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Abstract:The big bang–big crunch (BB–BC) algorithm has been proposed as a new optimization method based on the big bang and big 

crunch theory, one of the theories of the evolution of the universe. The BB-BC algorithm has been firstly presented to solve the 

optimization problems with continuous solutions space. If the solution space of the problem is binary-structural, the algorithm must be 

modified to solve this kind of the problems. Therefore, in this study, the BB-BC method, one of the population-based optimization 

algorithms, is modified to deal with binary optimization problems. The performance of the proposed methods is analyzed on 

uncapacitated facility location problems (UFLPs) which are one of the binary problems used in literature. The well-known small and 

medium twelve instances of UFLPs are used to analyze the performances and the effects of the control parameter of the BB-BC 

algorithm. The obtained results are comparatively presented. According to the experimental results, the binary version of the BB-BC 

method achieves successful results in solving UFLP in terms of solution quality. 
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1. Introduction

Many swarm intelligence methods have been recently proposed 

in order to solve compelling optimization problems by reason of 

their simple structures and creation of influential solutions for 

problems [1]. Heuristics algorithms are the algorithms that 

employ a simple approach to produce an acceptable solution to 

search and are recently becoming powerful and getting more 

common. The reasons of that can be shortly given as follows: 

In case of different decision variables, objective functions and 

constraints, they provide strategies of the general solution that 

can be practiced to the problem. 

They independently operate from the type of solution space, the 

number of decision variables and constraints. 

They utilize probabilistic random searches. They do not need 

excessive computation time because their computation power is 

in reasonable level. 

The processes of their transformation and adaptation for different 

type of problems are simple. 

They dictate fewer mathematical requirements and in addition, 

they do not need very well defined mathematical models. 

They present impressive solutions for the large-scale 

combinatorial and non-linear problems. 

They do not require the assumptions as done in standard 

algorithm. 

They do not need the change on the given problem unlike the 

usual algorithms. They adapt themselves for solving different 

types of optimization problems [2]. 
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In the last decades, different swarm-based evolutionary 

algorithms have been proposed for solving this optimization 

problem including Genetic Algorithms [3-6], Tabu Search 

algorithm [7, 8], Ant Colony Optimization [9], Particle 

SwarmOptimizer [10-12] and Artificial Bee Colony [13-15]. The 

random selection process and the information attained at the end 

of each iteration (cycle) are utilized in order to discover more 

optimal solutions in the subsequent iterations [16].  

Big-Bang Big-Crunch (BB-BC) algorithm which is one of the 

swarm intelligence algorithms has been proposed by Erol and 

Eksin in 2006 for numerical optimization problems and was 

based on the big bang and big crunch theory, one of the theories 

of the evolution of the universe [17]. While in the Big Bang 

phase, the BB–BC method similarly produces haphazard points in 

solution space, in the Big Crunch phase it shrinks all of the points 

in the search space to a single agent point due to a centre of mass. 

It has shown that The BB–BC method outperformed the 

enhanced classical Genetic Algorithm on many benchmark 

problems. 

According to the literature review, the basic BB-BC algorithm is 

a competitive algorithm in solving optimization problems with 

continuous solution space. If the solution space of the problem is 

binary-structured, the basic BB-BC algorithm must be modified 

in order to solve this type of optimization problems. Using 

modulo function that is one of the main mathematical operators, 

we propose a binary version of the BB-BC method for obtaining 

the reasonable solutions for binary optimization problems. The 

proposed method is investigated on a standard binary 

optimization problem by utilizing the uncapacitated facility 

location problem (UFLP). The UFLP is one of the most 

commonly used problems in combinatorial optimization. In this 

problem, the main objective is to minimize the total cost by 

providing the demand of customers under the given conditions 

that are a constant cost of setting up a facility and a shipping cost 
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of satisfying the customer demand for the corresponding facility 

[10]. 

2. Basic Version Of Big Bang Big
CrunchAlgorithm (BB-BC) 

The BB-BC algorithm was firstly introduced for solving 

continuous optimization problems in 2006 by Erol and Eksin. 

