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Abstract: In this paper, teaching multiple types of complex trajectories at once to a robot in a robust, easy to train model using Learning 

from Demonstration is studied where the robot is expected to gain the capacity to differentiate between different types of demonstrated 

trajectories and be able to reproduce these trajectories correctly. Demonstrated trajectories are used to train a Hidden Markov Model 

(HMM) and a modified version of Gaussian Mixture Regression (GMR) -which utilizes state transition probabilities between states of the 

HMM, the most probable state the end effector of the robot belongs to in the current reproduction of the trajectory, and previous points in 

the current reproduction of the trajectory- is used to estimate the trajectory iteratively. A Proportional Derivative (PD) controller is 

employed for the reproduction. Starting points that are intended to correspond to different types of trajectories which the robot is 

expected to differentiate between are tested on numerical and simulation experiments. Multiple numerical experiments and simulation 

experiments showed that our modified algorithm produced comparable results to previous work, and in certain complex trajectories our 

algorithm was successful where previous work has failed to produce expected results. 
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1. Introduction 

Robots that have the capacity of generalization will perform 

skilfully both in situations which they possess experience, and by 

adjusting their behaviours accordingly in situations which they 

have no previous experience. Today, robots without the capacity 

of generalization are able to perform skilfully in structured 

environments in which the tasks they perform are based solely on 

experience. The attention is therefore shifted to building models 

which give the robots the ability to generalize to perform in more 

dynamic environments, where changes occur, and the desired 

reproduction of the task has potential variations in each 

reproduction. Recent advances in materials science, computer 

vision, machine learning and control fields, combined with 

increasing computing power of CPUs and GPUs, and their 

common availability enable researchers to utilize powerful 

models and create robots which can perform successfully in 

uncertain and dynamic environments. Robots that have some 

capacity to generalize will find applications that are not limited to 

structured environments like factories and assembly lines but also 

semi-structured ones that give the robot some required freedom to 

handle variations in the task while still limiting the robot’s 

operation to a certain degree, where the desired robot 

functionality can be achieved through limited autonomy. Robots 

are able to perform successfully in environments such as 

warehouses, shops behind a counter where interaction is limited 

and where manual labor is essential and the task and objects are 

well-defined, such as pick and place, push and pull etc. with 

limited variations in the task definition. This will soon be 

followed by robots aiding humans in their daily lives in their 

homes or in their work as well, in collaboration and without any 

need for expertise in robotics [1]. In this paper, we build such a 

model, able to learn and reproduce different and complex 

trajectory following tasks with some generalization capability. 

In the context of this paper, a complex trajectory means that in a 

single trajectory following task, among multiple types of 

demonstrated trajectories, there are position or velocity values 

which are the same, and at these points different types of 

demonstrations cross each other. These points are named as 

crossing points. 

Learning from Demonstration (LfD) [1] has been suggested as an 

efficient and intuitive way to teach new skills to the robots, where 

the robot observes, learns and imitates the actions demonstrated 

by the human tutors. LfD is a more time efficient technique than 

exploration-based ones as the search space is vastly reduced since 

learning process happens around desired outcomes, provided by 

an expert demonstrator which bears similarity to how humans 

learn many skills [2]. This shortens the amount of time spent 

learning compared to trial-and-error methods. Time and 

engineering effort are no longer needed to be spent creating a 

complex model with reward functions, tuning parameters and 

other requirements that may follow.  

Multiple types of trajectories that belong to the same task was 

taught to the robot, in order to give it the ability to choose the 

most appropriate way to perform a given variation of the task, 

and the crossing points provide a challenge to the technique 

utilized, by resulting in undesired trajectory estimations which 

will be explained in more detail in Section 4. 

In this work, using Hidden Markov Models (HMM) with a 

modified version of Gaussian Mixture Regression (GMR) was 

proposed. A model capable of reproducing a trajectory despite the 

differences coming from different demonstrations was intended. 

The robot was taught multiple types of trajectories together, with 

a small number of demonstrations for each.  With no common 
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parts in demonstrations of different types except for the crossing 

points, an HMM is able to correctly encode each demonstrated 

type using state transitions. State transition probabilities and the 

probabilistic information from the already produced portion of 

the trajectory is utilized in the GMR estimation. The robot is then 

able to decide on the type of trajectory it will reproduce based on 

the point it starts its execution and can reproduce the trajectory 

successfully. 

