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Abstract: Many studies have been conducted on the prediction of fiber reinforced concrete strength; however, there are very rare data 

concerning the prediction of bending strength values of self-leveling glass fiber reinforced concrete. And there is no study for prediction 

of bending strength of self-leveling glass fiber reinforced concrete from mixture ingredients and slump values. In the present study, 

relationships between the bending strength and the mixture proportions are explored. An artificial neural network model (ANN) is designed 

with an extensive experimental data including 395 four-point bending tests, and input parameters as white cement amount, maximum 

aggregate size, glass fiber content, water cement ratio, superplasticizer and metakaolin content and slump test results. Effect of each 

parameter on the bending strength is investigated with the developed model. An empirical and user-friendly formula was obtained with the 

generalization capabilities of the ANN. Results showed that the prediction results are in good agreement with the field data. And these 

numerical results with high efficiency can make it possible to use the neural design for real-life self-leveling glass fiber reinforced concrete 

applications. 
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1. Introduction 

Self-leveling concrete (SLC) has the capability of consolidating 

under its own weight and flowing easily. SLC has been widely 

used for placing in difficult sections due to its fluid nature. In 

addition, SLC has other advantages as reducing concrete 

placement time, increasing overall quality and profit of the 

concrete based construction works [1]. SLC is very sensitive to any 

changes in mix design and for this reason detailed quality control 

procedures are needed. The fresh mix properties of the SLC have 

a significant effect on hardened properties such as bending strength 

and durability [2]. There are many approaches for improving SLC 

fresh and hardened properties: addition of pozzolans in to the 

mixture as a cement replacement material and use of various 

superplasticizers [3]. 

The hardened SLC has very similar engineering properties 

compared to the conventional vibrated concrete [4]. However, they 

differ in concrete mix ingredients. Ultra-fine materials and high 

range of superplasticizers are in need during the mix design 

process of the SLC [5]. 

Fiber reinforced concrete (FRC) is primarily consisting of 

hydraulic cement, aggregates, and fibers [6]. FRC is widely used 

in civil engineering projects including precast concrete elements, 

bridge decks, highways and in tunnel works depending on their 

comparatively higher load bearing capacity and crack resistance 

properties [7, 8]. Many researches have been focused on the effects 

of using different types of fibers in SLC mixes [9-11]. 

The inclusion of glass fiber (GF) enhances the mechanical 

properties of the SLC such as compressive, bending, and split 

strength. GF addition also reduces the crack width and negative 

temperature effects [12, 13]. 

Data based prediction models including ANN, Multiple Linear 

Regression (MLR) are widely used in various engineering 

applications [14-17]. These models can give further information 

for a better understanding of the material properties [18]. Among 

the prediction models, ANN provides more accurate predictions 

for concrete mechanical properties [19]. 

In recent years, mechanical properties and the complex behavior 

of the concrete have been analyzed with the aid and abilities of the 

artificial intelligence-based methods [20, 21]. Prediction of 

bending strength of the SLC from the mix ingredients and fresh 

properties is a particularly complex question. And literature review 

shows that previous approaches for the prediction of SLC strength 

properties do not include sufficient and detailed investigations 

[22]. 

2. Research Significance 

Early determination of bending strength property of glass fiber 

reinforced SLC is an essential factor for any design purposes. The 

bending strength of the SLC can also give basic and exact 

information for the prediction of other mechanical properties. 

However, there exist no proved relationship for glass fiber 

reinforced self-leveling concrete (GFRSLC). For this reason, it has 

to be analyzed with experimental data and tests.  

Fresh properties of the GFRSLC directly effect the hardened state 

and the mechanical properties. Obtaining a relationship for 

evaluating bending strength values from fresh state properties and 

ingredients would be an effective achievement for improving 

GFRSLC production industry. Quasi- Newton method was utilized 

as training algortih in this experimental study, due to the fact that 

the algorithm is more suitable and reliable for cementitious product 

strength production compared to the other conventional methods 

such as regression based systems. 
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3.  MATERIALS AND METHODS 

3.1. Artificial Neural Network Development 

Various functions and optimization methods such as gaussian, 

sigmoid, back propagation and quasi-newton are widely used for 

concrete strength prediction studies [23]. Quasi- Newton method 

was used as the training algorithm within the scope of this study. 

