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Abstract: In prostate cancer detection and diagnosis, high b-value diffusion MR signals of the prostate tissues are of great concern. MR 

scanners and computation methods face difficulties in obtaining these signals. This study aims development of a neural network model to 

predict the MR signal amplitudes at high b-values from the amplitudes at low b-values. Synthetic diffusion MR signals are generated using 

a kurtosis model for noise-free and noisy conditions considering nine b-values: the low b-values are 0, 50, 250, 500, 750s/mm2 and the 

high b-values are 1000, 1250, 1500, 2000s/mm2. Four radial basis functions neural networks (RBF-NN) connected in parallel are designed 

to accept the signal amplitudes at low b-values and to provide signal amplitudes at the high b-values. RBF-NNs housing altered number of 

neurons with radial basis functions attributing different widths in the hidden layers of the networks are analyzed. Learning and prediction 

performances of the NNs are assessed from training and testing datasets. For the noise-free condition, RBF-NNs reveal perfect predictions 

(r= 1.000) with very good learnings (MSE= 0.76-0.02×10-6). For the noisy conditions, the RBF-NNs achieve moderate to strong predictions 

(r= 0.981-0.463) with good learnings (MSE= 0.32-10.33×10-3). Prediction performance reduces as the level of noise and/or targeted high 

b-value increases. RBF-NNs facilitate prediction of high b-value diffusion MR signals of the prostate by requiring no diffusion signal 

decay function, optimization algorithm or initial/boundary values for the optimization algorithm. They may be quite functional in accurate 

voxel-wise generation of high b-value MR images for early detection and diagnosis of prostate cancer. Further prospective studies are 

needed to justify the potential benefits in clinical practice. 

Keywords: Prostate, diffusion signal, neural network, prediction  

 

1. Introduction 

Diffusion-weighted imaging (DWI) is a non-invasive magnetic 

resonance (MR) imaging technique that is gaining increased 

acceptance in characterization of human tissue for early detection 

and diagnosis of cancer [1]. The technique relies on tracing 

microscopic mobility of water molecules influenced by cell 

density, membrane integrity, microstructure, perfusion and 

diffusion heterogeneity within the tissues. A diffusion MR signal 

is established from the results of mobility measurements taken for 

a set of diffusion weightings called b-values [2]. Theoretically, a 

specific b-value is obtained by adjusting the strength, duration and 

spacing of the pulsed gradients established by the MR scanner [3]. 

Increased gradient amplitude or duration or widened interval 

between gradient pulses results in a high b-value. However, the 

acquisition of a high b-value diffusion signal with acceptable levels 

of noise is quite challenging due to limitations of the current MR 

scanner hardware [4]. Exposure of living tissues to a high b-value 

may also lead to some annoying consequences such as mechanical 

vibration artifacts superimposed on the diffusion signals [5]. 

Despite these limitations, high b-value diffusion MR signals are of 

great concern in detection and diagnosis of prostate cancer [6]. 

Computed DWI offers good quality high b-value MR signals by 

eliminating noise and artifacts [7]. It involves extrapolation of the 

low b-value diffusion signal acquired by the MR scanner to obtain 

the high b-value signal for the targeted tissue. The extrapolation 

process consists of steps that should be performed with utmost 

care. First, a diffusion signal decay model should be selected 

appropriately. Next, the model should be fitted to the low b-value 

diffusion signal by intensive mathematical calculations or 

excessive computations performed using a properly selected 

optimization algorithm with well-adjusted initial values and/or 

boundaries of the model parameters. Following the fitting, 

estimates of the model parameters obtained should be used to 

compute the signal amplitude for a given high b-value. Currently, 

computed DWI is pronounced with a monoexponential decay 

model due to its simplicity and ease of fitting [8]. However, it has 

been reported that the monoexponential decay model offers a 

limited depiction of the diffusion signal decay for the prostate 

tissue and a more realistic depiction can be offered by a kurtosis 

model [9, 10]. The kurtosis model relies on a monoexponential 

model modified to include a kurtosis term that reflects both the 

Gaussian and the non-Gaussian diffusion of water within different 

prostate tissues [11]. The model inherently requires acquisition of 

MR signals with both low and high b-values that avoids its use in 

computed DWI. There is need for an alternative method that 

facilitates extrapolation of the low b-value MR signal to predict the 

amplitudes of the signal for high b-values without requiring any 

pre-defined signal decay model for the prostate. 

