intensive local search mechanisms. In this Eagle 

Strategy concept, ameliorated manipulation equations of Barnacles 

Mating Optimizers are utilized as a global search mechanism while 

the ensemble of two Differential Evolution variants is considered 

as a local exploiter. Favorable merits of  Levy flights and chaotic 

Lozi map are meticulously implemented on the related phases to 

enhance the total probing efficiency of the optimization algorithm. 

The created synergy between these complementary search 

mechanisms constructs the Eagle Strategy framework. The 

proposed method has been applied on forty benchmark problems 

composed of unimodal and multimodal test functions to verify its 

effectiveness on multidimensional benchmark problems. 

Comparative results between the literature optimizers reveal that 

the Eagle Strategy framework can maintain reasonable accuracy 

for test problems and outperforms the compared algorithms in most 

of the cases in terms of solution efficacy.  Finally, a case study 

concerning transient heat conduction have been solved. One can 

conclude from this research study that the Eagle strategy 

optimization framework can be a promising alternative to the class 

of hybrid metaheuristic algorithms. Another remarkable 

conclusive outcome of this research study is that tedious 

drawbacks of root finding methods can be easily eliminated by 

converting the related equation into an optimization problem. 
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