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Abstract: This paper presents a novel scheme coined AIR (Agent for Image Recognition), acting as an agent, to oversee the image 
matching and retrieval processes. Firstly, neighboring keypoints within close spatial proximity are examined and used to hypothesize 
true keypoint matches. While this approach is robust to noise (e.g. a tree) since spatial relation is considered, missing (undetected) 
keypoints in one image can also be recovered resulting in more keypoint matches. Secondly, the agent is able to recognize instability of 
projective transformations in certain cases (e.g. non-planar scenes). The geometric approach is substituted with LIS (Longest Increasing 
Subsequence) approach which does not require any complex geometric transformations. The effectiveness of AIR is substantiated by an 
image retrieval experiment which demonstrates that it achieves a twofold increase in true matches and higher matching accuracy when 
compared to RANSAC homography approach. 
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1. Introduction 
The brute force method of comparing every pixel in two images 
is computationally prohibitive. Intuitively, one can relate the two 
images by matching only regions in the images that are in some 
way interesting. They are local as they are related to small 
regions on objects instead of the whole object itself. This 
property makes them distinctive as well as robust to occlusion 
and clutter. These regions are referred to as local features, and 
sometimes known as interest points or keypoints. Today, the use 
of keypoints to find correspondences across multiple images is a 
key step in many image processing and computer vision 
applications. Some of the most notable examples are panorama 
stitching [1-3], wide baseline matching [4-7], image retrieval [8, 
9], object recognition [10-12], and object class recognition [13-
15]. Differences between the images can be a substantial range of 
affine distortion, noise level, change in illumination, scaling, 
rotation, and viewpoint. The keypoints should be invariant to 
these differences in order to robustly match two images of the 
same object or scene. A good keypoint should be highly 
distinctive in the way that a single keypoint can be correctly 
matched with high probability against a large database of 
keypoints from many images. Nevertheless, the more invariant it 
is, the less distinctive it will be, which the trade-off between 
invariance and distinctiveness is. Typically, there are one or more 
follow-up verification steps to verify the keypoint matches. 
Without prior knowledge what types of images we are receiving, 
we often assume that the scenes are composed entirely of planes; 
and that all planes can be detected whereby planar homographies 
can be derived. When this assumption is invalid, the matching 
fails. 
In this paper, we propose an intelligent scheme coined AIR 
(Agent for Image Recognition), acting as an agent, to hypothesize  
true keypoint matches, or in fact overseeing the keypoint 

 
 