It is based on Newton's method but does not require calculation of 

second derivatives. Instead, the Quasi-Newton method computes 

an approximation of the inverse Hessian at each iteration of the 

algorithm, by only using gradient information. This algorithm is 

generally preferred for estimating concrete properties. Training 

rate method was utilized as Brent Method. Detailed information is 

given in Table 1. Data classification of the proposed model was 

carried out as 20 % data for training, 30 % for validation and 50 % 

for testing. 

Table 1: Training algorithm 

Description Value 

Training rate method BrentMethod 

Training rate tolerance 0.0005 

Min. parameters increment form 1e-009 

Min. loss increase 1e-012 

Gradient norm goal 0.001 

Max. iterations number 1000 

 

The ANN structure was designed with six input variables for 

estimating the bending strength values as shown in Figure 1. In 

this study, six input parameters: maximum aggregate size, glass 

fiber content, water to cement ratio, superplasticizer and 

metakaolin content and slump values were selected based on 

physical considerations and the experimental test results. Other 

factors (air content, curing conditions, etc.) that may affect the 

bending strength are ignored due to the rare information in the 

literature.  

 

Figure 1: Proposed ANN structure 

The order selection algorithm chosen for this application is the 

incremental order. This method starts with the minimum order and 

adds a given number of perceptron in each iteration. The order 

selection algorithm details are presented in Table 2. All prediction 

studies have been conducted with the aid of Neural Designer 

software. 

 

 

 

 

 

Table 2: Order selection algorithm 

Description Value 

Minimum order 1 

Maximum order 10 

Trials number 4 

Tolerance 0.01 

Selection loss goal 0 

Maximum selection failures 5 

Maximum iterations number 1000 

A normalization procedure was applied to the input signals for 

eliminating bias and improving the prediction performance. The 

following formula where xn, xmin and xmax represent the normalized 

data set, minimum and maximum values, respectively was used 

during the normalization process (1): 

  

                 (1) 

Proposed model performance was evaluated with Sum Squared 

Error (SSE), Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), Normalized Squared Error (NSE) and Minkowski 

Error (ME) operators. Training, selection and testing errors are 

given in Table 3. 

Table 3: Proposed network errors 

 Training Selection Testing 

Sum squared error 3.1711 1.4408 1.2966 

Mean squared error 0.0133 0.0184 0.0166 

Root mean squared 

error 
0.1156 0.1359 0.1289 

Normalized squared 

error 
0.1361 0.2375 0.1945 

Minkowski error 7.2715 3.1868 2.6220 

 

3.2. Field studies and data collection 

Fresh and hardened properties of the GFRSLC have been collected 

from field studies to carry out a precise assessment of the bending 

strength output. 

3.2.1. Materials 

Cement type CEM I 52.5 R in accordance with EN 197-1 [24] was 

utilized as the binder material in this study. Chemical composition 

and physical properties of the cement are presented in Table 4. 

Table 4: Properties of the cement 

Chemical composition (%) 
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Mechanical and physical properties 

Specific Weight (t/m3) 3.06 

Specific surface (cm2/g) 4600 

Whiteness (%) 85.5 

0.045 Sieve residue (%) 1 

0.090 Sieve residue (%) 0.1 

Compressive Strength at 2 days (MPa) 37 

Compressive Strength at 7 days (MPa) 50 

Compressive Strength at 28 days (MPa) 60 

 

Silica sand and metakaolin were used as the filler. The properties 

of these materials are given in Table 5 and Table 6, respectively. 

min
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Table 5: Silica sand properties 

Silica sand  

Mean Grain Size (μm) 140-165 

Clay content (%) 06.-0.8 

Specific weight 2.68 

AFS value (%) 84.6 

An acrylic based superplasticizer was used as chemical admixtures 

in all GFRSLC mixes. Drinking water was added into the all mixes 

in this study. 