As artificial neural networks offer unique solutions to highly 

complex problems in many areas, they have recently been used in 

the processing of diffusion MR signals. Multilayer perceptron 

based neural network models are proposed to approximate 

complicated diffusion signal decay functions even in the presence 

of noise [12, 13]. In contrast, the current study introduces a neural 

network model based on radial basis function neural networks to 

predict high b-value diffusion MR signals of the prostate tissue. 
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2. Materials and Methods 

2.1. Diffusion MR Signals of the Prostate Tissue 

Synthetic diffusion MR signals of the human prostate gland are 

generated for both the tumorous tissue and the healthy tissue using 

a kurtosis model and Monte Carlo trials. Let 𝑠𝑏 be the diffusion 

signal amplitude obtained for a specific diffusion weighting 

determined by a b-value and let 𝑠0 be the signal amplitude attained 

with no diffusion weighting (i.e., b= 0s/mm2). The kurtosis model 

expresses the attenuated diffusion signal by kurtosis analysis [11]: 

𝑠𝑏 𝑠0⁄ = 𝑒𝑥𝑝 (−𝑏𝐷𝑎𝑝𝑝 +
1

6
𝑏2𝐷𝑎𝑝𝑝

2 𝐾𝑎𝑝𝑝)               (1) 

Here, Dapp is the kurtosis diffusion coefficient and Kapp is the 

apparent diffusional kurtosis with no unit. Dapp and Kapp value pairs 

are quite variable for the prostate tissue; however, higher Dapp and 

lower Kapp value pairs are conveyed for the healthy tissue and 

lower Dapp and higher Kapp value pairs are mentioned for the 

tumorous tissue [10, 14-19]. In the literature, the only study that 

applies noise correction on signals states that on mean (SD), Dapp= 

2.05(0.36)×10-3mm2/s and Kapp= 0.64(0.12) for the healthy 

prostate tissue whereas Dapp= 1.53(0.45)×10-3mm2/s and Kapp= 

0.84(0.22) for the tumorous prostate tissue from signals acquired 

at b-values of 0, 50, 250, 500, 750, 1000, 1250, 1500 and 2000 

s/mm2 by a 3T MR scanner [16]. In the current study, considering 

these Dapp and Kapp value pairs and the set of b-values, Monte Carlo 

trials are performed to generate one thousand noise-free diffusion 

signals for tumorous and for healthy prostate tissues by solving Eq. 

1. The noisy forms of the signals are obtained by adding Rician 

noise at four different signal-to-noise ratios (SNR) of 10, 20, 40 

and 80 that are commonly experienced in clinical practice [20]. 

SNR is defined as the ratio of the normalized diffusion signal 

amplitude obtained without any diffusion weighting to the standard 

deviation of the noise [21] and the Rician noise is simulated by 

incorporating two Gaussian noise terms with the same noise 

standard deviation [22].   

2.2. Neural Network Model to Predict Diffusion MR Signals 

The neural network model developed in the current study consists 

of four radial basis function neural networks (RBF-NN) connected 

in parallel as presented in Fig. 1. The input for all the networks is 

the low b-value signal amplitude vector, 𝒔𝑙𝑜𝑤  that comprises the 

amplitudes of a diffusion MR signal at five low b-values of 0, 50, 

250, 500 and 750s/mm2. The output of each network is the 

predicted amplitude of the diffusion MR signal by the network at 

a certain high b-value, �̃�ℎ𝑖𝑔ℎ. High b-values considered in the 

current study are 1000, 1250, 1500 and 2000s/mm2 and therefore 

RBF-NN1, RBF-NN2, RBF-NN3 and RBF-NN4 respectively output 

�̃�1000 , �̃�1250,  �̃�1500 and �̃�2000.  

 
Fig. 1. The neural network model introduced.  

 

Fig. 2. Architecture of an RBF-NN in the model. 

All the networks are equipped with one hidden and one output 

layers connected in cascade with the same architecture seen in Fig. 