matching process. Neighboring keypoints within close spatial 
proximity are examined and used to hypothesize true keypoint 
matches. The fundamental idea behind this approach is that if two 
keypoints are true corresponding keypoints in the two images, at 
least some of their neighboring keypoints should be 
corresponded. By building a relationship between each keypoint 
and its neighboring keypoints, our approach can robustly deal 
with two common problems. 
1) Asymmetric numbers of keypoints detected in the two images, 
since a keypoint detected in one image may not appear in the 
other image and therefore results in a lesser number of keypoint 
matches. These missing (undetected) keypoints can never be 
recovered. 
2) False corresponding keypoints found in the two images after 
projectivity due to noise, e.g., a tree in one of the images will 
comprise a massive number of keypoints which can be easily 
mismatched after projectivity. 
AIR is also able to recognize instability of the approach in some 
cases (e.g. non-planar scenes) after projectivity from the low 
number of keypoint matches. It substitutes with LIS (Longest 
Increasing Subsequence) approach which allows less rigid 
correspondence between the matched image pairs. This approach 
finds a subsequence (of keypoints in the first image) of a sorted 
sequence (of corresponding keypoints in the second image), in 
which the subsequence elements are in sorted order and is as long 
as possible. The subsequence is not necessarily contiguous, or 
unique. The concept is that an image pair is geometrically 
consistent if the geometric order of their corresponding keypoints 
is consistent. The rest of the paper is organized as follows. 
Section 2 discusses related work. In Section 3, our image 
recognition methodology is presented whereby AIR is described. 
Section 4 provides the experimental results. Section 5 concludes 
the paper. 
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2. Related Work 
Mikolajczyk and Schmid [16] evaluated a variety of object 
recognition algorithms and identified that the SIFT [12] (Scale-
Invariant Feature Transform) and SIFT-based algorithms such as 
SURF [17] (Speeded Up Robust Features) are the most resistant 
to common image deformations and have achieved the best 
performance. SIFT-based features are invariant to image scale, 
translation, rotation, and partially invariant to illumination and 
viewpoint changes. Details on application of these features can be 
found in [3, 18, 19]. In its original matching scheme, a pair of 
keypoints is considered a match if the distance ratio between the 
closest match and the second closest match is below a certain 
threshold. While the distance ratio can eliminate some of the false 
keypoint matches, we often still need to identify correct subsets 
of keypoints containing less than 1% inliers. 
To solve the outlier problem, the RANSAC [20] (Random 
Sample Consensus) algorithm and other similar hypothesize-and-
verify methods have been proposed in the literature. The 
RANSAC algorithm is a robust method based on random 
sampling and rejects all keypoint matches not conforming to the 
found homography model [21] or epipolar geometry [21]. 
Although this method works fine in many applications, they 
perform poorly when the number of false keypoint matches 
outnumbers the number of true keypoint matches; or when the 
number of keypoint matches is modest (limited). The RANSAC 
idea was modified by Nister and Stewenius [22] to include 
competitive verification of models. The algorithm named 
“Preemptive RANSAC” was demonstrated to perform well in a 
real-time structure-from-motion system. The limitation is that 
only a fixed number of models are evaluated, which is equivalent 
to a priori assumption that a lower bound on the fraction of inliers 
is known. This limits the applicability of preemptive RANSAC in 
wide baseline stereo where the fraction of inliers varies widely. 
Another popular method is the Hough Transform [23-25], which 
clusters keypoints in pose space. The Hough Transform identifies 
clusters of keypoints with a consistent interpretation by using 
each keypoint to vote for all object poses that are consistent with 
the keypoint. However, in [12], it was shown that follow-ups are 
required after Hough Transform is performed in order to 
eliminate more false keypoint matches, e.g., least-squares pose 
determination, followed by a probabilistic model given in [18]. 
Moreover, Hough Transform requires a huge computation load in 
pixel transformation and a large storage (or memory) is also 
required for the voted Hough space. Without proper 
parallelization, it will be very difficult for Hough Transform to 
achieve real-time performance. 

3. Image Recognition Methodology 
This section describes our image recognition technique used to 
identify objects in different images. Keypoints between two 
images of the same scene or object must be robustly detected, 
described, matched and verified. We exploit Fast-Hessian 
detector and SURF descriptor proposed by Bay et al. [17] due to 
its speed and accuracy. We find the best match between a query 
image and the database images by Euclidean distance, using the 
k-d data structure and search algorithm [25]. The algorithm 
generalizes classical binary trees to higher dimensional spaces so 
that one can locate nearest neighbors to a descriptor vector in O 
(log N) time instead of the brute-force O (N) time, with N being 
the size of the images in the image database. 
The Agent (AIR) as illustrated in Fig. 1 inspects the keypoint 
matches based on spatial relations. Once the keypoints passed the 

inspection, the agent examines the reliability of the matched 
image. If the match is not satisfactory (unreliable), it will 
automatically switch to the LIS approach. The two tasks will be 
discussed in details in the following sections. 

 
Figure 1. Agent (AIR) is responsible for two main tasks 

3.1. Spatial Relations 

For each image, we save each detected keypoint and its nearest 
12 neighboring points. Let us consider a 3D coordinate frame and 
two planar surfaces of the same scene but with different camera 
angles. Let’s call the two planar surfaces R1 and R2 as shown in 
Fig. 2. R2 is defined by the point 𝑏𝑏0����⃗  and two linearly independent 
vectors 𝑏𝑏1���⃗   and 𝑏𝑏2����⃗  contained in the region. Let us consider a 
keypoint 𝑃𝑃2����⃗  in R2. Since the vectors 𝑏𝑏1���⃗  and 𝑏𝑏2����⃗  form a basis in R2, 
we can express 𝑃𝑃2����⃗  as 

