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Abstract: Robot grippers are the tools used for gripping, moving and fixing objects. They are integrated into robotic systems and can grip 

an object for at least one maneuver without any damage. Design optimization of robot grippers is crucial to carry on their dedicated jobs 

without any faults. The design optimization of robot grippers is a research topic. Robot grippers were optimized by using various methods 

for different aims in previous studies. In this study, it is aimed to optimize both the fluctuation of the power applied to an object by a 

gripper and the power transfer rate between actuator and ends of a gripper. Strength Pareto evolutionary algorithm II (SPEA-II), which is 

a multi-objective optimization method, has been applied to the problem for this aim. The experimental results were compared to the result 

of the previous studies. SPEA-II has better performance to the competitor as the comparison.  
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1. Introduction 

Robot grippers are the mechanisms used in industrial systems 

commonly. Robot grippers, used as tip component of robotic 

systems, are benefited in many fields such as assembly and 

welding processes, moving of pieces, holding of radioactive 

matters etc. Gripping an object has become a research topic as the 

importance of optimization studies has been increasing in 

industrial systems [1]. 

Design optimization of robot grippers is a necessity to perform 

their dedicated jobs without any faults. Various studies were 

conducted with different methods to detect optimal design in 

literature. The study conducted by Cutkosky[2] involving in  

selection, modelling and, designing of  the grippers is the first 

study on optimization of robot grippers. Cutkoksky proposed an 

expert system to solve the gripping issues in the study.  

Design optimization of robot grippers was formulated as a 

nonlinear optimization problem by Osyczka at first [10]. Osyczka 

et. al [3] proposed a robot gripper design based on multi-objective 

optimization. They applied a multi-objective genetic algorithm on 

different configurations of robot grippers. The best known values 

in literature were obtained as a result of the study. Saravanan et al. 

[11] applied three optimization methods (MOGA, NSGA-II and 

MODE) to three different robot gripper configurations. Datta and 

Deb [12] studied on two different gripper configurations and 

solved the problem by using NSGA-II. The objective functions of 

the studies [11-12] are the same as the ones defined by Osyczka in 

[10] 

Lanni and Ceccarelli[4] dealt with the optimum design of grasp 

mechanism of the grippers with two-fingers. They aimed to 

optimize the kinematic design of a gripper mechanism along with 

to improve the time of the solutions. As a result of the optimization 

on the proposed mathematical model, they obtained better 

operating and structural features than the ones of the similar 

studies. 

Cabrera et. al [5] carried out a design optimization for a multi 

proposed and multi-hand planer mechanism. Zitar et. al. [6] 

utilized single objective ant colony optimization to provide 

gripping solid objects with minimum power. Li et al [7] benefited 

from genetic algorithm to optimize link lengths and joint angles of 

robot grippers. Designs of small and large scale grippers were 

obtained with the best-known values at the end of the study. 

Rao et al. [1] proposed a novel method named as teaching–

learning-based optimization (TLBO). They applied the method to 

the well-known mechanical design problems as well as the robot 

gripper problem as a benchmark problem. The obtained results of 

the method were compared to the results of the population-based 

optimization methods in the literature. It was put forward that 

TLBO is more efficient than the competitors. 

Dao et al. [8] approached to the design of a gripper with two 

flexible components as a multi-objective optimization problem. 

Fuzzy Taguchi method based on fuzzy logic was applied to the 

problem in the study. Two parameters were assigned to stand for 

horizontal and vertical powers as input values. These parameters 

were formalized with two objective functions: torque of torsional 

spring and the stress. The best known horizontal and vertical power 

values obtained as a result of their study. 

Ciocarlie et al [9] studied on the design of a tendon-driven robotic 

gripper carried out a fingertip and enveloping grasps. The 

researchers optimized the parameters of springs providing the 

route of the active tendon and the passive extension powers. The 

best-known design with the parameters of the optimized tendon 

dimensions and activation was obtained. 

In this study, a balanced gripping is aimed by optimizing the 

fluctuation of the power applied to object by the grippers and the 

power transfer rate between actuator and end of a gripper. The 

configuration of the gripper, objective functions and constraints in 

the study [3] were taken into account. SPEA2 was applied to the 

problem for the first time. Comparative results show that SPEA2 
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is superior to the methods applied to the problem in the previous 

studies. 

