
International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(3), 191–196 | 191

Reservoir Sampling Based Streaming Method for Large Scale

Collaborative Filtering

Tevfik Aytekin*1

Accepted : 04/08/2018 Published: 29/09/2018 DOI: 10.1039/b000000x

Abstract: Collaborative filtering algorithms work on user feedback data (such as purchases, clicks, or ratings) in order to build models of

users and items. User feedback data in real life e-commerce sites can be very large which incurs high costs on maintenance and model

building. Parallelization of computation might help but it results in additional costs for extra computing power and maintenance problems

of very large datasets still persist. Sampling at this point can be an effective approach for reducing the amount of data. In this work we

propose a novel sampling technique for collaborative filtering which can be used to reduce the amount of data considerably. Experimental

results on three real life datasets show that the proposed method leads to a significant reduction in the amount of data with little harm to

the accuracy of the models. The method works in a streaming fashion, which makes it suitable for being used in real time at large-scale e-

commerce applications where there is a large flow of continuous user feedback.

Keywords: Collaborative filtering, reservoir sampling, large-scale recommender systems.

1. Introduction

Development of online markets has dramatically increased the

number of products available for customers. This makes it difficult

for people to search and find the products they are interested in.

Recommender systems help people to find items they are looking

for by analyzing their past interactions (such as purchases, clicks,

and ratings). There are basically two main approaches for building

recommender systems: content-based and collaborative filtering.

In content-based systems the content of the items that users like in

the past are analyzed and items with similar content are

recommended to the users [1, 2]. In order to build a content-based

recommender system item content information (which is generally

in unstructured form) should be structured in order to be given as

input to machine learning algorithms. For example if it is a movie

recommender system, plot summaries need to be represented in

vector space model and other content information about movies

(such as genre, stars, director, etc.) should be represented in a

suitable form. In collaborative filtering, instead of content, the

interactions of users with items are used. There are two basic

approaches in collaborative filtering: neighborhood-based (user or

item based) and matrix factorization. In user-based collaborative

filtering [3, 4] a user is recommended items, which are liked by

similar users where similar users are defined as those users who

have similar purchase histories. Whereas in item-based

collaborative filtering [4, 5] users are recommended items which

are similar to the items in their purchase history. Again, similarity

between items is calculated by analyzing the purchase history of

items. Since user/item based recommender algorithms need to

calculate the similarities between all pairs of users/items the time

for model building takes quadratic time with respect to users/items.

This creates scalability problems for neighborhood-based

algorithms when the number of users/items is large.

In matrix factorization approaches [6, 7, 8, 9] which is another

collaborative filtering method, latent representations of users and

items are learned by making a low-rank approximation of user/item

matrix. In order to build a matrix factorization model, first a cost

function is designed and then this cost function is optimized,

generally, with gradient descent. Matrix factorization approaches

are considered to be the state-of-the-art recommender algorithms

since their accuracy is generally superior to neighborhood-based

approaches. There are also hybrids methods which try to combine

the strength of various recommendation approaches [10, 11]. In the

early stages of recommender systems research building an accurate

model is the main objective. However, later it is recognized that

there are other dimensions of recommender systems which need to

be considered beyond accuracy. Context-aware recommendation

[12], diversity [13], privacy [14], and robustness [15] can be given

as examples of these other dimensions recent research has focused

on. The work in recommender systems has produced very

successful methods and today recommender systems are used by

almost all e-commerce sites and large companies.

The data used to model user preferences in recommender systems

can be very large. For example, in web scale an e-commerce

system’s users might leave millions of clicks or purchase

information every minute. It becomes increasingly difficult to store

and process this huge amount of data. Even transferring such data

from one place to another can take a very long time. To deal with

this problem researchers have developed a variety of techniques

which can be grouped into two main categories. In the first

category there are parallel processing techniques. Basically, these

techniques distribute the computation to a cluster of machines. To

this end various parallel or distributed recommendation algorithms

are proposed [16, 17, 18]. Also in several open source projects

(such as Apache Spark [19] and Apache Mahout [20]) distributed

implementations of several collaborative filtering algorithms (e.g.,

alternating least squares, item-based collaborative filtering) can be

found. The other direction of research for dealing with large

amounts of data is to develop approximate solutions. These

methods compromise accuracy in order to improve processing

time. Here we can see recommender algorithms based on various

1 Computer Eng., Bahçeşehir University, İstanbul – 34353 TURKEY

* Corresponding Author Email: tevfik.aytekin@eng.bau.edu.tr

International Journal of

Intelligent Systems and Applications in Engineering

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(3), 191–196 | 192

clustering approaches [21, 22, 23] where similar users or items are

clustered together in order to reduce the search time for similar

users or items. To deal with large-scale data both approaches

(namely parallel processing and approximate methods) can also be

applied at the same time in a hybrid fashion.