𝑞𝑞1𝑏𝑏1���⃗ + 𝑞𝑞2𝑏𝑏2����⃗ + 𝑏𝑏0����⃗ = �𝑏𝑏1���⃗ ,𝑏𝑏2����⃗ , 𝑏𝑏0����⃗ � �
𝑞𝑞1
𝑞𝑞2
1
� = 𝐵𝐵�⃗�𝑞,        (1) 

where 𝐵𝐵 = �b1����⃗ , b2����⃗ , b0����⃗ � ∈  ℜ3×3  defines the planar surface R2, 
and q�⃗ =  (𝑞𝑞1, 𝑞𝑞2,1)𝑇𝑇 defines the 2D coordinates of 𝑃𝑃2����⃗  with 
respect to the basis �𝑏𝑏1���⃗ , 𝑏𝑏2����⃗ �. We can compute a similar identity 
for planar surface R1 as  

𝑃𝑃1���⃗ = 𝐴𝐴𝑠𝑠,��⃗            (2) 
where 𝐴𝐴 = (a1���⃗ , a2����⃗ , a0����⃗ ) ∈  ℜ3×3 defines R1, and 𝑠𝑠 = (𝑠𝑠1, 𝑠𝑠2,1)𝑇𝑇 
defines the 2D coordinates of 𝑃𝑃1���⃗  with respect to the basis (a1���⃗ , a2����⃗ ) 
We impose the constraint that point 𝑃𝑃1���⃗  maps to point 𝑃𝑃2����⃗   under 
perspective projection centered at the origin: 

P1���⃗ =∝ (q�⃗ )P2���⃗  ,         (3) 
where ∝ (q�⃗ ) is a scalar that depends on P2���⃗ , and consequently on 
q�⃗ . By combining the equation above with the constraint that P1���⃗ ,  
and P2���⃗ ,  must be situated in its corresponding planar region, we 
obtain the relationship between the 2D coordinates of these 
points: 

 s⃗ =∝ (q�⃗ )A−1Bq�⃗  ,         (4) 
where the role of ∝ (q�⃗ )  is to simply scale the term ∝ (q�⃗ )A−1Bq�⃗  
such that its third coordinate is 1. We can represent ∝ (q�⃗ )A−1 B 
as a homography matrix Hm and compute the above equation as 

s⃗ = Hmq�⃗  ,         (5) 
If R1 and R2 are true corresponding planars, the keypoint P2���⃗  and 
its 6 nearest neighboring points (shaded in different colors in Fig. 
2) in R2 should fit the homography matrix Hm to correctly locate 
the 7 corresponding keypoints in R1. There are more than 6 
nearest neighbors (total of 12) stored in a descriptor vector 
although only 6 are used. 
This is to solve the asymmetric problem where a point can be 
detected in one quadrilateral region but not in the other, and thus 
the nearest 6 neighbors may be slightly different in this case. E.g., 
the 6th nearest neighbor for P2���⃗  in R2 may be the 7th nearest 
neighbor for P1���⃗  in R1. Therefore, we stored slightly more than 6 
nearest neighbors to overcome this problem. 
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Figure 2. Point projectivity between two planar surfaces R1 and R2 of the 

same scene but different camera angles 

Observations after various experiments summarized the point-to-
point homography matching results into different cases. Given 
two planar surfaces (may be true or false corresponding pair) R3. 
and R4., a keypoint (let’s call it P3���⃗ ), its 6 nearest neighboring 
points �P3a�����⃗ , P3b,������⃗ … , P3f�����⃗ �, and their corresponding points in R4 
(may be true or false corresponding points) denoted as P4���⃗ ), 
�P4a�����⃗ , P4b,������⃗ … , P4f�����⃗ �, the 7 frequent cases after projectivity of the 7 
points by Hm from R3 to R4 can be categorized as: 

All 7 points P4���⃗ , P4a�����⃗  to P4f�����⃗  found. 
P4���⃗ ,  found, and most neighboring points (≥ 4) found. 
P4���⃗ ,  not found, but most neighboring points (≥ 5) found. 
P4���⃗ ,  found, and few neighboring points (< 4) found. 
P4���⃗ ,  not found, and few neighboring points (< 5) found. 
P4���⃗ ,  found, but no neighboring points (< 1) found. 
All 7 points P4���⃗ , P4a�����⃗  to P4f�����⃗  not found. 

