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Abstract: Over the past years, convolutional neural networks (CNNs) have achieved remarkable success in deep learning. 

The performance of CNN-based models has caused major advances in a wide range of tasks from computer vision to 

natural language processing. However, the exposition of the theoretical calculations behind the convolution operation is 

rarely emphasized. This study aims to provide better understanding the convolution operation entirely by means of diving 

into the theory of how backpropagation algorithm works for CNNs. In order to explain the training of CNNs clearly, the 

convolution operation on images is explained in detail and backpropagation in CNNs is highlighted. Besides, Labeled 

Faces in the Wild (LFW) dataset which is frequently used in face recognition applications is used to visualize what CNNs 

learn. The intermediate activations of a CNN trained on the LFW dataset are visualized to gain an insight about how CNNs 

perceive the world. Thus, the feature maps are interpreted visually as well, alongside the training process.  
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1. Introduction 

Convolutional neural networks (CNNs) are a specialized kind of 

neural network for processing data that has a known grid-like 

topology [1]. They have been used in image recognition since the 

1980s. Over the years, with the aid of the increase in 

computational power and the amount of available training data 

CNNs have achieved significant performance on some complex 

tasks such as visual perception, voice recognition and natural 

language processing [2]. Since the early 2000s, CNNs have been 

applied with great success to the detection, segmentation and 

recognition of objects and regions in images [3]. During this 

period, several architectures have been proposed such as LeNet 

[4], AlexNet [5], DenseNet [6], ResNet [7], VGG [8], Inception 

and GoogLeNet [9]. The aim of this study is to shed light on the 

common working principles and calculations behind the 

convolutional layers of these successful architectures. Because it 

is often said that deep learning models are black boxes. Although 

this is generally true for certain types of deep learning models, it 

is definitely not true for CNNs [10]. The convolution operation 

and backpropagation in CNNs can be expressed clearly. Besides, 

the representations learned by CNNs can be extracted and 

displayed visually. 

In deep learning literature, there exists a genuine interest in 

understanding and visualizing CNNs. For example, a 

comprehensive survey of several representative CNN 

visualization methods is provided [11]. In another study, a novel 

visualization technique that gives insight into the function of 

intermediate feature layers and the operation of the classifier is 

introduced [12]. They use these visualizations to find model 

architectures that outperform AlexNet on the ImageNet 

classification benchmark. Also, three visualization methods 

namely inversion, activation maximization and caricaturization 

are studied [13]. Two visual tools are introduced to interpret 

neural networks [14]. Besides, in order to classify knowledge 

representations in high convolutional layers a new method to 

modify a traditional CNN into an interpretable CNN is proposed 

[15]. By using three different methods, a comparison of heatmaps 

on three datasets is demonstrated [16]. More recently, existing 

activation maximization methods are reviewed and a probabilistic 

interpretation for these methods are discussed [17]. In 

comparison with these recent studies, this work is focused on 

understanding CNN training process in addition to the meaning 

of convolutional layers. CNNs are examined on a face 

recognition task to make them more interpretable. 

In this work, a brief background information about CNNs is 

given in Section 2. Additionally, convolution operation on images 

is explained in detail as well as how the backpropagation 

algorithm works for CNNs. In Section 3, the interpretation of 

convolutional layers is examined by visualizing intermediate 

activations of convolutional layers. Finally, in Section 4, 

conclusions are drawn. 

2. Convolutional Neural Networks 

In 2012, a special CNN architecture called AlexNet won the 

ImageNet object recognition challenge [5]. This study is accepted 

as a breakthrough in deep learning literature. On the other side, 

the underlying idea of CNNs dates back to Cognitron [18] and 

Neocognitron [19]. Also, if one looks further back into the 

history, the idea of the structure of convolutional layers is 

inspired from the discoveries about the mammalian vision system 

[20-22]. Neurophysiologists David Hubel and Torsten Wiesel 

showed that certain neurons in the mammalian visual cortex 

responded selectively to images and parts of images of specific 

shapes. In their experiments, they found that certain neurons fired 

rapidly when a cat was shown images small lines at one angle and 

that other neurons fired rapidly in response to small lines at 

another angle. Later work revealed that other neurons were 

specialized to respond to images containing more complex shapes 

such as corners, longer lines, and large edges [23]. 
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Similarly, CNNs learn features hierarchically from images [24]. 