Even though these techniques work well to a certain extent, they

try to minimize the time for building recommender models.

However, with the increasing amounts of data, even storing or

transferring large amounts of data become a big burden. This

naturally leads to another idea: instead of using all the available

data, can't we sample a representative portion of it and ignore the

rest. For sampling to work, we need to sample data intelligently in

order to keep as much information as we can. Also, this sampling

should assume a streaming environment. Given the large-scale

data it is infeasible to first store all the data and then apply

sampling on it. What should be done instead is to sample data as it

arrives in a streaming fashion.

In this paper we propose a sampling mechanism tailored for

recommender systems. In particular, the sampling method is

designed for item-based collaborative filtering (IBCF) which is a

well-known and widely used algorithm in the industry [24]. The

proposed sampling method works in a streaming fashion which is

important for utilizing it in a real life setting where data comes as

a stream. We apply the method on three real life datasets and show

that even if a small portion of the data is sampled using the

proposed method, the sampled data can still be used to build

models with little accuracy loss.

The paper is structured as follows: In Section 2, we will describe

the proposed method in detail, in Section 3, we will give the

experimental results and evaluate the success of the proposed

method, and in Section 4, we will conclude the paper.

2. Proposed Approach

Let U be the set of users and I be the set of items. We assume that

the data arrives as <u, i> pairs where u ϵ U and i ϵ I. An <u, i> pair

means user u has clicked or purchased item i. This type of feedback

is known as implicit feedback in the literature to distinguish it from

explicit feedback where users provide ratings for items. Since,

compared to explicit feedback, implicit feedback is much more

common in real life we assume this type of feedback in this work.

One simple sampling strategy, called Bernoulli sampling [25], for

a stream of elements is to sample every ith element. There are two

problems with this sampling strategy. First, since the size of the

stream is not known (or unlimited) the size of the resulting sample

cannot be limited to a fixed size. This might be a problem when

the resources (such as memory) are limited and a certain maximum

sample size must be guaranteed. The second difficulty is that this

sampling strategy will sample the same ratio of preferences from

each user and item. This strategy leads to a loss of information

from users/items that have a small amount of feedback, i.e.,

users/items with small number of purchases or clicks. A better

strategy should sample more from users/items with lots of

feedback and use most (if not all) of the information from

users/items with little feedback.

One well-known sampling method which guarantees a fixed

sample size is called reservoir sampling [26]. Reservoir sampling

produces a random sample of k elements from a stream of size n

where the size of the stream S is unknown and the probability of

an element to be in the sample is k/n. Algorithm 1 describes a

reservoir sampling method for a stream of <u, i> pairs.

Algorithm 1. Simple Reservoir Sampling (SIMR)
Input: S: A stream of preferences, k: reservoir size
Output: R: reservoir of preferences
(1) R ← [];
(2) for p ←1 to n
(3) if p ≤ k
(4) R[p] ← S[p];
(5) else
(6) j ← random(1, p);
(7) if (j ≤ k)
(8) R[j] ← S[p];

Reservoir sampling described in Algorithm 1 works as follows:

initially reservoir R is set to be empty. The first k preferences in

the stream are directly put to R without sampling. For each pth

preference where p > k, first a random number j between 1 and p

is generated, if j is less than or equal to k then the pth preference is

replaced with the jth preference in the reservoir else the pth

preference is discarded. This method can be applied to a stream of

incoming preferences to select randomly k preferences where the

probability of selecting each preference is k/n. The proof of this

result is as follows: Consider pth preference, where p > k, the

probability of its being placed in R is k/p. Now consider the next,

(p+1)th preference. The probability of the pth preference to be kept

in R is (k/p)×p/(p+1), the second term is the probability of not

replacing the pth preference with the (p+1)th preference. In general

then the probability of the pth (p > k) preference to be selected is:

n

k

n

n

n

n

p

p

p

k

1

1

2

1

On the other hand if p ≤ k it will be directly placed in R. The

probability of it being in R after the (k+1)th preference is k/(k+1).