2. Related Work 

In this section, we provide a brief overview of the techniques 

applied previously with success. It was seen in the literature that 

Hidden Markov Models (HMMs), Gaussian Mixture Models 

(GMMs) [3] and Conditional Random Fields [4] can correctly 

model the probability distributions of the data from 

demonstrations. In [5], Task Parametrized GMMs are used, 

where after demonstrations have been processed, changing the 

parameter changes the reproduction of the task to accommodate 

the variability of the task. [16] tied the covariance matrices of the 

members of the mixture, which enabled reusing the parts of the 

task with similar pattern. They also used this method with task-

parametrized GMMs and task-parametrized Hidden semi-Markov 

models. Their approach was successful in tasks such as pick and 

place and object avoidance. [22] shows task-parametrized GMMs 

in a wide range of tasks including handling high dimensional data 

by clustering, performing control etc. and extends 

parametrization to different models, which take GMMs as a 

starting point. GMM is a powerful and an easily applied 

technique, however not for modelling tasks with multiple types of 

trajectories that have crossing points due to the potential of 

generating a state around these points. In such tasks GMM risks 

failure by starting the reproduction as one type of trajectory but 

after passing through the area with crossing points continuing 

reproduction as a different type of trajectory. This happens due to 

GMMs being only able to encode spatial information in the 

model. Our method can deal with this situation by exploiting the 

state transition probabilities encoded in the HMM, and only using 

the influence from the state with the maximum probability. An 

example of GMM failing as described will be presented in 

Section 4. [7] used a Task Parametrized GMM to compare with 

the reproduction from a Parametric HMM. When the direction 

parameter is not provided to the GMM, the reproduction is shown 

to fail since the algorithm is influenced by states belonging to 

multiple types of trajectories and the result is unlike any 

demonstrated trajectory.  

HMMs use state transition probabilities between states, ensuring 

correct transitions. This has parallels with how a trajectory is 

followed by humans such as starting from a point and moving 

through the areas belonging to the trajectory in a specific order, 

occurring in a single motion. HMMs can encode both spatial 

information, and through state transition probabilities multiple 

trajectories in the model, and therefore are able to correctly model 

the mentioned complex trajectories, which is why HMMs are 

preferred in this work. 

HMMs have been extensively used in the literature because of 

their ability to handle spatial and temporal variations in the data. 

Use of HMMs are combined with various techniques for 

trajectory reproduction.  

It has been found in the literature that multiple previous work 

utilized key points. An early approach using key points takes a 

single demonstration, which is segmented from its inflection 

points in a preprocessing phase, then HMM training occurs on the 

segments and the hidden states are determined. Spline 

interpolation is used to reproduce the trajectories and the model 

can differentiate different types of trajectories, tested on drawing 

letters [10]. Another approach with key points utilizes the 

Dynamic Time Warping algorithm to align the key points from 

all demonstrations. In the preprocessing phase, Linde-Buzo-Gray 

algorithm is used for the segmentation of demonstration data and 

key points are chosen based on position and velocity. Then key 

points are temporally aligned and HMMs are used for analysis of 

the variability of the motion and weighting of the key points. 

Lastly, spline interpolation is used to reproduce the trajectory 

[11].  

Another work uses Principal Component Analysis or Independent 

Component Analysis to remove the redundancies in the data such 

as variances and correlations caused by demonstrators, thus being 

able to work with the meaningful part of the data. Using 

dimensionality reduction techniques also helps with the training 

of HMM and the result is a model able to recognize and 

reproduce trajectories drawing letters, with the extra benefit of 

being robust to noise [12]. The same authors had another valuable 

work in which they used PCA to project the data and then apply a 

mixture of Gaussians and Bernoulli distributions to encode the 

information which they then used GMR to reproduce generalized 

trajectories [17]. 