Table 6: Physical properties and chemical composition of metakaolin 

Chemical composition (%)  
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Physical properties 

Specific Weight (t/m3) 2.54 

Specific surface (cm2/g) 8 –14 m2/g 

Brightness 80-81  

Color Gray 

Physical form powder 

Alkali resistant glass fibers were preferred within the scope of this 

study. Physical and mechanical properties of the glass fiber are 

given in Table 7. 

Table 7: Physical and mechanical properties of glass fibers 

Property 

Tensile strength 1,750 MPa 

Modulus of elasticity 71,500 MPa 

Fiber diameter 12 microns 

Aspect ratio 852 

Specific Weight  2.69 t/m3 

Water absorption < 0.11 % 

 

3.2.2. Preparation of the GFRSLC mixes and test procedure 

Mix designs and experimental sets are given in Table 8. Glass 

fibers were added into the mixes with the rates of 3 %, 3.25 % and 

3.5 % of wt. Cement amount was replaced by metakaolin with the 

weight of 2.5 and 5 kg. In prior to the water inclusion, cement, 

silica sand and metakaolin were mixed for 60 s. Then, 2/3 of water 

was added, and silica sand, cement and metakaolin were mixed for 

120 s. After homogenization of the mix, remaining water, glass 

fiber and super plasticizer were added and mixed for 60 s. 

Table 8: GFRSLC mixture designs 

Mixture 

materials 

Quantity  

White cement  45 - 50 kg 

Metakaolin 2.5 – 5 kg 

Silica sand 50 kg 

Glass fiber (3 %, 3.25 %, 3.5 % of wt.) 

Superplasticizer 300 – 330 g 

W/C 0.3 – 0.38 

 

Slump values were measured with the aid of a cylindrical funnel 

(height of 60 mm, inner and outer radiuses respectively, 57 mm 

and 65 mm) according to the requirements of TS EN 1170-1 

(Figure 2 and Figure 3). Specimens with the dimensions of 160 x 

40 x 40 mm were prepared for the bending tests. Bending strength 

of the GFRSLC specimens at 28 days was recorded complying the 

TS EN 1170-4, 5 standards. Four-point bending test machine was 

used during the bending strength tests. 

 

Figure 2: Slump test (TS EN 1170-1) 

 

Figure 3: Slump test (Mixture w/o superplasticizer) 

3.2.3. Field test results and discussion 

Bending strength, white cement content and maximum aggregate 

size relations are given in Figure 4. The test results showed that 

bending strength values increase with the increasing aggregate size 

and cement content. 

 

Figure 4: White cement content, max. aggregate size and bending 

strength relation 

Glass fiber content and bending strength property of the GFRSLC 

are related to each other. Bending strength increases when the glass 

fiber content of the mix is higher (Figure 5). It was also observed 

that maximum bending strength was recorded as 10.2 MPa when 

the slump value was 185 mm. 
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Figure 5: Glass fiber content and bending strength relation 

Figure 6 shows the effects of water to cement ratio and metakaolin 

addition to the bending strength test results. It can be seen from the 

figure that the maximum bending strength test results are obtained 

when the water to cement ratio is close to 0.33. In addition, 

utilization of 2.5 kg metakaolin gives the better bending test 

results. 

 

Figure 6: Water/cement ratio, metakaolin content and bending strength 

relation 

4. DISCUSSIONS 

Linear regression of the predicted bending strength is given in 

Figure 7. The predicted values are plotted versus the actual ones 

as squares. The blue line shows the best linear and the grey line 

would indicate the perfect fit. R-squared value accounts for 91.17 

and proposed ANN model exhibits good fitting performance. 

Figure 7: Linear regression chart (bending strength) 

Figure 8 represents the output bending strength as the function of 

input parameters. The x and y axes are defined by the range of 

inputs and the output bending strength. The testing results are 

compared with the predicted data. The relationship between the 

input data with the output data is constant and independent; 

however, it is not valid in ANN environment. The main reason is 

that each input of the model significantly effect the proposed 

structure. The best fitting model includes all mixture materials to 

obtain the most appropriate prediction of bending strength of the 

GFRSLC. 

 

Figure 8: Predicted bending strength as a function of inputs 

According to the results of the estimation, the most consistency is 

observed between the slump value and the bending strength in the 

model. By analyzing the results, it can be concluded that both 

inputs have an effect on the predicted bending strength values.  