Again in general the probability of the pth, where p ≤ k, preference

to be selected is:

n

k

n

n

n

n

k

k

k

k

1

1

2

2

1

1

After selecting k preferences, a model can be build using the

preferred collaborative filtering algorithm. We will use SIMR as a

baseline for comparing our proposed sampling technique.

Even though simple reservoir sampling provides a fixed sample

size, the second difficulty of Bernoulli sampling still persists. To

alleviate this difficulty we propose a stratified reservoir sampling

where for each user a separate reservoir is maintained. This method

is described in Algorithm 2.

Algorithm 2. Stratified Reservoir Sampling (STR)
Input: S: A stream of preferences, k: reservoir size
Output: RU: Reservoir of preferences for each user
(1) foreach user u in U
(2) Ru ← [];
(3) for p ←1 to n
(4) u ← S[p].u;
(5) Ru[j] ← S[p];

(6)

Uu

uU RR

where S[p].u refers to the user u of the pth preference in the stream.

Initially all the reservoirs are initialized to be empty. Then for each

incoming preference p = <u, i>, the preference is placed in the

reservoir associated with user u using the simple reservoir

algorithm described in Algorithm 1. In the final step all the

reservoirs are merged.

In this method for every user a separate reservoir of size k is

maintained. In real life environments while some users have little

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(3), 191–196 | 193

feedback some users provide a lot of feedback. By maintaining a

separate reservoir for each user we aim to keep the preferences of

users who have little feedback and prevent loosing this scarce and

valuable information. In the next section we will experimentally

show that this idea leads to improved results.

3. Experimental Results

In this section we will give the performance results of SIMR and

STR on three real life datasets. The basic statistics of the datasets

are given in Table 1. Because of memory limitations we reduced

the original Amazon-books dataset by removing items and users

which have less than 50 preferences.

Table 1. Basic statistics of the datasets.

Name
of
users

of
items

of
preferences

Sparsity

Movielens1 6040 3900 1000209 0.042

Amazon-books2 27529 8982 811962 0.0033

Jester3 59132 140 1761438 0.21

The evaluation methodology is as follows: we randomly put 10%

of the preferences in the test set. For decreasing reservoir sizes (in

STR we use the same reservoir size for each user) we sample

preferences from the training set using one of the two sampling

strategies and build a model with IBCF using the sampled

preferences. Then we make a top-N recommendation to each user

in the test set and calculate Mean Average Precision (MAP) and

Normalized Discounted Cumulative Gain (NDCG). 10-fold cross

validation is used for getting the final results. MAP is a widely used

metric for evaluating recommender systems. MAP at N is defined

as in (1):

tUu

N

iut

iRiP
RU

NMAP
1

)()(
11

@ (1)

where P(i) is the precision at the ith position of the top-N list for

user u, Ut is the set of users in the test set, R(i) is a binary indicator

which returns 1 if the ith item is relevant or 0 otherwise, and |Ru| is

the number of items of user u in the test set.

NDCG is also a widely used performance metric used in

recommender systems. NDCG at N is defined in (2):

tUu

N

it i

iR

IDCGU
NNDCG

1)1log(

)(11
@ (2)

where Ut is the set of users in the test set, R(i) is a binary indicator

which returns 1 if the ith item is relevant or 0 otherwise, and IDCG

(ideal discounted cumulative gain) is the maximum possible value

DCG can get.