This method is constructed on two main steps: the first phase is 

the Big Bang phase in which all of the candidate solutions are 

randomly distributed into the search space and the next phase is 

the Big Crunch where a centre of mass is calculated considering 

individuals in the whole population [18, 19]. The initial 

population is randomly produced over the search space as done in 

the other swarm-based algorithms. All subsequent Big Bang 

phases are randomly distributed about the centre of mass or the 

candidate with the best fitness value in a similar way. The most 

important feature of the algorithm is that it has high convergence 

speed but low computational complexity. For instance, while 

many evolution-based algorithms in the literature present near-

optimal solutions at the end of too much iteration, BB-BC 

algorithm obtains solutions very close to the optimal solution of 

this problem on far less number of iterations in general.  

After the Big Bang, a contraction procedure is implemented 

during the Big Crunch. In this stage, the contraction operator 

holds the available locations of each candidate solution in the 

population and its associated cost function value and calculates a 

centre of mass. The centre of mass is presented as follow: 

𝑋𝑐 =
 

1

𝑓i 𝑋𝑖
N
i=1

 
1

𝑓i
N
i=1 (1) 

Where Xc = position of the centre of mass; Xi = position of 

candidate solution; fi = value of cost function of candidate i; and 

N = population size. The best fittest candidate solution can also 

be utilized as the starting point instead of the position of the 

centre of mass. 

After the second stage completes, new individuals are once again 

calculated for Big Bang stage according to the formula below. 

Xnew = Xc +
𝑙r

k
 (2) 

where Xc, l, r and k are respectively the centroid of mass, upper 

bounds of parameters, random parameter and number of iteration. 

The value Xnew is calculated according to the following formula.  

Xnew =
 

1

𝑓i
N
i=1 Xi

 
1

𝑓i
N
i=1

+
𝑙r

k
(3) 

The steps of the BB-BC method are presented in Figure. 1. 

Description 

Initialization 

Stage 

To initialize algorithm, the size of population, 

number of iteration, fitness function and error 

value are determined. 

Step 1: 
A population which consists of N individuals in 

search space is randomly generated. 

Step 2: 

The values of all the candidate solutions 

(individuals) are calculated by using fitness 

function. 

Step 3: 

The center of mass or the fittest individual is 

determined as Big Bang point by the help of Eq. 

(1). 

Step 4: A new population is generated about the center of 

mass or the best-fit individual. 

Step 5: 
Go to Step 2 until the stopping criterion (number 

of iteration or error value) is met. 

Figure 1. The steps of the BB-BC method 

3. Proposed Binary Version of BB-BC

Modulo base 2 is used to convert the continuous solutions to 

binary version. This conversion is presented in Eq.4. 

𝐵𝑆𝑖,𝑗 = 𝑚𝑜𝑑(𝑎𝑏𝑠  𝑋𝑖,𝑗   , 2) (4) 

Where, BSi,j  is binary solution obtained from Xi,j ,    is rounding

operation to down, abs is a function used in order to obtain 

absolute value of Xi,j . When BSi,j  is computed, first of all,

rounding operator is applied toXi,j , then absolute value of Xi,j  is

obtained. As for last process, the modulo base two is applied to 

the obtained value. 

𝐵𝑆𝑖,𝑗 = round (|𝑋𝑖 ,𝑗  |) mod 2 

An example of the solving Eq. (4) is presented as follows: 

𝐵𝑆𝑖,𝑗 = round (| − 12.24|) mod 2 

𝐵𝑆𝑖,𝑗  = round (12.24) mod 2 

𝐵𝑆𝑖,𝑗  =12 mod 2  

𝐵𝑆𝑖,𝑗  = 0  

4. Uncapacitated Facility Location Problem

In the basic formulation, UFLP consists of a set of customer 

location m that must be served, and a set of potential facilities n 

in which at least a facility must be opened and has not any 

capacity limitation. The main purpose (Eq. (5)) is to find a subset 

f of n facilities that is supplied request of customers m. The 

objective function of the problem is to minimize sum of the 

transport costs. The mathematical formulation of the UFLP can 

be expressed as follows: 

𝑓(UFLP) = min   ci,jxi,j +  fcjyj
n
j=1

n
j=1

m
i=1  (5) 

subject to : 

𝑥𝑖 ,𝑗 = 1𝑛
𝑗=1   ∀𝑖 𝑖𝑛 𝑚  (6) 

0 ≤ 𝑥𝑖 ,𝑗 ≤ 1  (7) 

where i = 1...m; j = 1,...,n; xij represents the quantity supplied 

from facility i to customer j; yj expresses whether facility j is 

located (yj= 1); otherwise (yj= 0). The constraint in Eq. 6 ensures 

that demands of all customers must be satisfied by an open 

facility. The constraint in Eq. 7 provides the collectivity, as well. 