They classify an image by combining simpler definitions such as 

corners and edges. Because it is difficult for a computer to 

understand the meaning of an image represented as a collection of 

pixel values. Deep learning resolves this difficulty by breaking 

the desired complicated mapping into a series of nested simple 

mappings, each described by a different layer of a model. In a 

CNN architecture, the image defined by pixels is in the input 

layer. Then a series of hidden layers extracts increasingly abstract 

features from the image [1]. This is the main idea of CNNs.   

A typical CNN architecture is composed of convolutional and 

pooling layers followed by several fully-connected layers. The 

well-known LeNet-5 is shown in Fig. 1 as an example of the 

general CNN architecture. While convolutional layers extract 

feature maps, pooling layers reduce the spatial size of 

representations. Thus, the pooling layer shrinks the size of feature 

maps to improve statistical efficiency and reduces memory 

requirements for storing the parameters [1].  

 

Fig. 1.  LeNet-5 architecture [4]  

In the convolutional layers the units are organized into planes, 

each of which is called a feature map. Units in a feature map each 

take inputs only from a small subregion of the image, and all of 

the units in a feature map are constrained to share the same 

weight values. If the units are considered as feature detectors, 

then all of the units in a feature map detect the same pattern but at 

different locations in the input image. Due to the weight sharing, 

the evaluation of the activations of these units is equivalent to a 

convolution of the image pixel intensities with a kernel 

comprising the weight parameters. As detecting multiple features 

is essential in order to build an effective model, there will 

generally be multiple feature maps in the convolutional layer, 

each having its own set of weight and bias parameters [25].  

2.1. Convolution Operation 

Convolution is a specialized kind of linear operation. CNNs are 

simply neural networks that use convolution in place of general 

matrix multiplication in at least one of their layers [1]. 

Convolving a 3x3 kernel over a 4x4 input using 1x1 strides is 

shown in Fig. 2. In this example, a 2x2 output is produced as a 

result of the convolution operation completed in four steps. 

Convolution is performed by multiplying the elements of the 

input corresponding to each element of the kernel. The first 

element of the 2x2 output is computed by taking summation of 

the results of this multiplication. The kernel starts on the leftmost 

part of the input feature map and slides by steps of one until it 

touches the right side of the input. Then, the kernel slides down, 

goes to the leftmost part and repeat the same process again. Thus, 

the kernel passes over the all input feature map [26]. For each 

convolutional layer, this operation is repeated as the number of 

filters. Thus, the forward pass is completed in CNNs.   

 

Fig. 2.  A convolution operation example [27] 

2.2. Convolution Operation on RGB Images 

In CNNs, convolution operation can be performed in two 

different situations: An input image or a feature map produced by 

another convolutional layer may be convolved with a kernel. In 

both cases, the number of channels of the kernel and its input 

must match. Consider an RGB image as input. As RGB images 

have 3 channels, in order to convolve a kernel with an RGB 

image, the kernel must have 3 channels as well. Convolving a 

2x2x3 kernel over a 3x3x3 input is shown in Fig. 3. The 

difference between this operation and the example given in 

previous subsection is that convolution is performed multiplying 

the elements of each kernel channel corresponding numbers from 

the red, green and blue channels of input. The elements of the 2x2 

output are computed by taking summation of these multiplied 

results. 

 

 

 

                                                                                    

Fig. 3.  A convolution operation example on an RGB image  

In general, more than one filter is used in convolutional layers. In 

that case, a feature map is obtained by convolution operation for 

each filter. Then, these feature maps are concatenated to 

constitute the output. For example, in Fig. 3, if there are 5 filters 

instead of 1, the output will be 2x2x5. The number of filters 

determines the number of output channels.    

2.3. Backpropagation in Convolutional Neural Networks 

The backpropagation procedure [28] to compute the gradient of 

an objective function with respect to the weights of a multilayer 

stack of modules is nothing more than a practical application of 

the chain rule for derivatives. The key insight is that the gradient 

of the objective with respect to the input of a module can be 

computed by working backwards from the gradient with respect 

to the output of that module (or the input of the subsequent 

module) [3]. CNNs are some of the first working deep networks 

trained with backpropagation [1]. In CNNs, in addition to the 

forward pass, the backward pass is also performed by 

convolutions. When the forward pass is completed, the loss 

gradient from the previous layer must be calculated to move the 

loss backwards. The key insight is that this calculation is 

performed by convolution operation. In order to explain the 

backpropagation for convolutional layers, convolving a 2x2 

kernel (F) over a 3x3 input (X) is shown in Fig. 4.  