Calinon et al. [6] used HMMs alongside Gaussian Mixture 

Regression (GMR) to build robust models to reproduce the 

dynamics of the observed movements. Aside from using state 

transition probabilities of the HMM, this work also benefits from 

using a recursive approach for points that are traversed during the 

reproduction of the trajectory, further taking advantage of the 

available information. Previous work in [7] employed a 

Parametric HMM with Dynamic Movement Primitives (DMP), 

able to learn complex action trajectories parametrically and used 

a mechanism to extract from the HMM states separate chains 

representing a type of trajectory to reproduce it. DMP framework 

enabled creating nonlinear trajectories that are robust to 

perturbations and variations in the motion [9]. The probabilistic 

information encoded in the HMM is utilized to identify the 

presence of high variance portions of the trajectory and enables a 

human to scaffold the movement during reproduction. Previous 

work in [8] used PHMMs with DMPs as well, integrating a 

coupling term in the DMP equation to increase robustness to 

perturbation using Associative Skill Memories. [20] utilized 

Locally Weighted Regression (LWR) [18] and Gaussian Process 

Regression (GPR) [19] to compute generalized DMP trajectories 

which are able to perform according to different goals and 

constraints. In their experiment, the robot was able to perform 

ball throwing and drumming tasks, which are similar to trajectory 

following. They also argue that using a latent space 

representation generated by a dimensionality reduction technique 

may result in loss of important details within the task. Another 

work succeeding in nonlinear settings but without DMP is LWPR 

[21] which uses many locally linear models to approximate 

nonlinear functions such as trajectories for a task and learns a 

dimensionality reducing transform. 

Our work uses HMMs alongside GMR, much like [6] but instead 

of summing up the influences from all states, we use only the one 

with the maximum probability. This enables our algorithm to 

decide on a type of trajectory to reproduce immediately without 

fail and be robust to multiple state transitions possibly occurring 

in the HMM. 
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3. Method 

HMMs can give information, based only on the sequence of 

observations, about the state sequence generating the 

observations. This makes HMM a very important model that 

finds use in prediction and recognition models. Here, a brief 

explanation will be given and for the interested reader, Rabiner 

provided a thorough tutorial on HMMs and their applications in 

speech processing [13]. 

3.1. Background 

3.1.1. Hidden Markov Models 

A Hidden Markov Model is a model of a system which is 

assumed to be a Markov process with hidden states. The state 

sequence and the distributions producing the observations are not 

visible, however the observations coming from these hidden 

states are visible. A local maximum solution for the parameters 

belonging to the states can be found by applying the Baum-Welch 

algorithm based on the provided observations [13]. 

An HMM is denoted as λ = {πi, A, B} where A = {aij} is the state 

transition matrix, aij is the state transition probability from state i 

to j and B = {bi(k)} is the observation probability matrix, bi(k) is 

the observation probability of an observation k under state i. The 

states are denoted with i, j = {1, 2, ...N} where N is the number of 

states in the model. 

3.1.2. Gaussian Mixture Regression 

Distributions which the observed data come from are assumed to 

be Gaussian, after applying the Expectation-Maximization 

algorithm, a local maximum solution for the parameters of 

Gaussians are found. This is called a GMM. GMR is a supervised 

learning technique which can be used to estimate unknown 

portions of incomplete data. [14] The estimation is performed as 

follows: 

 

𝑥̂o(𝑥𝑖
i) =

∑ ℎ𝑖𝑗 [µ𝑗
o + ∑𝑗

oi(∑𝑗
ii)

−1
(𝑥𝑖

i − µ𝑗
i )]𝑀

𝑗=1

∑ ℎ𝑖𝑗
𝑀
𝑗=1

(1) 

 

where o denotes unknown features and i denotes known features 

of data x. j = {1, 2, ..., M} denotes a Gaussian distribution where 

M is the number of Gaussians. µ𝑗
i  denotes the mean of jth 

Gaussian over known features, ∑j is the covariance matrix of jth 

Gaussian and hij denotes the fractional probability of data xi to 

belong to the jth Gaussian and is calculated as follows: 

 

ℎ𝑖 =
𝜋𝑖𝑁(𝑥; µ𝑖

𝑥, ∑𝑖
𝑥)

∑ 𝜋𝑘𝑁(𝑥; µ𝑘
𝑥 , ∑𝑘

𝑥)𝐾
𝑘=1

(2) 

 

where 𝑁(𝑥; µ𝑖
𝑥, ∑𝑖

𝑥) denotes the probability of data x belonging to 

ith Gaussian. πi is the fraction of the ith Gaussian. 