This paper is organized as follows. Section 2 describes SPEA2 and 

its adaptation to the problem. Section 3 presents experimental 

results and comparations with similar studies. Section 4 provides 

conclusions and suggestions about future studies. 

2. SPEA2  

Zitzler brought about SPEA in 1999. The algorithm was improved 

by Zitzler et al. in 2001 and renamed as SPEA2. SPEA2 is one of 

the multi-objective evolutionary algorithms developed to detect 

Pareto optimal solutions. The cases of the algorithm are presented 

in Fig.1 

 

 

Fig. 1.  Operation of the SPEA2 Algorithm[13] 

 

The operation of the algorithm is summarized in Fig. 2: 

Fig. 2.  Pseudo Code of the SPEA2 Algorithm 

 

Initialization: An initial population  Po consisting of N individuals 

is generated. The individuals are generated based on a chosen 

encoding scheme and physical constraints. Then, P’
0 set of N' size 

is produced. P’
0 consists of nondominated solutinons. If the 

number of nondominant solutions is less than N', it consists of 

some dominant solutions. A dominant solution is a solution that is 

superior to other solutions in the population at least one objective. 
Fitness Assignment:  In this stage, each individual is evaluated by 

the objective function and a fitness value is assigned. The density 

information is also considered when the fitness value is assigned. 

As a starting point, a strong value is assigned to each individual 

(Equation 1). 

 

                        𝑆(𝑖)  =  |{ 𝑗 | 𝑗 ∈  𝑃𝑡 + 𝑃𝑡 Ʌ 𝑖 ≻  𝑗 } |              (1) 

 

In Equation 1, |.| indicates the severity of the set, and y corresponds 

to the Pareto dominance relation. The raw fitness value is 

calculated according to the strength value of each individual. This 

value is figured out by using the strengths of the dominant 

solutions in both the archive and population set. A density 

estimation technique is used when individuals have the same raw 

fitness values. The specific estimation technique is a simple 

inverse distance of the k-th nearest neighbour. In this technique, 

the distances of each individual in the population to each individual 

in the archive set is calculated. These distances are calculated in 

objective space and the results are stored in a list sorted 

increasingly. The k-th element gives the distance sought and it is 

represented by σi
k  where k is equal to the square root of the sum of 

the population size and the archive size.  Then the density is 

calculated using Equation 2.  

 

                                 𝐷(𝑖)  = 1 / 𝜎𝑖𝑘  + 2                          (2) 
 

Finally, the individual fitness value is calculated by adding density 

metric D(i) to the raw fitness value R(i) (Equation 3). 

 

                              𝐹(𝑖) = 𝑅(𝑖) + 𝐷(𝑖)                                (3) 

 

Environmental Selection: In this stage, all nondominated 

individuals in Pt (where t is the generation counter) are copied to 

P’t+1. If the size of the P’t+1 exceeds the maximum population size 

N, the size of the population P’t+1 is reduced. If P’t+1 is less than 

N, the P’t+1 population is filled the dominant solutions in the Pt  

population and archive set . 

 

Mating Selection: In this stage, the mating selection is performed. 

To fill the mating pool, individuals are selected from the P’t+1 

through the binary tournament selection method. 

 

Update: Crossover and mutation methods are applied to selected 

individuals and the P’t+1 population is updated. If the termination 

condition is not provided, the flow continues with the Fitness 

Assignment stage[14]. 

3. Robot Gripper Design Optimization 

In this study, the problem is tackled according to the robot gripper 

model proposed by Osyczka et al. [15] ( Fig.3). The model aims to 

optimize two objectives. 

                          𝑓1(x) = |𝑚𝑎𝑥𝑧𝐹𝑘(x, z) − 𝑚𝑖𝑛𝑧𝐹𝑘(x, z)|             (4) 

             

                        𝑓2(x) =  
𝑃

𝑚𝑖𝑛𝑧𝐹𝑘(𝑥,𝑧)
                                             (5) 

 ƒ1 is to minimize the difference between the minimum and 

maximum powers applied by the gripper for a specified distance.       

