Artificial Intelligence Hybrid System for Enhancing Retinal Diseases Classification Using Automated Deep Features Extracted from OCT Images

Keywords: OCT, AOCTNet, Deep Learning, Machine Learning, Feature Extraction, Hybrid Systems

Abstract

After the advent of 2D eye imaging technology, Optical Coherence Tomography (OCT) became one of the most effective and commonly used imaging techniques for non-invasive retinal eye disease evaluation. Blindness is primarily diagnosed using OCT with one of the following two eye diseases categories: diabetic macular edema (DME) or age-related macular degeneration (AMD). The classification of eye retina diseases using OCT images recently became a challenge with the development of machine teaching and profound learning techniques. In this paper, a hybrid artificial intelligence system for multiclass classification of eye retina diseases using automated deep features extracted using Advanced OCT Network (AOCTNet) CNN architecture from OCT images especially spectral domain (SD-OCT) images have been proposed. The proposed methodology mainly can be used to classify retinal diseases into normal and four abnormal classes (AMD, choroidal neovascularization (CNV), DME, and Drusen) retinal disease. The proposed system constructed using eight types of machine learning algorithms, all of which achieved high performance overall. This methodology is a potentially powerful computer aided diagnostic (CAD) tool for the use of SD-OCT imaging for retinal diseases.

Downloads

Download data is not yet available.

References

Alqudah, A. M. (2020). AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Medical & biological engineering & computing, 58(1), 41-53. https://doi.org/10.1007/s11 517-019-02066-y

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., ... & Dong, J. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), 1122-1131. https://doi.org/10.1016/j.cell.2018.02.010

Farsiu, S., Chiu, S. J., O'Connell, R. V., Folgar, F. A., Yuan, E., Izatt, J. A., Toth, C.A. (2014). Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology, 121(1), 162-172. https://d oi.org/10.1016/j.ophtha.2013.07.013

Lemaître, G., Rastgoo, M., Massich, J., Cheung, C. Y., Wong, T. Y., Lamoureux, E., ... & Sidibé, D. (2016). Classification of SD-OCT volumes using local binary patterns: experimental validation for DME detection. Journal of ophthalmology, 2016. https://doi.org/10.1155/2016/3298606

Reis, A. S., O'Leary, N., Yang, H., Sharpe, G. P., Nicolela, M. T., Burgoyne, C. F., & Chauhan, B. C. (2012). Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Investigative ophthalmology & visual science, 53(4), 1852-1860. https://doi.org/10.1167/iovs.11-9309

Kanagasingam, Y., Bhuiyan, A., Abramoff, M. D., Smith, R. T., Goldschmidt, L., & Wong, T. Y. (2014). Progress on retinal image analysis for age related macular degeneration. Progress in retinal and eye research, 38, 20-42. https://doi.org/10.1016/j.preteyeres .2013.10.002

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature medicine, 25(1), 24-29. https://doi.org/10.1038/s41591-018-0316-z

Schmidt-Erfurth, U., Sadeghipour, A., Gerendas, B. S., Waldstein, S. M., & Bogunović, H. (2018). Artificial intelligence in retina. Progress in retinal and eye research, 67, 1-29. https://doi.org/10.1016/j.preteyeres. 2018.07.004

Ting, D. S., Wu, W. C., & Toth, C. (2019). Deep learning for retinopathy of prematurity screening. http://dx.doi.org/10.1136/bjophthalmol-2018-313290

Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., ... & Wong, T. Y. (2019). Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2), 167-175. http://dx.doi.org/10.1 136 /bjophthalmol-2018-313173

Pierro, L., Zampedri, E., Milani, P., Gagliardi, M., Isola, V., & Pece, A. (2012). Spectral domain OCT versus time domain OCT in the evaluation of macular features related to wet age-related macular degeneration. Clinical ophthalmology (Auckland, NZ), 6, 219. https://doi.org/10.2147/OPTH.S27656

Sajda, P. (2006). Machine learning for detection and diagnosis of disease. Annu. Rev. Biomed. Eng., 8, 537-565.https://doi.org/10.1146/annurev.bioeng.8.061505.095802

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. https://doi.org/10. 1038/nature14539

Alsaih, K., Lemaitre, G., Rastgoo, M., Massich, J., Sidibé, D., & Meriaudeau, F. (2017). Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images. Biomedical engineering online, 16(1), 68. https://doi.org/10.11 86/s12938-017-0352-9

Awais, M., Müller, H., Tang, T. B., & Meriaudeau, F. (2017, September). Classification of sd-oct images using a deep learning approach. In 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (pp. 489-492). IEEE. https://doi.org/10.1109/ICSIPA.2017.8120661

Lee, C. S., Baughman, D. M., & Lee, A. Y. (2017). Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmology Retina, 1(4), 322-327. https://doi.org/10.1016/j.oret.2016.12.009

Karri, S. P. K., Chakraborty, D., & Chatterjee, J. (2017). Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration. Biomedical optics express, 8(2), 579-592. https://doi.org/10.1364/boe.8.000579

Amil, P., González, L., Arrondo, E., Salinas, C., Guell, J. L., Masoller, C., & Parlitz, U. (2019). Unsupervised feature extraction of anterior chamber OCT images for ordering and classification. Scientific reports, 9(1), 1-9. https://doi.org/10.1038/s41598-018-38136-8

Ji, Q., He, W., Huang, J., & Sun, Y. (2018). Efficient deep learning-based automated pathology identification in retinal optical coherence tomography images. Algorithms, 11(6), 88. https://doi.org/10.3390 /a11060088