2. The output layer is fitted with a single neuron while the hidden 

layer houses many neurons. Each neuron in the hidden layer owns 

a Gaussian basis function giving an output by 

𝜑𝑖(𝒔𝑙𝑜𝑤) = 𝑒𝑥𝑝 (−
‖𝒔𝑙𝑜𝑤− 𝒄𝑖‖

1.44𝛼𝑖
2 )                        (2) 

Here, αi and ci are respectively the width and the center vector of 

the basis function for the i-th neuron in the hidden layer and            

||.|| denotes the Euclidean norm. The neuron at the output layer 

reveals the predicted value of the diffusion signal amplitude for a 

specific high b-value using  

�̃�ℎ𝑖𝑔ℎ = 𝜆0 + ∑ 𝜆𝑖𝜑𝑖(𝒔𝑙𝑜𝑤)𝑁
𝑖=1                         (3) 

here λ0 is the bias for the neuron in the output layer and λi is the 

weight of the i-th output of the hidden layer to the neuron in the 

output layer (i= 1, 2, 3, …, N). N represents the total number of 

neurons in the hidden layer.  In the current work, numerous RBF-

NNs are assembled with α varying from 0.2 to 2.0 with an 

increment of 0.2 and N ranging from 4 to 103. This range 

guarantees accurate assessment of the highest network 

performance possible. 

2.3. Neural Network Training and Testing  

Among the synthetic diffusion MR signals generated, 60% of the 

signals are assigned to training dataset while the remaining 40% of 

the signals are assigned to testing dataset randomly. This process 

is performed ten times resulting in ten randomly assigned training 

and testing dataset pairs.  

The networks assembled are trained with the training datasets by 

following a two-phase strategy. In the first phase, a predefined 

number of neurons is populated in the hidden layer and the widths 

of the Gaussian basis functions for the neurons are all set to a 

predefined value. The center for each basis function is determined 

by performing orthogonal least-squares learning [23]. In the 

second phase, the weights for the outputs of the hidden layer and 

the bias for the output layer are found by building the system 

equations and solving the equations using singular value 

decomposition [24]. Following training, the networks are tested 

with the relevant testing datasets. 

2.4. Performance Assessment  

The learning performances of the neural networks during training 

are assessed by mean squared error, MSE that gives the average 

squared difference between the ground truth and the predicted 

amplitudes of the diffusion signals for a specific high b-value. A 

lower MSE value denotes better learning for a network [25]. The 

prediction performances of the networks are assessed during 

training and testing using Pearson correlation coefficient where r 
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       (a)      (b)                (c) 

Fig. 3. Representative (a) noise-free and (b, c) noisy diffusion MR signals. 

reveals the linear association strength between the ground truth and 

the predicted amplitudes of the diffusion signals for a particular 

high b-value.  r takes values ranging from -1 (perfect negative 

association) to +1 (perfect positive association). According to the 

guidelines of Evans [26], interpretation definitions for the absolute 

value of r are as follows: 0-0.19: very weak, 0.20-0.39: weak, 0.40-

0.59: moderate, 0.60-0.79: strong and 0.80-1.00: very strong. 

Among the neural networks performing diffusion signal amplitude 

predictions for the same high b-value, the neural network that 

achieves the highest r with the lowest number of neurons in its 

hidden layer is recognized as the optimal neural network. Optimal 

neural networks are identified individually for the noise-free and 

the noisy conditions.  

3. Results 

Fig. 3a shows representative noise-free diffusion MR signals for 

the healthy and the tumorous tissues of the prostate generated 

respectively using Dapp= 2.05×10-3mm2/s and Kapp= 0.64, and 

Dapp= 1.53×10-3mm2/s and Kapp= 0.84. Noisy forms of the signals 

obtained by adding Rician noise to the noise-free signals at the four 

different signal-to-noise ratios (SNR) are shown in Fig. 3b-c (Each 

tissue is mimicked by five diffusion MR signals considering one 

noise-free and four noisy conditions). 

A total of 10000 diffusion MR signals are synthetically generated 

in five two-thousand signal sets for the noise-free and four noisy 

conditions. Of each two-thousand signal set, 1200 signals are 

randomly assigned to the training dataset and the remaining 800 

signals are dedicated to the testing dataset. This process is repeated 

ten times leading to a total of fifty training and testing dataset pairs 

used to train and test a total of 1000 radial basis function neural 

networks (RBF-NN) housing one-hundred different numbers of 

the neurons (N= 4, 5, 6, …, 103) with ten different basis function 

widths (α= 0.2, 0.4, 0.6, …, 2.0) in the hidden layer.  