 

 

 

 

 

 

Fig. 4.  Convolving a 2x2 kernel (F) over a 3x3 input (X) 
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In this example, a 2x2 output (O) is produced. The calculations of 

the elements of this output obtained by the forward pass are given 

in the following equations:    

𝑂11 = 𝑋11𝐹11 + 𝑋12𝐹12 + 𝑋21𝐹21 + 𝑋22𝐹22                              (1) 

𝑂12 = 𝑋12𝐹11 + 𝑋13𝐹12 + 𝑋22𝐹21 + 𝑋23𝐹22                              (2) 

𝑂21 = 𝑋21𝐹11 + 𝑋22𝐹12 + 𝑋31𝐹21 + 𝑋32𝐹22                              (3) 

𝑂22 = 𝑋22𝐹11 + 𝑋23𝐹12 + 𝑋32𝐹21 + 𝑋33𝐹22                              (4)   

At the end of the forward pass, a loss value (L) is computed to 

backpropagate from the output back to the input by using a loss 

function. To perform the backward pass, 𝜕𝐿/𝜕𝑋 and 𝜕𝐿/𝜕𝐹 must 

be computed using the chain rule. Thus, the loss can be 

backpropagated to the other layers. 𝜕𝐿/𝜕𝐹 is used to update filter 

F. On the other side, 𝜕𝐿/𝜕𝑋 becomes the loss gradient for the 

previous layer when X is the output of the previous layer [29].  

𝜕𝐿/𝜕𝐹 is computed in two steps. The first step is to find the local 

gradient, 𝜕𝑂/𝜕𝐹. The calculations for the local gradients for  𝑂11 

for the example in Fig. 4 are given in (5). As seen from the 

equations, the first element of the output is differentiated with 

respect to the elements of F. Similarly, the local gradients can be 

computed for all the output elements. After finding the gradients, 

for every element of F, a general rule to compute 𝜕𝐿/𝜕𝐹 by using 

the chain rule is shown in (6). 

𝜕𝑂11

𝜕𝐹11
= 𝑋11,  

𝜕𝑂11

𝜕𝐹12
= 𝑋12,  

𝜕𝑂11

𝜕𝐹21
= 𝑋21,  

𝜕𝑂11

𝜕𝐹22
= 𝑋22   (5) 

𝜕𝐿

𝜕𝐹
=

𝜕𝐿

𝜕𝑂
∗
𝜕𝑂

𝜕𝐹
                                                                                (6) 

The expansion of (6) is given between equations (7) and (10). In 

these expansions, if the results obtained in (5) are substituted to  

𝜕𝑂/𝜕𝐹, it is seen that (6) is equivalent to a convolution operation 

between input X and the loss gradient 𝜕𝐿/𝜕𝑂.  

𝜕𝐿

𝜕𝐹11
=

𝜕𝐿

𝜕𝑂11
∗
𝜕𝑂11

𝜕𝐹11
+

𝜕𝐿

𝜕𝑂12
∗
𝜕𝑂12

𝜕𝐹11
+

𝜕𝐿

𝜕𝑂21
∗
𝜕𝑂21

𝜕𝐹11
+

𝜕𝐿

𝜕𝑂22
∗
𝜕𝑂22

𝜕𝐹11
          (7) 

𝜕𝐿

𝜕𝐹12
=

𝜕𝐿

𝜕𝑂11
∗
𝜕𝑂11

𝜕𝐹12
+

𝜕𝐿

𝜕𝑂12
∗
𝜕𝑂12

𝜕𝐹12
+

𝜕𝐿

𝜕𝑂21
∗
𝜕𝑂21

𝜕𝐹12
+

𝜕𝐿

𝜕𝑂22
∗
𝜕𝑂22

𝜕𝐹12
          (8) 

𝜕𝐿

𝜕𝐹21
=

𝜕𝐿

𝜕𝑂11
∗
𝜕𝑂11

𝜕𝐹21
+

𝜕𝐿

𝜕𝑂12
∗
𝜕𝑂12

𝜕𝐹21
+

𝜕𝐿

𝜕𝑂21
∗
𝜕𝑂21

𝜕𝐹21
+

𝜕𝐿

𝜕𝑂22
∗
𝜕𝑂22

𝜕𝐹21
          (9) 