The maximum size of the aggregates up to 20 mm improves the 

bending strength property of the GFRSLC. Increasing the 

superplasticizer content up to 330 g decreases the bending strength. 

The use of metakaolin up to 2.5 kg have no significant effect on 

the bending strength; however, the bending strength decreases 

when metakaolin added in the mixture above 2.5 kg. Glass fiber 

and water to cement ratio showed similar graphical behavior. The 

consistency of the mixes directly effects the bending strength 

values when water to cement ratio is close to 0.35. By combining 

the results, the effect of the water to cement ratio on the bending 

strength of GFRSLC is higher than the effect of the glass fiber in 

the mentioned graphical area. 

The mathematical expression of the neural network is given in the 

following equations. It takes the inputs as maximum aggregate 

size, glass fiber, water to cement ratio, superplasticizer, metakaolin 

and slump to produce the output bending strength. For prediction 

problems, the information is propagated in a feed-forward fashion 
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through the scaling layer, the perceptron layers and the unscaling 

layer: 

 

A= Scaled maximum aggregate size 

B= Maximum aggregate size  

C= scaled glass fiber 

D= glass fiber 

E= scaled water to cement ratio 

F= scaled superplasticizer 

G= superplasticizer 

H= scaled metakaolin 

I= I=scaled slump 

 

A=2x(B-14)/(20-14)-1        (2) 

C= 2x(D-3)/(3.5-3)-1        (3) 

E=2x(w/c–0.3)/(0.38–0.3)-1       (4) 

F= 2*(G-300)/(330-300)-1        (5) 

H=2x(kaolin-0)/(5-0)-1         (6) 

I= 2 * (slump – 181) / (188-181)-1       (7) 

y11 = tanh (-0.234236 – 0.0387631 * scaled maximum 

aggregate size – 0.0261527 * scaled glass fiber - 0.0239992 

* scaled water to cement ratio – 0.22511 * scaled 

superplasticizer + 0.318074 * metakaolin +0.203628 * 

scaled slump)     (8) 

y12= tanh (-0.596048 - -2.10893 * scaled maximum 

aggregate size +3.04245 * scaled glass fiber + 4.4843 * 

scaled water to cement ratio – 0.224436 * scaled 

superplasticizer + 3.03609 * metakaolin + 0.656546 * 

scaled slump)     (9) 

y13= tanh (0.316535 + 0.351154 * scaled maximum 

aggregate size - 2.11777 * scaled glass fiber - 2.11777 * 

scaled water to cement ratio + 1.75788 * scaled 

superplasticizer - 1.62116 * metakaolin - 1.55636 * scaled 

slump)      (10) 

scaled bending strength = (-0.538875 - 1.42512 * y11 - 

1.00905 * y12 - -1.06635 * y12)   (11) 

bending strength = (0.5 * (scaled bending strength + 1) * 

(10.2 -8.4) + 8.4)     (12) 

5. CONCLUSIONS 

395 bending strength test results of the GFRSLC have been 

analyzed in proposed neural model.  Six input parameters 

(maximum aggregate size, glass fiber content, water to cement 

ratio, superplasticizer and metakaolin content and slump values) 

and their effects to bending strength of GFRSLC were analyzed 

within the scope of this study. The following conclusions can be 

drawn from the results of the prediction analysis: 

 The ANN model approves the strong correlation 

between the bending strength of GFRSLC with the 

mixture proportions. 

 The analysis results showed that the weighting factor 

is well calibrated. They showed a good correlation 

with the previously conducted experimental data. 

 In the analysis and field study, increasing the 

metakaolin content up to 2.5 kg improves the bending 

strength property. However, the use of more than 2.5 

kg and up to 5 kg decreases strength analysis and test 

results. 

 The outcomes of the study can be assessed by other 

artificial and mathematical systems for a better 

understanding of the mixture proportions and fresh 

state effects on the bending strength of GFRSLC. 

 It seems that resulted and simple mathematical 

expressions are very important over the existing 

empirical equations conducted in other analysis. 

However, more reliable equations can be provided on 

condition that other fresh state property effects are 

examined in detail. 
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