Fig. 4 shows the performances of the RBF-NNs in the model 

developed to predict diffusion signal amplitudes at the high           b-

values for the noise-free condition. Accordingly, the optimal 

neural networks identified are as listed in Table 1. The networks 

do all reveal the perfect positive association (r= 1.000) presenting 

that the signal amplitudes predicted are almost equal to the ground 

truth signal amplitudes at all high b-values targeted (i.e. 1000, 

1250, 1500 and 2000s/mm2).  However, an increased number of 

neurons in the hidden layer of the networks is needed to guarantee 

the perfect positive association. Average squared differences 

between the ground truth and the predicted amplitudes of the 

diffusion signals from the training datasets for the networks are 

quite low (MSE= 0.76-0.02×10-6) illustrating very good learning 

for all the networks.  

Performances of the RBF-NNs in the model developed to predict 

diffusion signal amplitudes for the noisy conditions are seen in Fig. 

5. Optimal neural networks identified are as given in Table 2. For 

all SNRs considered, the networks do all reveal positive 

association but with varying degrees (r= 0.981-0.463) and varying 

average squared differences (MSE= 0.32-10.33×10-3). Association 

strength decreases as SNR decreases and/or target high b-value 

increases. For SNR=80, very strong associations are observable 

(r= 0.981-0.824). The association strengths is lowering as SNR 

reduces to 40 and is being strong as targeted    b-value is increased 

to 2000s/mm2 (r= 0.946-0.691). As SNR is decreased further to 20, 

the association strengths lower further and becoming moderate 

when targeted b-value is set to 2000s/mm2 (r= 0.848-0.563). When 

SNR is set to its lowest value of 10, the association strengths gain 

their lowest values but the association strength is still moderate 

when the targeted b-value is fixed to 2000s/mm2 (r= 0.682-0.463). 

Fig. 6 and Fig. 7 illustrate the tendencies of the prediction and the 

learning performances offered by the optimal networks with 

respect to the SNRs and the high b-values studied. For a specific 

SNR, the learning and the prediction performances decrease as the 

high b-value targeted increases; however, increase in SNR leads to 

better learning and prediction performances regardless of the high 

b-value targeted. 

 
Fig. 4. Performances of the neural networks for the noise-free condition. 
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(d) 

Fig. 5. Performances of the neural networks for the noisy condition possessing (a) SNR=80, (b) SNR=40, (c) SNR=20 and (d) SNR=10. 
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Table 1. Optimal neural networks for the noise-free condition 

High b-value 

(s/mm2) 

Optimal Neural Network Attributes 

r N α MSE (×10-6) 

1000 1.000 5 1.0 0.71 

1250 1.000 8 1.4 0.76 

1500 1.000 13 1.0 0.43 

2000 1.000 33 0.2 0.02 
 

Table 2. Optimal neural networks for the noisy condition 

SNR 

High b-value 

(s/mm2) 

Optimal Neural Network Attributes  

r N α MSE (×10-3) 

80 1000 0.981 53 1.0 0.32 

1250 0.966 71 0.2 0.50 

1500 0.937 51 2.0 0.83 

2000 0.824 78 0.2 3.01 

40 1000 0.946 45 1.6 0.96 

1250 0.922 64 0.2 1.18 

1500 0.879 72 0.2 1.64 

2000 0.691 103 0.2 5.12 

20 1000 0.848 46 1.0 3.04 

1250 0.817 41 1.8 3.18 

1500 0.763 47 1.2 3.65 

2000 0.563 101 0.2 7.56 

10 1000 0.682 103 0.2 7.95 

1250 0.647 102 0.2 7.23 

1500 0.608 101 0.2 6.95 

2000 0.463 93 0.4 10.33 
 

 
Fig. 6. Prediction performances of the optimal neural networks. 

 
Fig. 7. Learning performances of the optimal neural networks. 