The UFLP is one of the most crucial NP-hard problems in 

location theory [15, 20, 21]. In order to solve UFLPs, many exact 

methods, such as branch-and-bound [22], linear programming 

and Lagrangian relaxation [23], and dual approach [24], have 

been proposed. Despite the fact that these methods guarantee 

optimal solution, the computation time of these methods may be 

too much. For this reason, some approximate methods have been 

proposed in order to solve UFLPs. These methods cannot ensure 

the reaching of the optimal solution, but they can attain optimum 

or near-optimum solutions in a reasonable time. 
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5. Experimental Results

The uncapacitated facility location test suite (12 test problems) 

obtained from the OR-Library was used in order to examine the 

performance and accuracy of the proposed  binary versions of the 

BB-BC algorithm [25]. In the test suite, four problems (Cap71-

74) are small-sized, the four problems are medium-sized

(Cap101-104) the remaining four problems are large-sized

problems (Cap131-134) and the sizes and the costs of the optimal

solutions for the problems are given in Table 1.

Table 1. Description of the test suite 

Problem name Problem size Cost of  the optimal solution 

Cap71 16x50 932,615.75 

Cap72 16x50 977,799.40 

Cap73 16x50 1,010,641.45 

Cap74 16x50 1,034,976.98 

Cap101 25x50 796,648.44 

Cap102 25x50 854,704.20 

Cap103 25x50 893,782.11 

Cap104 25x50 928,941.75 

Cap131 50x50 793,439.56 

Cap132 50x50 851,495.33 

Cap133 50x50 893,076.71 

Cap134 50x50 928,941.75 

In order to make a clear and consistent comparison each other, 

the population size is taken as 40. For the entire experiments, the 

termination condition is selected as the maximum number of 

function evaluations (Max_FEs) and it is set as 80.000 and each 

experimental study performed by using center of mass and best fit 

individual instead of Eq. 1 and different upper limit (l), which is 

one of the control parameter of the BB-BC, is run 30 times in 

order to solve UFLP. The mean, best and worst values and the 

standard deviations obtained by the runs are reported in Tables 2-

7. The accuracy and robustness values of the methods are

compared in terms of the mean and standard deviation,

respectively.

In Table 2, the experimental results obtained using center of mass

function for value l=1 is presented. The mean (Mean), standard

deviation (Std), best value (Best) and worst values (Worst)

obtained at the end of 30 times run are given for each problem.

When analyzed the mean values, any success could not be gained

under these parameters. However, when the best values are

examined, the optimal results were obtained for small-sized and

medium-sized problem groups but not large-sized problems.

Besides, when looked at Table 2 and the other tables, it is seen

that as the size of the problem increased, the average deviation

from the optimal solution increased.

Table 2. Experimental results obtained using center 

function for L= 1 

Mean Std Best Worst 

Cap71 934777,784 2450,409 932615,750 940250,100 

Cap72 981265,362 2794,858 977799,400 986482,638 

Cap73 1012479,872 1927,757 1010641,450 1017426,175 

Cap74 1040091,967 6159,926 1034976,975 1054295,825 

Cap101 802615,243 4316,150 796648,438 810221,750 

Cap102 860936,509 6430,058 854704,200 876063,950 

Cap103 901336,552 7078,613 893782,113 914089,925 

Cap104 949409,698 14208,519 928941,750 982101,063 

Cap131 825390,386 19827,042 794159,350 850878,038 

Cap132 907449,515 24607,298 851495,325 933883,325 

Cap133 977059,899 17914,583 934917,063 1012152,913 

Cap134 1047398,447 30954,550 982799,250 1097979,288 

The reporting results obtained using center of mass function for 

value l=2 are given in Table 3. When examined the mean values, 

it could not be reached to the optimal value for any problem 

under the given parameters. However, when the best values are 

examined, the optimal results could be found for small and 

medium-sized problem groups except for large-sized problems. In 

addition, while the standard deviation values obtained from 

small-sized problems  got lower, those of medium-sized and 

large-sized problem sets got higher. Therefore, it can be said that 

this method is more robust for small-sized problems than the 

other problem groups. 