3.2. Proposed Model: Hidden Markov Mixture Regression 

(HMMR) 

An HMM trained with position and velocity data assuming 

Gaussian emissions (observations are assumed to be coming from 

Gaussian distributions) is used for encoding the observed 

trajectories. In order to reproduce learned trajectories, on the 

other hand, GMR is used for velocity and position estimations 

and iteration is performed with a PD-controller. Here, we propose 

to modify GMR estimation at the level of calculating fractional 

probabilities, as follows: 

 

ℎ𝑖(𝑥𝑡) =
( 𝑚𝑎𝑥

𝑗 ∈ {1,𝐾)
ℎ𝑗(𝑥𝑡−1))𝑎𝑗𝑖  𝑁(𝑥𝑡; µ𝑖

𝑥 , ∑𝑖
𝑥)

∑ [( 𝑚𝑎𝑥
𝑗 ∈ {1,𝐾)

ℎ𝑗(𝑥𝑡−1))𝑎𝑗𝑘𝑁(𝑥𝑡; µ𝑘
𝑥, ∑𝑘

𝑥)]𝐾
𝑘=1

(3) 

 

where aji denotes the state transition probability from state j to 

state i, K is the number of HMM states and xt is the position data 

at time t. 

Our proposed trajectory generation approach uses only the most 

probable state as a guide for estimation, unlike using the sum of 

influences from all states as in [6]. With this, we aim to let the 

robot decide when the algorithm is initialized, and the starting 

position is almost equally likely to be one of multiple types of 

training, and at the start there is no past sequence to look back 

and decide for the algorithm. We expect that our approach can 

accurately reproduce the trajectory when such a starting point 

was provided. 

The algorithm works iteratively, and at the beginning a starting 

position needs to be provided. At each step, the next velocity is 

estimated through GMR from the current position. Then the next 

position is estimated through GMR from the current position and 

the estimated velocity. Then the velocity estimation and position 

estimation are passed to the PD-controller which iterates the 

motion one step and the new position is returned. hi is calculated 

recursively, and hi(x1) is estimated with Equation 2. 

GMR estimations use the hi from Equation 3 and are as follows: 

 

𝑥̂̇ = ∑ ℎ𝑖(𝑥)[µ𝑖
𝑥̇ + ∑𝑖

𝑥̇𝑥(∑𝑖
𝑥)−1(𝑥 − µ𝑖

𝑥)]

𝐾

𝑖=1

(4) 

 

𝑥̇ = ∑ ℎ𝑖(𝑥) [µ𝑖
𝑥 + ∑𝑖

𝑥𝑥̇(∑𝑖
𝑥̇)

−1
(𝑥̇ − µ𝑖

𝑥̇)]

𝐾

𝑖=1

(5) 

 

where x denotes position and 𝑥̇ denotes velocity. 

Input and output components of the hidden states which are 

multivariate Gaussian distributions are expressed as: 

 

µ𝑖 = [
µ𝑖

𝑥

µ𝑖
𝑥̇]     and    ∑𝑖 = [

∑𝑖
𝑥 ∑𝑖

𝑥𝑥̇

∑𝑖
𝑥̇𝑥 ∑𝑖

𝑥̇
] (6) 

  

The PD-controller determines the acceleration as follows: 

 

𝑥̈ = (𝑥̂̇ − 𝑥̇)𝐾𝑉 + (𝑥̂ − 𝑥)𝐾𝑃 (7) 

 

KV and KP are gain parameters and while 𝐾𝑉 =
1

𝜏
  where τ is the 

length of a timestep in the motion; KP is adaptive and can be 

found from [15]. 

4. Experimental Results 

Numerical and simulation experiments were performed on 

complex trajectories and the results are presented with a 

comparison between our algorithm and [6] in this section. 
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The experiments are aimed to test the ability of the algorithm to 

choose the correct type of trajectory to reproduce, and how 

accurate the reproduction is. Choosing the correct type of 

trajectory is related to the starting points we provide to the 

algorithm. We define two types of starting points: unbiased and 

biased starting points. Unbiased starting points correspond to the 

points that are equally likely to belong to multiple types of 

trajectories that are demonstrated, and biased starting points are 

starting points that are more likely to belong to one type of 

trajectory than the others. If multiple states exist around an 

unbiased starting point, each belonging to a different trajectory 

and with equal distance and therefore equal probability, summing 

up the influences from these states would guide the motion 

towards a trajectory unlike any demonstrated type.  

In all experiments, Gaussian noise was added to the 

demonstrations in order to generate data similar to a human 

demonstrator. 