We determine from experiments that candidate points falling 
within cases 1-3 give very high accuracy of correct matches. As a 
result, we only consider a candidate point as valid if it falls within 
these three cases. This approach is very robust since it does not 
evaluate the pair of candidate points in the two planar surfaces 
individually, but as a whole with the neighbors in order to 
adjudicate if the pair is a correct match. Consequently, keypoints 
coming from other objects or structures, e.g., the dense keypoints 
detected on a tree, will have very low chances of being matched. 
We are also the first to recover keypoints that are not detected in 
one image but in the other. This can be easily understood from 
case 3 where P4���⃗ , is not found but most of the neighboring points 
(at least 5) are found. We can recover such missing (undetected) 
keypoint in an image if the point exists in the other image and 
most of their neighboring points are corresponded. This solves 
the common problem in keypoint detection where the numbers of 
detected keypoints in two images are asymmetric. Given that the 
numbers of keypoints are asymmetric in the pair of planar 
surfaces, in this case R3 and R4, we apply an inverse homography 
matrix Hm

−1  to the unmatched keypoints in R4 to locate any 
corresponding keypoints in R3 in the same manner as before. 
Eventually, the best pair of corresponding planar surfaces in the 
two images will obtain the largest list of corresponding keypoints. 
However, homography based method only works well on images 
comprising planar rectangular structures or quadrilateral regions 
as described above. When it comes to non-planar scenes, the 
approach is unstable. AIR recognizes this failure by examining 
the number of keypoint matches, e.g. low number of matches 
indicates unreliability of matched image. Alternate approach 
(LIS) is substituted, which will be discussed next. 

3.2. Longest Increasing Subsequence (LIS) 

In this method, we find true keypoint matches by imposing a 
geometrical constraint on the matches. This constraint applies to a 
set of matched keypoint-pairs. Our assumption is that true 
keypoint matches are the elements of the largest subset of 

corresponding keypoints which are consistent. The set of matched 
keypoint-pairs are consistent if the keypoints order is the same in 
both images. We can find the largest subset by calculating the 
longest increasing subsequence [26]. The pseudo-code for the 
algorithm is provided in Algorithm 1. First we sort the keypoints 
according to their x coordinate in the first image. Then we create 
a sequence from the x coordinates of the keypoints in the second 
image (keeping the order after sorting). The longest increasing 
subsequence of this sequence will give us the indexes of the 
keypoints we want. They will be geometrically consistent and 
they will be the largest subset of such. Fig. 3 illustrates this. 

 
Figure 3. An illustration of Longest Increasing Subsequence (LIS) on two 
images with detected keypoints as shown. The LIS output in this case is 0, 

2, 3, 4, 6, 7 

This geometrical constraint is invariant to translation and scaling. 
Those transformations do not have effect on the geometrical 
orders of the keypoints. It also allows a little elasticity. However, 
it is not invariant to rotation, affine transformation, and 
homographic transformations. Those can change the relative 
order of the keypoints. We can address this problem by 
calculating the LIS on rotated images. We only have to apply the 
rotation on the keypoint coordinates, so we do not rotate the 
whole image and extract the keypoints again. Assuming we have 
found the “right” angles of rotation, we can prove that LIS is 
invariant to affine transformations. 
  

Algorithm 1 Find LIS in Array A 

n := A.length 
m-idx : = newArray(n) 
m-val := newArray(n) 
previous : = newArray(n) 
maxJength : = 0 
for i from 0 to n-1: do 

//Binary search in the m-val array 
idx := lowerJbound(m-val[0 : max-length], A[i]) 
mJdx[idx] := i 
mval[idx] : = A[i] 
if idx > 0 then 
previous[i] : = mJdx[idx - 1] end if 
if idx = maxJength then 
maxJength : = maxJength + 1 
end if  

end for 
LIS := newArray(maxJength) idx := mJdx[maxJength - 1] 

for i from maxJength-i to 0 do 
LIS [i] := idx  
idx := previous[idx]  

end for  
return LIS 
 
The proof of affine invariance is as follows: Let Affine ∶  ℜ2 →
ℜ2 be an affine transformation. A f fine (p�⃗ ) = Αp�⃗ + t⃗ where  