𝜕𝐿

𝜕𝐹22
=

𝜕𝐿

𝜕𝑂11
∗
𝜕𝑂11

𝜕𝐹22
+

𝜕𝐿

𝜕𝑂12
∗
𝜕𝑂12

𝜕𝐹22
+

𝜕𝐿

𝜕𝑂21
∗
𝜕𝑂21

𝜕𝐹22
+

𝜕𝐿

𝜕𝑂22
∗
𝜕𝑂22

𝜕𝐹22
        (10) 

𝜕𝐿/𝜕𝑋 is also computed in two steps. The first step is to find the 

local gradient 𝜕𝑂/𝜕𝑋. For the example in Fig. 4, the calculations 

for the local gradients for 𝑂11 are given in (11). Here, the first 

element of output is differentiated with respect to the elements of 

X. Similarly, the local gradients can be computed for the all 

output elements. After finding the gradients, for every element of 

X, a general rule to compute 𝜕𝐿 𝜕𝑋⁄  by using the chain rule is 

shown in (12).  

𝜕𝑂11

𝜕𝑋11
= 𝐹11,  

𝜕𝑂11

𝜕𝑋12
= 𝐹12,  

𝜕𝑂11

𝜕𝑋21
= 𝐹21,  

𝜕𝑂11

𝜕𝑋22
= 𝐹22                     (11) 

𝜕𝐿

𝜕𝑋
=

𝜕𝐿

𝜕𝑂
∗
𝜕𝑂

𝜕𝑋
                                                                              (12) 

The expansion of (12) including the substitution of results from 

(11) is given as follows: 

𝜕𝐿

𝜕𝑋11
=

𝜕𝐿

𝜕𝑂11
∗ 𝐹11                                                                       (13) 

𝜕𝐿

𝜕𝑋12
=

𝜕𝐿

𝜕𝑂11
∗ 𝐹12 +

𝜕𝐿

𝜕𝑂12
∗ 𝐹11                                                   (14) 

𝜕𝐿

𝜕𝑋13
=

𝜕𝐿

𝜕𝑂12
∗ 𝐹12                                                                       (15) 

𝜕𝐿

𝜕𝑋21
=

𝜕𝐿

𝜕𝑂11
∗ 𝐹21 +

𝜕𝐿

𝜕𝑂21
∗ 𝐹11                                                   (16) 

𝜕𝐿

𝜕𝑋22
=

𝜕𝐿

𝜕𝑂11
∗ 𝐹22 +

𝜕𝐿

𝜕𝑂12
∗ 𝐹21 +

𝜕𝐿

𝜕𝑂21
∗ 𝐹12 +

𝜕𝐿

𝜕𝑂22
∗ 𝐹11          (17) 

𝜕𝐿

𝜕𝑋23
=

𝜕𝐿

𝜕𝑂12
∗ 𝐹22 +

𝜕𝐿

𝜕𝑂22
∗ 𝐹12                                                   (18)    

𝜕𝐿

𝜕𝑋31
=

𝜕𝐿

𝜕𝑂21
∗ 𝐹21                                                                       (19)                                                                                                         

𝜕𝐿

𝜕𝑋32
=

𝜕𝐿

𝜕𝑂21
∗ 𝐹22 +

𝜕𝐿

𝜕𝑂22
∗ 𝐹21                                                   (20) 

 
𝜕𝐿

𝜕𝑋33
=

𝜕𝐿

𝜕𝑂22
∗ 𝐹22                                                                      (21) 

The calculations between equations (13) and (21) are equivalent 

to a full convolution operation between the loss gradient 𝜕𝐿/𝜕𝑂 

and a 180-degree rotated filter [29]. After these calculations, the 

kernel is updated as shown in (22). Here, the learning rate is 

represented as α. 

𝐹𝑛𝑒𝑤 = 𝐹𝑜𝑙𝑑 − 𝛼
𝜕𝐿

𝜕𝐹
                                                                   (22) 

Convolutional layer is the core building block of the CNN 

architecture. Similar to this layer, the gradients of the pooling 

layer can be calculated by following the similar procedure of 

using chain rule. 

3. Experimental Analysis  

3.1. Dataset  

One of the foremost success of CNNs is face recognition [30, 31].  

Therefore, the well-known Labeled Faces in the Wild (LFW) 

dataset [32] is chosen to perform the visualizing experiments. 