4.1. S-shaped Trajectory Reproduction Task 

In the first experiment, two types of S-shaped trajectories in three 

dimensional space were considered. 4 demonstrations were given 

for each type of trajectory, and Gaussian noise with 0 mean and 

0.05 variance was added to the demonstration data. Fig. 1 shows 

the demonstrations and the types of trajectories. Providing biased 

starting points did not create notable differences between the 

reproductions as can be seen in Fig. 2. 

A reproduction using GMM alongside GMR is presented in Fig. 

3. Without utilizing the state transition probabilities provided by 

demonstrated trajectories when around a crossing point, the 

motion can be influenced by states belonging to different types of 

trajectories. This may result in a reproduction dissimilar to any 

demonstrated type or due to this undesired influence, moving 

(a) Demonstrations (b) Type-1 trajectory with no noise (c) Type-2 trajectory with no noise 

Fig 1.  Experimental setup for S-shaped trajectory reproduction task. Upper plots denote the position profiles and lower plots denote the velocity profiles 

of the trajectory. (a) and (d) show the demonstrations together for two similar trajectories with some difference in velocity profiles. Red dots in (b), (c), 

(e), and (f) are the locations of HMM state centers and the blue lines show the expected trajectories without noise, starting from an unbiased starting point. 

(d) Demonstrations (e)     Type-1 trajectory with no noise (f) Type-2 trajectory with no noise 
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well within the area of a different state, thereby changing the type 

of trajectory produced after passing through the crossing point. 

The expected reproduction was a type-1 trajectory, similar to Fig. 

1 (b). 

Fig. 4 shows the results obtained from an unbiased starting point. 

The difference can be spotted easier from the velocity profiles of 

the trajectories. Our HMMR algorithm is immediately able to 

move towards the state with the most probability, which is the 

state closest in distance to the starting point. This creates a type-2 

trajectory similar to Fig. 1 (f); whereas Calinon et al. [6] sums up 

the effects from probable states for both types of trajectories, 

leading to a response unlike any type of demonstrated trajectory. 

This lasts for a few timesteps and their algorithm also enabled the 

reproduced trajectory to converge towards a type-2 trajectory. 

The overall shape of the trajectory is preserved in this case, but 

due to time lost before reaching a decision there remains a region 

at the end of the trajectory that could not be reproduced. 

Multiple experiments were performed for this type of trajectory, 

and a behavior of HMMR was observed which we call 

overcommitting. Due to using only the most probable state for 

estimation, the algorithm changes states only after the most 

probable state changes. This results in a sudden change in 

velocity, which results in a trajectory that is not seamless. Fig. 5. 

shows this phenomenon. 

Table 1. Evaluation of simulation experiment results from an S-shaped 

trajectory reproduction task with RMS metric. 

Technique used RMS Error (m) 

[6] 0.01371 

HMMR 0.01368 

Fig 2.  Experiment results from an S-shaped trajectory reproduction task 

using a biased starting point. Upper plots denote the position profiles and 

lower plots denote the velocity profiles of the trajectory. Red dots are the 

locations of HMM state centers and the blue lines show the reproduced 

trajectories, starting from a biased starting point. 

 

Fig 3.  Position profile of an S-shaped trajectory reproduction task using 

GMM instead of HMM. Red dots are the locations of HMM state centers 

and the blue line shows the reproduced trajectory, starting from an 

unbiased starting point. 

 

(a) Reproduction of Calinon 

et al. [6] 

(b) Reproduction of HMMR 

(a) Reproduction of Calinon et al. 

[6] 

Fig 4.  Experiment results from an S-shaped trajectory reproduction task 

using an unbiased starting point. Upper plots denote the position profiles 

and lower plots denote the velocity profiles of the trajectory. Red dots are 

the locations of HMM state centers and the blue lines show the 

reproduced trajectories. (a) is shown to be unable to decide on a type of 

trajectory briefly after the start for a few timesteps.  

(b) Reproduction of HMMR 

(b) Reproduction of HMMR 

Fig 6. Snapshots from our simulation experiment from an S-shaped 

trajectory reproduction task using an unbiased starting point. Blue line 

denotes the expected reproduction, magenta line is reproduction of 

HMMR, and the green line is the reproduction of Calinon et al. [6]. 

(a) Reproduction of Calinon 

et al. [6] 

Fig 5.  Experiment results from an S-shaped trajectory reproduction task 

where (b) shows the overcommitting towards the end of the trajectory. 