Fig. 1, Fig. 2, and Fig. 3 show the performance of the SIMR and

STR methods on three datasets. These figures show MAP vs. the

size of the sampled dataset used in the experiments. In all the

figures STR gives better results than SIMR. These results show

that the proposed method, STR, is effective in reducing the amount

of data needed to make good recommendations. Now let us look at

1https://grouplens.org/datasets/movielens/
2http://jmcauley.ucsd.edu/data/amazon/

these figures in somewhat more detail. As seen in Fig. 1, it is

possible to reduce the Movielens dataset with STR down to 10%

of the original size with very little loss of accuracy. Fig. 3 shows

that for the Amazon dataset down to 25% reduction is achieved

with a small accuracy loss. Experimental results on Jester dataset,

shown in Fig. 3, show that it is possible to reduce the dataset down

to 6% of the original size without no decrease in accuracy. If we

look at the sparsity values of the datasets given in Table 1 we can

see that there is a correlation between the sparsity values and the

amount of reduction (without hurting accuracy much) one can get.

As the datasets get more denser there is a high potential for

reducing the datasets. This is expected since a dense dataset means

that users have lots of feedback and when there are lots of feedback

we can ignore some of them and still get good results.

Fig. 1. MAP vs. reservoir size results for Movielens dataset.

Fig. 2. MAP vs. reservoir size results for Amazon-books dataset.

3http://goldberg.berkeley.edu/jester-data/

https://grouplens.org/datasets/movielens/
http://jmcauley.ucsd.edu/data/amazon/
http://goldberg.berkeley.edu/jester-data/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(3), 191–196 | 194

Fig. 3. MAP vs. reservoir size results for Jester dataset.

Fig. 4, Fig. 5, and Fig 6 show the performance results using the

NDCG metric. NDGC results are in harmony with the MAP results

which confirm that STR method leads to important improvements

compared to SIMR.

Another interesting result which can be observed in the given

figures is that for all datasets STR method leads to an initial

improvement in the accuracy. The reason for this behavior might

be the fact that STR method begins sampling initially from the

users who have the highest number of preferences. Since initial

reservoir sizes are large, all preferences of users who does not have

many preferences are selected. Assuming that users who have

many preferences tend to be more careless then users who have a

low number of preferences, the initial steps in sampling increases

the weight of the preferences of the letter type of users in the

similarity calculations. Detailed experiments are required to fully

explain this positive effect of STR. Since this is not the main

contribution of this study we leave it as a future work.

Fig. 4. NDGC vs. reservoir size results for Movielens dataset.

Fig. 5. MAP vs. reservoir size results for Amazon-books dataset.

Fig. 6. MAP vs. reservoir size results for Jester dataset.

Recently aggregate diversity has become another dimension to

evaluate the performance of a recommender system [26, 27].

Aggregate diversity refers to the number of unique items

recommended across all recommendation lists which is defined in

(2):

tUu

uLdiversityAggregate

)(
 (2)

where L(u) is the top-N list of user u. Aggregate diversity is

important because it is known that recommender algorithms tends

to recommend popular items and do not recommend some items to

anybody which is an undesired property from the business

perspective. One drawback of the metric given in (2) is that it does

not measure the distribution of recommended items. So, other

metrics for measuring the distribution of recommended items are

also used [28]. One such metric is given in (3):

n

i total

irec

n

in
diversityGini

1

)(

1

1
2 (3)

where rec(i) refers to the number of users that are recommended

item i ∈ I and total refers to the total number of recommendations

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(3), 191–196 | 195

that are made to all users. For calculating Gini-diversity items are

sorted in ascending order of rec(i). The value of this metric gets

larger, in contrast to the traditional Gini metric, as the distribution

becomes more uniform. We use this form of Gini since for all the

metrics used in this work a larger value means a better result.

Even though in this work our focus is not on aggregate diversity, it

is important to see the effect of our method on aggregate diversity.

Table 2 and Table 3 show the diversity values for SIMR and STR

on the three datasets.

Table 2. Aggregate diversity.

Movielens Amazon Books Jester

SIMR STR SIMR STR SIMR STR

1205 1197 7335 7314 128 128

1196 1170 7291 7369 127 127

1168 1175 7298 7310 127 126

1146 1172 7332 7347 128 127

1105 1140 7361 7356 127 126

1051 1116 7463 7375 126 126

1048 1090 7487 7323 128 127

955 1032 7659 7314 127 128

967 1003 7682 7344 128 127

966 1001 7616 7356 127 127

Table 3. Gini diversity.