LFW is composed of 13.233 face images belonging to 5749 

people. They are RGB images in different sizes. In this study, 

these images are scaled to a size of 64x64. Also, LFW classes 

that have at least 30 images are chosen for training. Hence, 1777 

face images belonging to 34 people are used for classification 

task. They are randomly divided into two subsets as 0.75 for 

training and 0.25 for testing.      

3.2. Implementation Details 

To understand CNNs better, the intermediate activations of a 

CNN architecture is visualized. Thus, the convolutional layers are 

interpreted visually in addition to the exposition of 

backpropagation algorithm for convolutional layers. The CNN 

architecture is designed for the visualizing experiments as 

follows: It includes three convolutional layers each one is 

followed by a 2x2 max-pooling layer. The convolutional layers 

include 32, 64 and 128 filters with 3x3 kernels, respectively. 

These layers are followed by two fully-connected layers 

including 128 and 256 hidden units. Lastly, the output layer is 

fully-connected including 34 hidden units with softmax activation 

function. The rest of the layers use ReLU. Dropout in ratio 0.50 is 

applied to the fully-connected layers preceding the output layer. 

This CNN architecture is trained using Adam [33] which is one 

of the widely used optimization algorithm in deep learning. The 

learning rate is 0.001. This network is trained 100 epochs with a 

minibatch size of 128. The loss function is categorical cross 

entropy. 
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3.3. Visualizing Intermediate Activations 

The intermediate activations are visualized to get an idea about 

how CNNs see and interpret the world. To this end, firstly, the 

CNN architecture described in the previous subsection is trained 

100 epochs. The course of training process is shown in Fig. 5. At 

the end of training, it achieves a classification accuracy of 83.47 

on the test data.  

 

 

 

 

 

 

 

 

 

Fig. 5. (Left) Training accuracy. (Right) Training loss.   

Then, the activations of all convolutional and pooling layers are 

examined using an example from the test data which is the 

network is not trained on. The picture below is the input image to 

examine the intermediate activations:    

 

 

 

 

 

Fig. 6. The test image from LFW   

As the representations learned by the CNN are simply 

representations of visual concepts, this experiment can provide 

better understanding about how successive layers transform their 

input. Additionally, this gives a view into how an input is 

decomposed into the different filters learned by the network [10]. 

The CNN architecture includes three convolutional layers, each 

one is followed by a max-pooling layer. Therefore, every channel 

in each of activation maps obtained from these six layers is 

visualized as a 2D image. The visualizations of feature maps are 

stacked side by side for each convolutional and pooling layer and 

they are shown below, respectively: 

 

 

 

 

  Fig. 7.  The feature maps extracted from the first convolutional layer 

 

 

 

 
  Fig. 8.  The feature maps extracted from the first max-pooling layer 

 

 

 

 

 

 

   Fig. 9.  The feature maps extracted from the second convolutional layer 

 

 

 

 

 

 

 

   Fig. 10.  The feature maps extracted from the second max-pooling layer  

 

 

 

 

 

 

 

 

 

 

 

     

    Fig. 11.  The feature maps extracted from the third convolutional layer                                                                                                              

 

  

 

 

 

 

 

 

 

 

        

     

    Fig. 12.  The feature maps extracted from the third max-pooling layer 

As seen from the visualizations, the neural network extracts 

increasingly abstract features from the test image. In the deeper 

layers, it becomes difficult to interpret the activations in visual. 

Additionally, the sparsity of the activations increases. In the first 

layer, all filters are activated by the input image. However, the 

number of blank activations increases in the following layers. 

This means that the pattern encoded by the filter is not found in 

the input image [10]. In the first convolutional layer, the 

activations keep almost all of the information in the test image. 

As the activations go through deeper layers, they start encoding 

higher-level features such as “mouth” or “eyes”. At the end, it 

classifies the image by combining simpler definitions. It can be 

seen clearly that the CNN learns features hierarchically from the 

face image.   

4. Conclusion 

In this work, the calculations behind convolutional layers are 

explored. Thus, the backpropagation for CNNs is clarified. 

Besides, it is investigated how CNNs learn and perceive the 
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world. Examining these issues is as important as building and 

training new CNN architectures on various tasks. Because deep 

CNNs have achieved impressive results and it is obvious that they 

will have many more in the near future. To this end, 

understanding and interpreting the learning process and internal 

representations can provide an insight into how the model works 

in addition to give hints to develop new architectures and 

algorithms.  
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