Red dots are the locations of HMM state centers and the blue dots show 

the reproduced trajectories, starting from an unbiased starting point. 
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Fig. 8. Experiment for the ‘m’ shape which uses crossing points both for 

position and velocity simultaneously in two dimensions, from a biased 
starting point which is expected to generate the trajectory with the blue 

line. Upper plots denote the position profiles and lower plots denote the 

velocity profiles of the trajectory. Blue points belong to the other type of 
demonstrated trajectory, magenta points are the reproduction of HMMR, 

and the green points are the reproduction of Calinon et al. [6]. Red dots 

are the locations of HMM state centers. 

Fig. 7. Experimental setup for m-shaped trajectory reproduction task. 

Upper plot denotes the position profiles and lower plot denotes the 

velocity profiles of the demonstrated trajectories. Same color is used for 
the position and velocity of a demonstration, and there are 2 demonstrated 

types: left and right. 

 

 

 

A simulation experiment using Baxter robot with 7 degrees of 

freedom arm was performed for the S-shaped trajectory. Inverse 

kinematics solver of Baxter is used to set angles of the joints in 

order to execute the generated trajectory with the end-effector. 

The obtained results were compatible with the previous results, as 

can be seen in Fig. 6. The results of the simulation experiments 

have been evaluated using Root Mean Square (RMS) error on 

position with respect to time. The dimensions of the workspace 

for the simulation experiment are 0.25 m  0.60 m  0.60 m. 

Reproductions of Calinon et al. [6] and HMMR are compared 

with the trajectory in Fig. 1 (c). Results presented in Table 1 

show that the performance of the techniques are comparable in a 

case of correct reproduction. 

From this set of experiments, we concluded that Calinon et al. has 

the potential to deviate more from the shape of demonstrated 

trajectories in non-starting points as HMM may create multiple 

state transitions between states. Based on this we designed 

experiments with trajectories that could create a state around the 

starting point and have multiple state transitions from the starting 

state, one for each type of trajectory demonstrated to be precise. 

In our previous experiments we used trajectories that diverge 

from the starting point, but there is no such requirement.  

4.2. m-shaped Trajectory Reproduction Task 

Trajectories which are more complex in two dimensions were 

encoded and generated and these trajectories did not immediately 

diverge from the starting point, enabling formation of a state 

close to the starting point with multiple state transitions. 

Complexity of the trajectory comes from using crossing points 

both in position and velocity. Reproducing these trajectories are 

challenging because the encoded HMM would have multiple state 

transitions and both the position and velocity data are the same 

for all types of demonstrated trajectories around the crossing 

points. This means that around the crossing points, the algorithms 

would have no preference and choose to follow from any type of 

demonstrated trajectories, and not necessarily the same type they 

started the reproduction with, therefore failing the task, just like 

Fig. 3. However, both algorithms succeeded as can be seen in 

Fig. 8. We attribute this to HMM states not being exactly 

symmetrical and not always having equal state transition 

probabilities after training, enabling correct reproduction for both 

algorithms in practice. 4 demonstrations were given for each type 

of trajectory which can be seen in Fig. 7, and Gaussian noise with 

0 mean and 0.2 variance was added to the demonstrated data for 

this experiment. 

For this task, we performed another experiment where 2 HMMs 

were utilized in the algorithms; one for position and velocity, 

which was used in previous experiments and the other for 

velocity and acceleration. This was thought as a countermeasure 

in case crossing points both in position and velocity caused the 

algorithms to fail but the results were similar, and we did not 

observe any significant effects from using 2 HMMs. 
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Fig. 9. Experimental setup for V-shaped trajectory reproduction task. 

Upper plot denotes the position profiles and lower plot denotes the 

velocity profiles of the demonstrated trajectories. Same color is used for 
the position and velocity of a demonstration, and there are 2 demonstrated 

types: left and right. 