𝛢𝛢 =  �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� is the affine transformation matrix, and  
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t⃗ = �e
f� is the translation vector. Let Rotate ∶  ℜ2 → ℜ2be a 

rotation. Rotate(p�⃗ ) =  Rp�⃗  where  

R =  �cos θ − sin θ
sin θ cosθ � 

and θ is the angle of the rotation. If we apply an affine 
transformation on a set of points P =  {pı���⃗  ∈  ℜ2}, and also apply 
the rotation, we will get P′ =  �pı′���⃗  ∈  ℜ2� where pı′���⃗ =
Rotate(A f fine(pı���⃗ )). The detailed equation is as follows: 

�
xi′ 
yi′
� =  �cos θ − sin θ

sin θ cos θ ���
a b
c d� �

xi
yi� + �e

f��       (6) 

where  

�
xi
yi� = pı���⃗  and �

xi′ 
yi′
� = pı′���⃗ . 

Our only concern is the difference between the x coordinates of 
two points (P_0 ) ⃗  and (P_1 ) ⃗ (the original points) and the 
difference between the x coordinates of (P_1^' ) ⃗ and -(P_0^' ) ⃗ 
(the transformed points). From eq. 6 we can derive the following: 

𝑥𝑥1′ − 𝑥𝑥0′ = (𝑎𝑎 cos𝜃𝜃 − 𝑐𝑐 sin𝜃𝜃)(𝑥𝑥1 − 𝑥𝑥0) + (𝑏𝑏 sin𝜃𝜃 −
                      𝑑𝑑 cos𝜃𝜃)(𝑦𝑦1 − 𝑦𝑦0)                                                    (7)      (7) 

We can choose 𝜃𝜃 (and also r) from the equations b = r sin 𝜃𝜃 and d 
= r cos 𝜃𝜃, where 𝜃𝜃, 𝑟𝑟 ∈ ℜ and r det(A) > 0 assuming 𝑑𝑑𝑑𝑑𝑑𝑑(𝐴𝐴)  ≠
 0. This is always true in practice. The 𝜃𝜃 will be the “right” angle 
we should choose so that 𝑥𝑥1′ − 𝑥𝑥0′  will not be dependent on the y 
coordinates y1 and y0. After substitution, eq. 7 can be rewritten 
as: 

𝑥𝑥1′ − 𝑥𝑥0′ = �𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏
𝑟𝑟

� (𝑥𝑥1 − 𝑥𝑥0) .        (8) 

𝐴𝐴𝑠𝑠 �𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏
𝑟𝑟

� = det (𝐴𝐴)
𝑟𝑟

> 0, we showed that we can preserve the 
relative order of points by applying a carefully chosen rotation. 
In practice we do not know 𝜃𝜃, because we do not know the 
parameters of the affine transformation. But computing LIS is 
very fast, so we can afford to do it multiple times. We randomly 
choose several angles for the first and for the second image. We 
compute the LIS for all possible angle-pairs (KxL times if the 
numbers of angles are K and L for the images respectively). We 
keep the true matches from the largest subset we obtained. We 
create the angles for the first image by the following steps. First 
we choose a random angle 𝜃𝜃 = 𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑(0,2𝜋𝜋). Then the set of 
angles becomes  

𝜃𝜃𝑘𝑘 = �𝜃𝜃 + 𝑘𝑘.2𝜋𝜋
𝐾𝐾
�,  

where k=0,1,….,K-1. We choose the 𝜃𝜃𝐿𝐿 angles for the second 
images similarly. K = 3 and L=7 are good choices based on our 
experiments. 

4. Experiment 
We validate the AIR approach in an image retrieval experiment. 
We compare it with three other schemes. Thus, the four schemes 
in our evaluations are as follows: (1) SURF + RANSAC 
Homography [21, 27], (2) SURF + LIS standalone, (3) SURF + 
Spatial Relations standalone, and (4) SURF + AIR. We include 
SURF + LIS standalone and SURF + Spatial Relations standalone 
in our evaluation although AIR is comprising both LIS and 
Spatial Relations. The reason is because we want to determine 
from the results whether the agent (AIR) is intelligent enough to 
switch between the two approaches for different images. The 
results should be improved with AIR. 
 