Perdomo, O., Otálora, S., González, F. A., Meriaudeau, F., & Müller, H. (2018, April). Oct-net: A convolutional network for automatic classification of normal and diabetic macular edema using sd-oct volumes. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 1423-1426). IEEE. https://doi.org/10.1109/ISBI.2018.8363839

Nugroho, K. A. (2018, October). A comparison of handcrafted and deep neural network feature extraction for classifying optical coherence tomography (OCT) images. In 2018 2nd International Conference on Informatics and Computational Sciences (ICICoS) (pp. 1-6). IEEE. https://doi.org/10.1109/ICICOS.2018.8621 687

Hwang, D. K., Hsu, C. C., Chang, K. J., Chao, D., Sun, C. H., Jheng, Y. C., ... & Peng, C. H. (2019). Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics, 9(1), 232. https://doi.org/10.7150/thno.28447

Gnanadurai, D., & Sadasivam, V. (2005). Image de-noising using double density wavelet transform based adaptive thresholding technique. International Journal of Wavelets, Multiresolution and Information Processing, 3(01), 141-152. https://doi.org/10.1142/S02 19691305000701

A.M. Alqudah, H. Alquraan, I. Abu Qasmieh, A. Alqudah and W. Al-Sharu (2019). Brain Tumor Classification Using Deep Learning Technique - A Comparison between Cropped, Uncropped, and Segmented Lesion Images with Different Sizes, International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 6, pp. 3684-3691, 2019. https://doi.org/10.30534/ijatcse/20 19/155862019.

Trosten, D. J., & Sharma, P. (2019, June). Unsupervised feature extraction–a cnn-based approach. In Scandinavian Conference on Image Analysis (pp. 197-208). Springer, Cham. https://doi.org/10.1007/978-3-030-20205-7_17

Garcia-Gasulla, D., Parés, F., Vilalta, A., Moreno, J., Ayguadé, E., Labarta, J., ... & Suzumura, T. (2018). On the behavior of convolutional nets for feature extraction. Journal of Artificial Intelligence Research, 61, 563-592. https://doi.org/10.1613/jair.5756

Alqudah, A. M., Algharib, H. M., Algharib, A. M., & Algharib, H. M. (2019). Computer aided diagnosis system for automatic two stages classification of breast mass in digital mammogram images. Biomedical Engineering: Applications, Basis and Communications, 31(01), 1950007. https://doi.org/10.40 15/S1016237219500078

Alqudah, A., & Alqudah, A. M. (2019). Sliding window based support vector machine system for classification of breast cancer using histopathological microscopic images. IETE Journal of Research, 1-9. https://doi.org/10.1080/03772063.2019.1583610

Alqudah, A. M. (2019). Ovarian Cancer Classification Using Serum Proteomic Profiling and Wavelet Features A Comparison of Machine Learning and Features Selection Algorithms. Journal of Clinical Engineering, 44(4), 165-173. https://doi.org/10.1097/JC E.0000000000000359

Alqudah, A. M. (2019). Towards classifying non-segmented heart sound records using instantaneous frequency based features. Journal of medical engineering & technology, 43(7), 418-430. https://doi.org/10.1080/ 03091902.2019.1688408

Alkan, A., & Günay, M. (2012). Identification of EMG signals using discriminant analysis and SVM classifier. Expert systems with Applications, 39(1), 44-47. https://doi.org/10.1016/j.eswa.2011.06.043

Dey Sarkar, S., Goswami, S., Agarwal, A., & Aktar, J. (2014). A novel feature selection technique for text classification using Naive Bayes. International scholarly research notices, 2014. https://doi.org/10.1155/2014/ 717092

Hussain, M. A., Bhuiyan, A., Luu, C. D., Smith, R. T., Guymer, R. H., Ishikawa, H., ... & Ramamohanarao, K. (2018). Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm. PloS one, 13(6). https://doi.org/10.1371/jou rnal.pone.0198281

Rong, Y., Xiang, D., Zhu, W., Yu, K., Shi, F., Fan, Z., & Chen, X. (2018). Surrogate-assisted retinal OCT image classification based on convolutional neural networks. IEEE journal of biomedical and health informatics, 23(1), 253-263. https://doi.org/10.1109/JB HI.2018.2795545

Fang, L., Jin, Y., Huang, L., Guo, S., Zhao, G., & Chen, X. (2019). Iterative fusion convolutional neural networks for classification of optical coherence tomography images. Journal of Visual Communication and Image Representation, 59, 327-333. https://doi.org/10.1016/j.j vcir.2019.01.022.

Luo Y, Pan J, Fan S, Du Z, Zhang G. Retinal image classification by self-supervised fuzzy clustering network. IEEE Access. 2020 May 12;8:92352-62.

He, X., Deng, Y., Fang, L. and Peng, Q., 2021. Multi-Modal Retinal Image Classification With Modality-Specific Attention Network. IEEE Transactions on Medical Imaging, 40(6), pp.1591-1602.

Miere, A., Le Meur, T., Bitton, K., Pallone, C., Semoun, O., Capuano, V., Colantuono, D., Taibouni, K., Chenoune, Y., Astroz, P. and Berlemont, S., 2020. Deep learning-based classification of inherited retinal diseases using fundus autofluorescence. Journal of Clinical Medicine, 9(10), p.3303.

Published
2021-09-24
How to Cite
[1]
A. Alqudah, A. Alqudah, and M. AlTantawi, “Artificial Intelligence Hybrid System for Enhancing Retinal Diseases Classification Using Automated Deep Features Extracted from OCT Images”, IJISAE, vol. 9, no. 3, pp. 91-100, Sep. 2021.
Section
Research Article