 

 

Fig. 10. Experiment for the ‘V’ shape in two dimensions, using a biased 

starting point towards the left, which is expected to generate a trajectory 
moving towards the left. Upper plots denote the position profiles and 

lower plots denote the velocity profiles of the trajectory. Blue lines are the 

expected reproduction, magenta lines are the reproduction of HMMR, and 
the green lines are the reproduction of Calinon et al. [6]. Red dots are the 

locations of HMM state centers. 
4.3. V-shaped Trajectory Reproduction Task 

We performed an experiment in two dimensions with a trajectory 

where the trajectories did not immediately diverge from the 

starting point, enabling formation of a state close to the starting 

point with multiple state transitions. 2 types of trajectories were 

used, one moving towards the left after the start, and the other 

towards the right. 4 demonstrations for each type were used to 

train the HMM and Gaussian noise with 0 mean and 0.5 variance 

was added to the data. The trajectories together form a V-shape as 

can be seen in Fig. 9, and the motion starts from the bottom. 

Resulting HMM has the initial state at the bottom of the ‘V’, with 

a total of three state transitions: one transition to itself, one 

towards the left and one towards the right. Multiple starting 

points were tested, and an interesting result was found when a 

biased starting point towards the left was provided. Reproduction 

of a trajectory that moved towards the left was expected, and 

while HMMR performed successfully, Calinon et al. [6] failed 

and created a trajectory that moved towards the right, as shown in 

Fig. 10. In this experiment, the starting point at coordinates x = 2, 

y = 1 was set up as an unbiased starting point. Any point with an 

x-coordinate smaller than 2 is expected to reproduce a trajectory 

going towards the left. Due to HMM states not being exactly 

symmetrical however, slight variance is expected. In HMMR 

reproduction, at x = 1.94, the change from a right trajectory to a 

left one is observed whereas in the reproduction of Calinon et al. 

[6] the change came at x = 1.62, which is a highly biased point, 

and the algorithm was expected to respond to the change in 

coordinates at less biased points, such as at x = 1.8. The summing 

up behavior of Calinon et al. [6] resulted in a much-delayed 

response in this case, and HMMR was more robust in its 

reproduction. 

5. Conclusion 

In this paper we proposed and implemented a solution able to 

successfully reproduce the desired trajectory among multiple 

types taught in succession without any requirement for an 

additional mechanism or parameter. A solution utilizing HMM 

state transition probabilities during the GMR estimation was 

proposed, since this would satisfy the expected decision 

capabilities. We verified our approach via experiments, testing 

the ability of our algorithm to reproduce simple and complex 

trajectories accurately. Apart from multiple other trajectory 

reproduction tasks, our algorithm succeeded in reproducing 

successfully the trajectories mentioned in this work, namely 

shaped, m-shaped and V-shaped trajectories. We also compared 

our experimental results with Calinon et al. [6] who also utilized 

state transition probabilities of HMM during GMR estimation, 

but their work took into account all the hidden states instead of 

the most probable one as we did. The results of our simulation 

experiments with S-shaped trajectories are provided in Table 1, 

where the achieved RMS error is shown to be comparable to 

results reproduced from Calinon et al. [6]. We observed that 

using only the most probable hidden state created significant 

differences in certain reproductions. We qualitatively evaluate the 

reproductions starting from biased points towards one side when 

the reproductions tend to the other side, since the task is then a 

failure and quantitative metrics do not yield useful information 

since the expected reproduction and the actual reproduction are 

very far from each other. An example is shown in Fig. 10 where 
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the reproduction of Calinon et al. [6] is a failure whereas HMMR 

reproduction is a success. Using starting points that are unbiased 

created difficulties for choosing a type of trajectory in [6], and 

HMM states having multiple state transitions reduced [6]’s ability 

to respond correctly when biased starting points were provided, 

due to it summing up the influences from all the states with a 

transition from the current state. We observed that our approach 

had no problem handling multiple state transitions to different 

states, which may occur as a mistake when the demonstrated 

trajectories have no such property and multiple state transitions 

from one state to different states is undesired, or characteristic to 

the type of trajectory in which case the transitions are desired. 

HMMR is shown to perform better in such cases and the 

performance of the two algorithms are shown to be comparable in 

other experimented cases with the exception of the 

overcommitting phenomenon, explained in Section 4 that can 

lead to sudden jerks during reproduction, which must be 

considered while using the algorithm. 

Cases where both algorithms were expected to fail were also 

considered, however the experiment results were successful 

reproductions. Still, we believe that there is merit to consider 

such cases. 

In the future, we plan to exploit our HMMR method in real 

robotic industrial settings where the task is taught to the robot 

through kinesthetic teaching or demonstrations; and the robot is 

able to successfully perform the expected version of a task, 

among multiple possible ways to perform it, based on the starting 

conditions provided. 
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