Movielens Amazon Books Jester

SIMR STR SIMR STR SIMR STR

0,078 0,075 0,287 0,282 0,273 0,274

0,077 0,074 0,282 0,282 0,274 0,273

0,076 0,072 0,280 0,280 0,273 0,273

0,075 0,070 0,274 0,279 0,273 0,272

0,072 0,068 0,273 0,280 0,274 0,272

0,068 0,066 0,274 0,283 0,273 0,270

0,063 0,063 0,272 0,282 0,275 0,270

0,057 0,060 0,280 0,279 0,289 0,270

0,052 0,058 0,287 0,286 0,289 0,269

0.050 0.056 0.289 0.287 0.289 0.270

Rows in the tables correspond to decreasing reservoir sizes used in

the experiments for generating the previous figures. As can be seen

from the tables, for Amazon and Jester datasets there is no decrease

in the diversity values. That is, after sampling the recommendation

algorithm can still produce the same number and distribution of

items in the recommendation lists. For the Movielens dataset there

is a minor decrease in the diversity values. However, this is a result

of the user item ratio of the Movielens dataset. As can be seen from

Table 1, the number of users in Movielens dataset is close to the

number of items. This makes it difficult to increase the number of

uniquely recommended items. However, in real life settings the

number of users is generally much more than the number of items,

so even this minor decrease in diversity for the Movilens dataset

will not likely occur in a real setting.

We also want to add that the proposed method can induce

important savings not only for batch IBCF but also for incremental

IBCF [29]. In incremental IBCF approaches as a new preference

<u, i> arrives the similarities between item i and all other items

need to be recomputed which is a very costly operation especially

when the number of items is large. Sampling also helps to reduce

this cost since re-computation of similarities will be made only for

the sampled preferences instead of the entire set of preferences.

4. Conclusion

At web scale the amount of user feedback is huge and it becomes

increasingly difficult to maintain and process this data. In this work

we propose a novel sampling method in order to reduce the amount

of data a recommender system needs. Compared to a simple

sampling approach, we show that an important amount of

reduction is possible without giving a significant harm to the

accuracy of the recommender algorithm. This shows that it is

possible to increase the efficiency of sampling by developing more

intelligent and sophisticated sampling techniques. We are planning

to investigate more effective sampling strategies tailored for IBCF.

We also plan to work on developing new sampling strategies for

matrix factorization methods.

Our method works in a streaming fashion and this makes it suitable

for being used in real-time for real applications which receive large

amounts of user data. We believe that sampling-based methods will

be an important and necessary part of dealing with big data and

there is a need for more research in developing new sampling-

based strategies.

References

[1] M. J. Pazzani and D. Billsus, “Content-based

recommendation systems,” The adaptive web. Springer,

Berlin, Heidelberg, pp. 325-341, 2007.

[2] M. de Gemmis, M. Pasquale Lops, C. Musto, F. Narducci,

and G. Semeraro “Semantics-aware content-based

recommender systems,” Recommender Systems Handbook.

Springer, Boston, MA, pp. 119-159, 2015

[3] Z. D. Zhao and M. S. Shang. "User-based collaborative-

filtering recommendation algorithms on hadoop."

In Knowledge Discovery and Data Mining, 2010. WKDD'10.

Third International Conference on, pp. 478-481. IEEE,

2010.

[4] C. Desrosiers and G. Karypis, “A comprehensive survey of

neighborhood-based recommendation

methods,” Recommender systems handbook. Springer,

Boston, MA, pp. 107-144, 2011.

[5] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. "Item-based

collaborative filtering recommendation algorithms."

In Proceedings of the 10th international conference on

World Wide Web, pp. 285-295. ACM, 2001.

[6] Y. Koren and R. Bell, “Advances in collaborative

filtering,” Recommender systems handbook. Springer,

Boston, MA, pp. 77-118, 2015.

[7] W. S. Chin, Y. Zhuang, Y. C. Juan, and C. J. Lin, “A fast

parallel stochastic gradient method for matrix factorization

in shared memory systems,” ACM Transactions on

Intelligent Systems and Technology (TIST) 6(1):2, 2015.

[8] L. Baltrunas, B. Ludwig, and F. Ricci. “Matrix factorization

techniques for context aware recommendation.”

In Proceedings of the fifth ACM conference on

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(3), 191–196 | 196

Recommender systems, pp. 301-304. ACM, 2011.