ƒ2  is to minimize the rate of the powers applied by gripper actuator 

and gripper ends.  

Input: N(population size), N’(archive size), T(maximum 

number of generations) 

Output: A(nondominated set) 

P0 ← InitializationPopulation(N) 

P’0←{} 

While( t>T) 

                 FitnessPopulation←FitnessAssigment(Pt) 

                 FitnessArchive←FitnessAssigment(P’t+1) 

                P’t+1←ExtractNonDominatedSolution(Pt, P’t+1) 

          If (size(P’t+1 ) > N’) 

                   Pt+1←Reduction_Size(Pt+1) 

          ElseIf 

                  P’t+1←FillOutNonDominatedSolution(Pt,  P’t+1 )                                    

          End   
                  Selected←BinaryTournament(P’t+1,N)  

                    P’t+1←Crossover&Mutation(Selected) 

                   P’t+1←UpdatePopulation(P’t+1) 

End 
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Fig. 3.  The Scheme of Robot Gripper Mechanism[11] 

There are seven design variables for the model. These variables 

and their ranges are defined in Eq. 6-12. 

10.0 ≤ 𝑎 ≤ 250.0                                                                          (6) 

10.0 ≤ 𝑏 ≤ 250.0                                                                           (7) 

100.0 ≤ 𝑐 ≤ 300.0                                                                         (8) 

0.0 ≤ 𝑒 ≤ 50.0                                                                              (9) 

10.0 ≤ 𝑓 ≤ 250.0                                                                            (10) 

100.0 ≤ 𝑙 ≤ 300.0                                                                          (11) 

1.0 ≤ 𝛿 ≤ 𝜋                                                                                      (12)    

Fig. 3 shows a robot gripper mechanism. The a, b, c, e, f and l are 

design variables of the robot gripper and represent the link lengths 

of the gripper in millimetres(mm). δ is the angle between b and c 

components in radian (rad). 

The additional equations defined in eq. (13-18): 

 

𝑔2 = (𝑙 − 𝑧)2 + 𝑒2                                    (13) 

𝛼 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑎2+𝑔2−𝑏2

2𝑎𝑔
) + 𝜃                             (15) 

𝛽 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑏2+𝑔2−𝑎2

2𝑏𝑔
) − 𝜃                         (15) 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑒

𝑙−𝑧
)                                          (16) 

𝐹𝑘 =
𝑃𝑏 𝑠𝑖𝑛 (𝛼+𝛽)

2𝑐 𝑐𝑜𝑠 (𝛼)
                                              (17) 

𝑦(𝑥, 𝑧) = 2[𝑒 + 𝑓 + 𝑐 sin(𝛽 + 𝛿)]                        (18) 

 

Fig. 4. shows the geometric connections of the gripper. g in the eq. 

13 symbolizes the distance between A and C points.  α and β in eq. 

14-15 denote the angle of the connections with horizontal reference 

lines. 

θ in eq.16 indicates the angle between AC and AD (Fig 4). Fk 

stands for the power applied to the object grasped by the gripper. 

y(x,z) in eq.18 represents displacement of the gripper ends. 

Seven constraints are defined in the model. Eq 19-25 describe the 

constraints. 

 𝑔1(𝑥): 𝑌𝑚𝑖𝑛 − 𝑦(𝑥, 𝑍𝑚𝑎𝑥)  ≥ 0                                                 (19) 
 𝑔2(𝑥): 𝑦(𝑥, 𝑍𝑚𝑎𝑥)  ≥ 0                                                               (20) 

 𝑔3(𝑥): 𝑦(𝑥, 0) − 𝑌𝑚𝑎𝑥 ≥ 0                                                         (21) 

 𝑔4(𝑥): 𝑌𝑔 −  𝑦(𝑥, 0)−≥ 0                                                           (22) 

 𝑔5(𝑥): (𝑎 + 𝑏)2 − 𝑙2 − 𝑒2  ≥ 0                                                 (23) 

 𝑔6(𝑥): (𝑙 − 𝑍𝑚𝑎𝑥)2 + (𝑎 − 𝑒)2 − 𝑏2 ≥ 0                                (24) 

 𝑔7(𝑥): 𝑙 − 𝑍𝑚𝑎𝑥  ≥  0                                                              (25) 

There are five geometric parameters in the model. Ymin is the 

minimal dimension of the gripping object; Ymax is the maximal 

dimension of the gripping object; Yg is the maximal range of the 

gripper ends displacement; Zmax is the maximal displacement of 

the gripper actuator and P is actuating force of the gripper. The 

values are:  Ymin=50mm; Ymax= 100mm; Yg=150mm;  Zmax=50mm; 

P=100N. 