Table 3. Experimental results obtained using center function for L= 2 

Mean Std Best Worst 

Cap71 934166,882 1993,341 932615,750 939177,513 

Cap72 979944,208 2584,446 977799,400 984829,450 

Cap73 1012865,261 1802,325 1010641,450 1015589,325 

Cap74 1040141,943 5846,441 1034976,975 1053912,938 

Cap101 804429,968 5385,079 796648,438 812834,288 

Cap102 863982,102 6550,753 854704,200 875894,200 

Cap103 904765,695 8869,370 893782,113 917587,900 

Cap104 952661,198 17286,486 928941,750 976991,075 

Cap131 821229,431 18868,929 795883,238 851320,750 

Cap132 912322,125 21859,908 854704,200 938541,638 

Cap133 980653,598 16274,168 948982,750 1006973,775 

Cap134 1056551,117 25561,281 1005104,075 1105009,113 

The experimental results attained utilizing center of mass 

function for value l=3 are given in Table 4. When examined the 

mean values, the optimal value could not be found for any 

problem under the available parameters. However, when 

examined the obtained best values, it is seen that this method 

obtained optimal results for small-sized and medium-sized 

problems except for large-sized problems. In addition, while the 

standard deviation values obtained from small-sized problems got 

lower, those of large-sized problems groups got higher. 

Therefore, it can be said that this method is relatively more 

effective for small-sized problems rather than large-sized 

problems.  

International Journal of Intelligent Systems and Applications in Engineering 



188|IJISAE, 2016, 4(Special Issue), 185–189 

Table 4. Experimental results obtained using center function for L= 3 

Mean Std Best Worst 

Cap71 934130,279 2157,679 932615,750 939626,575 

Cap72 981160,794 3084,162 977799,400 987144,550 

Cap73 1012575,554 2165,025 1010641,450 1017544,888 

Cap74 1041407,615 5023,067 1034976,975 1048963,413 

Cap101 801790,383 4102,594 796648,438 810451,925 

Cap102 863112,714 6553,889 854704,200 874035,350 

Cap103 902364,675 9815,888 893782,113 922215,888 

Cap104 947196,955 18341,711 928941,750 987505,475 

Cap131 823123,130 18485,441 799291,000 852911,088 

Cap132 910805,458 21907,858 859028,188 943963,650 

Cap133 972870,255 15372,560 942524,650 1009722,438 

Cap134 1055681,507 26056,078 989378,975 1103422,350 

The reporting results obtained utilizing best fit individual instead 

of center of mass function for value l=1 are given in Table 5. 

When investigated the mean values under these conditions, any 

optimal value for any problem could not be found. However, 

when analyzed the best values, it is seen that the proposed 

method reached to the optimal solution for small-sized and 

medium-sized problem groups but not large-sized problems. 

Besides, when analyzed the mean values in this table while this 

method obtained very near-optimal results for both of small-sized 

and medium-sized problems, it did not obtain good solution for 

large-sized problems. Therefore, it can be specified that this 

method is relatively more effective for small-sized and medium-

large problem sets than large-sized problems. 
Table 5. Experimental results obtained using best fit individual for L= 1 

Mean Std Best Worst 

Cap71 933189,717 1389,929 932615,750 938122,238 

Cap72 978581,522 1488,624 977799,400 982711,600 

Cap73 1011318,064 1011,356 1010641,450 1014253,438 

Cap74 1036464,014 3242,674 1034976,975 1052187,150 

Cap101 798149,257 1574,117 796648,438 801947,025 

Cap102 858319,158 2494,585 854704,200 862792,900 

Cap103 897041,810 3883,140 894008,138 911215,038 

Cap104 934136,345 5617,622 928941,750 955362,300 

Cap131 807064,141 8882,906 794956,113 835703,763 

Cap132 872173,273 10397,055 857605,800 896433,588 

Cap133 924420,926 18208,083 896522,713 962142,413 

Cap134 996889,000 31413,774 942813,938 1058213,813 

The final results obtained using best fit individual instead of 

center of mass function for value l=2 are given in Table 6. When 

examined the mean values under these conditions, it could not be 

reached to any optimal result for any problem. However, when 

examined the best values, it is seen that this method reached to 

the optimal values for small-sized and medium-sized problem 

groups but not large-sized problems. Besides, when looked at the 

mean values while this method obtained very near-optimal results 

for small-sized and medium-sized problem groups, it did not 

obtain any sufficient solution for large-sized problems. Therefore, 

for small-sized and medium-sized problems, it can be stated that 

this method is relatively more competitive.  