[9] J. Kawale, H. H. Bui, B. Kveton, L. Tran-Thanh, and S.

Chawla. “Efficient Thompson Sampling for Online Matrix-

Factorization Recommendation.” In Advances in neural

information processing systems, pp. 1297-1305, 2015.

[10] R. Burke. “Hybrid recommender systems: Survey and

experiments.” User modeling and user-adapted

interaction 12,(4), pp. 331-370, 2002.

[11] J. Wang, A. P. De Vries, and M. JT Reinders. “Unifying

user-based and item-based collaborative filtering approaches

by similarity fusion.” In Proceedings of the 29th annual

international ACM SIGIR conference on Research and

development in information retrieval, pp. 501-508. ACM,

2006.

[12] G. Adomavicius and A. Tuzhilin. “Context-aware

recommender systems.” In Recommender systems

handbook, pp. 191-226. Springer, Boston, MA, 2015.

[13] P. Castells, N. J. Hurley, and S. Vargas. “Novelty and

diversity in recommender systems.” In Recommender

Systems Handbook, pp. 881-918. Springer, Boston, MA,

2015.

[14] A. Friedman, S. Berkovsky, and M. A. Kaafar. “A

differential privacy framework for matrix factorization

recommender systems.” User Modeling and User-Adapted

Interaction 26(5), pp. 425-458, 2016.

[15] H. Yi and F. Zhang. “Robust recommendation method based on

suspicious users measurement and multidimensional

trust.” Journal of Intelligent Information Systems 46(2), pp.

349-367, 2016.

[16] H. F. Yu, C. J. Hsieh, S. Si, and I. S. Dhillon, “Parallel

matrix factorization for recommender systems,” Knowledge

and Information Systems, 41(3), pp. 793-819, 2014.

[17] H. Li, K. Li, A. Jiyao, and K. Li., “MSGD: A Novel Matrix

Factorization Approach for Large-scale Collaborative

Filtering Recommender Systems on GPUs,” IEEE

Transactions on Parallel and Distributed Systems, 2017.

[18] J. Jiang, J. Lu, G. Zhang, and G. Long. “Scaling-up item-

based collaborative filtering recommendation algorithm

based on hadoop.” In Services (SERVICES), 2011 IEEE

World Congress on, pp. 490-497. IEEE, 2011.

[19] Apache Spark. https://spark.apache.org/

[20] Apache Mahout. https://mahout.apache.org/

[21] C. L. Liao and S. J. Lee, “A clustering based approach to

improving the efficiency of collaborative filtering

recommendation,” Electronic Commerce Research and

Applications, 18, pp. 1-9, 2016.

[22] S. K. L. Al Mamunur Rashid, G. Karypis, and J. Riedl,

“ClustKNN: a highly scalable hybrid model-& memory-

based CF algorithm,” Proceeding of WebKDD, 2006.

[23] S. Gong. “A collaborative filtering recommendation

algorithm based on user clustering and item clustering.”

JSW5, no. 7, pp. 745-752, 2010.

[24] B. Smith and G. Linden, “Two decades of recommender

systems at Amazon.com,” IEEE Internet Computing, 21(3),

pp. 12-18, 2017.

[25] P. J. Haas, “Data-stream sampling: basic techniques and

results,” In Data Stream Management, pp. 13-44, Springer,

Berlin, Heidelberg, 2016.

[26] J. S. Vitter, “Random sampling with a reservoir,” ACM

Transactions on Mathematical Software (TOMS), 11(1), pp.

37-57, 1985.

[27] G. Adomavicius and Y. Kwon, “Optimization-based

approaches for maximizing aggregate recommendation

diversity,” INFORMS Journal on Computing, 26(2), pp. 351-

369, 2015.

[28] G, Adomavicius and Y. Kwon, “Improving aggregate

recommendation diversity using ranking-based

techniques,” IEEE Transactions on Knowledge and Data

Engineering, 24(5), pp. 896-911, 2012.

[29] C. Miranda and A. M. Jorge, “Item-based and user-based

incremental collaborative filtering for web

recommendations,” In Portuguese Conference on Artificial

Intelligence, pp. 673-684, Springer, Berlin, Heidelberg,

2009.

https://spark.apache.org/
https://mahout.apache.org/