4.1. Data set and Evaluation measures 

We use the Stanford Mobile Visual Search data set proposed in 
[28] for our evaluation. This data set has several key 
characteristics that are lacking in existing data sets: rigid objects, 
widely varying lighting conditions, perspective distortion, typical 
foreground and background clutter, realistic ground-truth 
reference data, and query data collected from heterogeneous low 
and high- end camera phones. The data are in several different 
categories: CDs, DVDs, books, business cards, text documents, 
video clips, and museum paintings. Some sample query and 
database images are shown in Fig. 4. The number of database and 
query images for different categories is shown in Table 1. There 
are a total of 2800 query images for 700 distinct classes across 7 
image categories used in the evaluation. The original resolution 
of the images varies for all categories, and we deliberately reduce 
the size of the images to 320 x 240 to make them more compact 
for efficient transmission and storage, well-suited for mobile 
visual search applications. This also makes the evaluation more 
challenging (dealing with low resolution images). 
The evaluation measures are straightforward. We report the 
percentage of correct images retrieved and the average number of 
matched keypoints for each category. These measurements are 
similar to the ones used in [28]. 

Table 1. Number of query and database images for different categories 
used in the evaluation. 

Category Database Query 
CDs 100 400 
DVDs 100 400 
Books 100 400 
Video Clips 100 400 
Business Cards 100 400 
Text Documents 100 400 
Paintings 100 400 

 
Figure 4. Stanford Mobile Visual Search data set (Chandrasekhar et al., 
2011)used for our evaluation. We used a total of 7 categories as shown. 

The images are captured with a variety of camera-phones, and under 
widely varying lighting conditions 
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(a) 

 
(b) 

Figure 5. Results of the four approaches for each data set’s category 
(total of 7). (a) shows the image matching accuracy (correct retrieval) in 

percentage. (b) shows the average number of matched keypoints 

4.2. Results 

In Fig. 5, we report results for the four schemes as described 
above. Firstly, we observe that SURF + Spatial Relations 
standalone and SURF + LIS standalone do not give the best 
results. However, when they are combined into the AIR 
approach, it translates into better retrieval results. Out of the 7 
categories in the data set, SURF + AIR dominates 6 categories as 
shown in Fig. 5(a), with 1 category (videos) having the same 
matching accuracy with SURF + RANSAC homography. LIS 
achieves highest matching accuracy among all in the video clips. 
Secondly, we note that SURF + AIR and SURF + Spatial 
Relations both give very high average number of matched 
keypoints as shown in Fig. 5(b). The average number of matched 
keypoints in each category is about twofold and more of SURF + 
RANSAC homography. This is predictable as the spatial relations 
approach can recover missing (undetected) keypoints based on 
neighboring relations as explained in Section 3.1. 

5. Conclusions 
In this paper, we have proposed a novel design of an image 
recognition agent called AIR (Agent for Image Recognition) 
showing high potential in image matching and image retrieval 
applications. AIR is able to verify true keypoint matches while 
recovering missing (undetected) keypoints in one image by 
exploiting the spatial relations approach as described in Section 
3.1. It is more robust to false keypoint matches or noise as it does 
not only evaluate each pair of candidate keypoints in the two 
images, but also on each of their neighboring keypoints based on 
spatial proximity. 
AIR is also able to recognize instability of the homography-based 

approach in certain images, and automatically switches to the LIS 
(Longest Increasing Subsequence) approach as proposed in 
Section 3.2. The LIS approach allows less rigid correspondence 
between the matched image pairs. 
We have demonstrated AIR in an image retrieval experiment on 
the Stanford Mobile Visual Search data set, where the results 
favored AIR for its increased accuracy and larger number of 
matched keypoints. It achieved a twofold more matched 
keypoints when compared to the state- of-the-art approach (SURF 
+ RANSAC homography). 
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