Table 6. Experimental results obtained using best fit individual for L= 2 

Mean Std Best Worst 

Cap71 933031,378 1141,122 932615,750 937364,400 

Cap72 978434,816 1436,766 977799,400 982711,600 

Cap73 1011559,270 1342,588 1010641,450 1014491,400 

Cap74 1036038,932 1587,518 1034976,975 1039926,175 

Cap101 798550,012 1842,539 796648,438 804211,238 

Cap102 857279,872 2702,962 854704,200 865405,538 

Cap103 896504,491 2412,846 893782,113 901580,388 

Cap104 935326,600 6149,832 928941,750 951622,050 

Cap131 808708,475 8078,468 797635,288 833514,275 

Cap132 874615,404 15692,184 851670,125 903862,650 

Cap133 928468,949 20240,792 895642,513 975990,875 

Cap134 994036,220 40501,828 933520,538 1064880,575 

The experimental results acquired utilizing best fit individual 

instead of center of mass function for value l=3 are given in Table 

7. When examined the mean values, this method could not

reached to any optimal result for any problem. However, when

looked at the best values, it is observed that this method reached

to the optimal values for only small-sized and medium-sized

problem groups. Besides, when analyzed the mean values while

this method obtained very near-optimal results for small-sized

and medium-sized problem groups, it did not acquire any good

result for large-sized problem set. Therefore, it can be specified

that this method is relatively more competitive for only small-

sized and medium-sized problem sets.
Table 7. Experimental results obtained using best fit individual for L= 3

Mean Std Best Worst 

Cap71 933305,228 2119,100 932615,750 943673,600 

Cap72 979253,239 2580,129 977799,400 987260,213 

Cap73 1011145,130 820,514 1010641,450 1012476,975 

Cap74 1035707,668 1232,432 1034976,975 1037717,075 

Cap101 799100,121 2387,477 796648,438 804580,525 

Cap102 857423,656 1985,558 854704,200 862628,738 

Cap103 896656,990 2083,759 893782,113 899596,575 

Cap104 936534,911 7580,000 928941,750 952557,550 

Cap131 805663,750 6018,338 794956,113 819209,238 

Cap132 876533,484 14451,319 856417,000 904914,675 

Cap133 926388,290 18910,464 894095,763 977148,600 

Cap134 990694,024 27565,510 941303,788 1052871,688 

5.1. Comparative Analysis between Centre of Mass and Best 
Fit Individual 

To fulfill a fair comparison, the experimental studies have been 

conducted under the equivalent parameters. In the process of 

comparison, Table 2, 3 and 4 are compared to Table 5, 6 and 7, 

respectively. In other words, to make a comparison between 

center of mass and best fit individual, the results of the 

corresponding problems have been compared under the same l 

values. As seen from Tables 2 - 7, when the proposed BB-

BCcenter method with Center of Mass is compared with BB-

BCbest method with Best Fit Individual, BB-BCbest method is 

quite better in terms of both of solution quality and robustness 

rather than BB-BCcenter method, in general. In addition, BB-

BCbest method reached the very near-optimal solutions for the 
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corresponding problems in all of the different l values. Based on 

the standard deviations, the robustness of the BB-BCbest method 

is better than that of the BB-BCcenter method for all of the 

problems. When l values were set as one, two and three, the 

similar results were obtained. Therefore, for the entire problem 

groups (small-sized, medium-sized and large-sized problems), it 

is observed that utilizing of different l values does not affect the 

success of the algorithm. 

6. Conclusions

In this paper, we studied the modification of the BB-BC method 

for solving binary optimization problems. Modula-2 based binary 

version of the BB-BC algorithm has been proposed and their 

performance has been investigated on uncapacitated facility 

location problems containing small and medium sized problem. 

The performance of the proposed methods is analyzed under the 

different l values which are upper value of the BB-BC method. In 

addition, the experimental results have been individually 

conducted using both of center of mass and best fit individual 

instead of center of mass and in view of these results, the 

comparative analysis between the BB-BCcenter and BB-BCbest 

methods has been also carried out in this study. In experimental 

results, it is shown that promising results are obtained by this 

proposed binary method. The results show that the BB-BC 

method proposed for binary optimization can be used for solving 

other binary optimization problems. 
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