SPEA2 was adapted according to the objective functions, the range 

of the design variables and constraints to the problem. The penalty 

point is defined as 1000.0 for the solutions which do not provide 

the constaints. The adapted version of SPEA2 is depicted in Fig.5. 

 
Fig. 4.  Geometrical dependencies of the gripper mechanism. [11] 

Fig. 5.  The adaptation of SPEA2 to the problem. 

 

3.1. Experimental Studies 

The experimental studies were carried out on MS Windows 10 x64 

running on a PC with Intel(R) Core™ i7-3630QM 2.40 GHz CPU 

and 8 GB RAM. It is benefited from MOEA Framework 

(http://moeaframework.org) based on Java programming language  

Input:Population_size, Archive_size,P_crossover, P_mutation 

Output:Archive 
Population ←InitializationPopulation(Population_size) 

Archive←{} 

While(StopCondition()) 
     Calculate the constraints of the handled case of the problem 

      if (all constraints are satisfied) 

           FitnessPopulation←FitnessAssignment(Population) 
           FitnessArchive←FitnessAssigment(Archive) 

           

Archive←ExtractNonDominatedSolution(Population,Archive) 
      if(size(Archive)>Archive_size) 

          FunctionReductionSize 

      ElseIf                                                                  
           

FunctionFillOutWithDominatedSolution(Population,Archive) 

       End 
       Selected←BinaryTournament(Archive,Population_size)    

       Population←Crossover 

       Mutation(Selected,P_crossover,P_mutation 
       Population←Update(Population) 

       Else 

            Assign penalty value to the current solution as fitness 
value 

      End 

     End 
 End 

http://moeaframework.org/
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SPEA2 was applied to the problem with various inertial parameter 

for better results. Population size and maximum iterations are 

defined as 200 and 5000 respectively. Also, the crossover method 

is single point; the rate of crossover is 0.9; distribution index is 

180.0; the mutation method is polynomial mutation; mutation rate 

is 0.1; the distribution index is 20.0. 

Fig. 6.  The pareto optimal solutions obtained by SPEA2 and 

NSGA-II. 

The solutions obtained by using NSGA-II in [12] are not detailed 

clearly for comparison. So, NSGA-II was also applied to the 

problem with the same parameters in [12]. Two Pareto optimal 

curves of the SPEA2 and NSGA-II for 5000 iterations are 

presented in Fig. 6.  As a result of the optimization studies, 84 

solutions were obtained by SPEA2 algorithm and 32 solutions 

were obtained by NSGA-II algorithm. In comparison with the 

same generation number, it was observed that better results were 

obtained with the SPEA2 algorithm. The results obtained with 

SPEA2 algorithm are ƒ1 is between 0.50-0.75 and ƒ2 is between 1-

1.6. These value ranges are broader in the results obtained with the 

NSGA-II algorithm. With NSGA-II algorithm, ƒ1 is between 0.50-

0.90 and ƒ2 is between 1-1.9. Some of the solutions are presented 

in Table 1. 

The obtained results were compared with the results of the studies 

of Saravanan et al. [11], Datta and Deb[12], Osyczka[3] (Table 2).   

SPEA2 yields better solutions in terms of the values of the 

objective functions according to the comparison. Both of the 

objective values are less than the solutions of the other studies.  

The results of the study were also analyzed in respect of the 

hypervolume, inverted generational distance (IGD) metrics and 

simulation time (Table 3). The IGD and the hypervolume 

indicators are used as quality metrics. Hypervolume is the 

dimensional field containing a set of solutions, that is, the n-

dimensional volume of the cluster relative to some reference 

points. When it is adapted to multi-objective optimization, the 

solutions can be considered as the point of the n dimensional 

objective functions. That is, the hypervolume value of a cluster is 

the total size of the areas where the solutions are dominant[15]. 