4. Conclusion 

A neural network model has been developed to predict the 

normalized signal amplitudes of diffusion MR signals of prostate 

tissues at high b-values from the amplitudes acquired at low         b-

values using diffusion weighted imaging (DWI). In the current 

implementation, the low b-values considered are 0, 50, 250, 500 

and 750s/mm2 while 1000, 1250, 1500 and 2000s/mm2 are the four 

high b-values targeted. Additionally, the model consists of four 

radial basis function neural networks (RBF-NN) connected in 

parallel. The networks are all equipped with one hidden layer and 

one output layer and accept the low b-value signal amplitudes as 

the input. The hidden layer performs a nonlinear transform of the 

input, and the output layer is a linear combiner mapping the 

nonlinearity into a new space giving the predicted signal amplitude 

at a particular high b-value. A huge number of  RBF-NNs housing 

altered number of neurons with radial basis functions attributing 

different widths are tested on prostate diffusion MR signals 

generated synthetically using a kurtosis model and Monte Carlo 

trials for noise-free and noisy conditions. In the absence of noise, 

an RBF-NN may provide perfect predictions for the signal 

amplitudes at all high b-values; however, to assure this 

performance, it is needed to increase the number of neurons in the 

hidden layer of the network while the high b-value targeted 

increases. RBF-NNs have very good learning capability for the 

noise-free signals. For the noisy condition, prediction performance 

by an RBF-NN reduces while the level of noise increases. In 

addition to this, the prediction performance also reduces while the 

high b-value targeted increases for a specific noise level. However, 

outstanding prediction performances are attainable by the RBF-

NN for all high b-values for low noise levels (i.e. SNR> 40). On 

the other hand, the learning performance of an RBF-NN 

deteriorates when the level of noise increases and/or the high b-

value targeted increases. 

There are some limitations of the current study. The diffusion MR 

signals are synthetically generated data mimicking the tissues 

within the peripheral zone of the prostate only. The performances 

of the networks reported may be debatable for the clinical data and 

may also differ for the tissues within the central and the transitional 

zones of the prostate (For these zones, DWI inherently suffers from 

a reduced tumor detection performance [27]). The noisy forms of 

the diffusion signals are produced with Rician noise that converges 

to Gaussian noise as SNR increases. The Gaussian basis functions 

within the RBF-NNs might cope with the Gaussian noise better and 

therefore, the networks could predict signal amplitudes at high b-

values better as SNR increases. The RBF-NNs are trained using 

60% of the signals and tested with the remaining 40% of the signals 

among the synthetic diffusion MR signals generated. These 

percentages are determined with utmost care after intensive 

experiments on the entire dataset. Utilization of different 

percentage values may lead to overtraining or undertraining 

problems resulting in unrealistically high or low overall prediction 

performances.  The center for each basis function within the RBF-

NNs is determined by performing orthogonal least-squares 

learning that offers a simple and efficient means for fitting the 

networks while overcoming numerical ill-conditioning [23]. 

However, the use of “recursive” orthogonal least-squares learning 

may lead to acceptable performances with significant reductions in 

the number of neurons in the hidden layer of the networks [28]. 

The widths of basis functions in an RBF-NN are all set to a single 

value that delivers universal extrapolation capability for the 

networks, but radial basis functions with dedicated widths might 

improve the performances of the networks further. The optimal 

RBF-NNs attributing larger radial basis function widths provide 

smoother signal extrapolations but the networks with smaller 

widths might not be generalized well.  

To the best of our knowledge, the current work is the first study on 

the use of neural networks to predict high b-value diffusion MR 

signals. The neural network based solution introduced involves 

neither a signal decay function nor an optimization algorithm; 

moreover, signal predictions are performed quite fast once the 

learning of the neural network is accomplished. Therefore, it may 

offer less computational complexity and shorter computation time 
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than the computed DWI. A comparative work on the benefits of 

each solution is left as future work. On the other hand, the neural 

network based solution introduced consists of RBF-NNs 

connected in parallel that are fed by the signal amplitudes acquired 

at low b-values. Alternatively, the RBF-NNs may be connected in 

cascade so that the signal amplitude at a particular high b-value 

predicted by an RBF-NN can be supplied with the predictions by 

the previous networks and the signal amplitudes at low b-values to 

the input of the following network. This setup will iteratively 

increase the degrees-of-freedom for the solution and may improve 

the accuracy of the predictions especially for large high b-values 

and for higher noise levels, consequently. This issue is left for 

future work. Despite these, diffusion MR signals from the 

tumorous and the healthy tissues of the prostate are solely 

considered for the current study. Whereas DWI performed at 

clinical practice reveals diffusion MR signals of the tissue volumes 

of the prostate that may be mixtures of tumorous and healthy 

tissues. Testing and validation of the introduced model on such 

volumes will be aimed in future work.  

In conclusion, radial basis function neural networks may facilitate 

the prediction of high b-value diffusion MR signals of the prostate 

without requiring any diffusion signal decay function, optimization 

algorithm or initial/boundary values for the optimization 

algorithm. These networks may also be quite functional in accurate 

voxel-wise generation of high b-value MR images of the whole 

prostate tissue in detection and diagnosis of prostate cancer. 

Further prospective studies are needed to justify the potential 

benefits in clinical practice. 
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