The IGD measure is calculated on objective space, which can be 

viewed as an approximate distance from the Pareto front to the 

solution set in the objective space[16]. 

 

Table 1 Some Optimal Solutions Obtained by the SPEA2 Algorithm 

Table 2 Result comparison between literature results [16] and proposed SPEA2 

 

 

 

 

Solution No f1(x) f2(x) a b c e f l δ 

1 0.593 1.240 231.800 208.509 242.530 21.779 10.045 150.588 1.835 

2 0.656 1.119 231.800 208.506 218.852 21.779 10.795 150.590 1.833 

3 0.696 1.076 231.798 208.519 210.322 21.747 11.087 151.199 1.833 

4 0.498 1.470 231.798 208.506 287.470 21.778 10.155 150.549 1.837 

5 0.663 1.103 231.800 208.507 215.818 21.779 10.757 150.529 1.837 

6 0.749 1.011 231.799 208.370 196.922 21.775 11.069 152.736 1.836 

Design Variables GA[3] NSGAII[11] 
NSGAII[12] 

(large comp.) 

NSGAII[12] 

(small comp.) 

SPEA2 

a 135.0 88.1 250.0 250.0 231.78 

b 90.53 52.98 250.0 233.0 208.37 

c 102.2 100.0 243.6 210.3 204.43 

e 0.0 29.95 0.0 14.0 21.77 

f 1.28 69.89 37.0 15.0 11.08 

l 170.57 126.96 100.0 180.0 152.72 

δ 1.8 3.14 1.72 1.85 1.83 

Population Size 400 100 200 200 200 

Crossover Rate 0.6 0.9 0.9 0.9 0.9 

Mutation Rate 0.08 1.0 0.1 0.1 0.1 

Generation Number 400 150 N/A 1000 5000 

f1(x) 3.05 3.7168 1.55 0.734 0.704 

f2(x) 2.0 1.5767 0.994 0.998 1.049 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(2), 83–87  |  87 

 

According to hypervolume and inverted generational distance 

metrics, the algorithm was run 30 times with 5000 iterations to 

evaluate the performance of the algorithm. The difference is 0.802 

between the arithmetic mean and standard deviation of the 

obtained solutions according to the hypervolume metric based on 

the volume of the dominant solutions in the objective space. 

Additionally, the difference between the arithmetic mean and the 

standard deviation is 0.0168 according to the IGD metric based on 

the convergence and diversity of the solutions obtained. The closer 

distance between standard deviation and the mean in the IGD 

indicates the high performance to achieve optimal design values.  

In order to evaluate the runtime of the algorithm, the algorithm was 

run a total of 30 times with 5000 iterations. Accordingly, the 

shortest computition time of the algorithm is 2.279 s. The standart 

deviation of computation time is 0.4511.  

Table 3 Statistical Results of SPEA2 Algorithm 

4. Conclusion 

In this study, multi-objective optimization of the robot gripper ends 

was conducted by SPEA2 algorithm. The objectives of the study 

are to minimize both the power transfer ratio between the actuator 

and the ends of a gripper and the fluctuation of the power applied 

to an object by a gripper. The results were compared to the results 

of the different methods applied to the problem in the previous 

studies. When the optimization results are evaluated, the SPEA2 

algorithm provides an obvious advantage to its competitors. 

SPEA2 algorithm was applied for the first time to solve the 

presented robot gripper design problem. Therefore, SPEA2 might 

be considered as a good solution method to solve optimization 

problems related to robot design in the future. It is planned to 

develop a hybrid optimization approach for similar robot gripper 

design problems in the future.  
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 Hypervolume IGD Simulation Time(s) 

Min 0.2893 0.0894 2.279 

Max 0.8894 0.4073 4.472 

Median 0.7222 0.1367 3.1705 

Mean 0.6969 0.1533 3.243 

Standart 

Deviation 
0.1285 0.0661 0.4511 


