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Abstract: Traffic engineering is essential for network management, particularly in today's large networks carrying massive amounts of 

data. Traffic engineering aims to increase the network's efficiency and reliability through intelligent allocation of resources. In this paper, 

we propose a deep learning-based traffic engineering system in Software-Defined Networks to improve bandwidth allocation among 

various applications. The proposed system conducts traffic classification based on deep neural network and one dimensional convolution 

neural network models. It aims to improve the Quality of Service by identifying flows from various applications and distributing the 

identified flow to multiple queues where each queue has a different priority. Then, it applies traffic shaping in order to manage network 

bandwidth and the volume of incoming traffic. To increase the network's performance and avoid traffic congestion, we implement a 

technique that considers the port capacity to accomplish general load balancing. We solved the issue of imbalanced dataset by implementing 

an oversampling technique called Synthetic Minority Over-Sampling Technique. The performance of DNN and 1-D CNN have been 

compared and evaluated with some of machine learning models, such as KNN, SVM, DT, and RF. The results showed 1-D CNN and DNN 

are able to achieve more than %88 accuracy of traffic captured in 5s and 10s timeout, while KNN and RF are able to achieve more than 

%98 accuracy of traffic captured in 15s and 30s timeout,  and the evaluation of the overall system showed applying traffic shaping to the 

identified flow increases the network's performance and bandwidth availability. 
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1. Introduction 

In recent decades, enterprise networks have been experiencing a 

massive increase in the amount of data handled and made available 

to customers, employees, and business partners. As a result, 

resource usage and network flow planning became an important 

network management practice. Traffic engineering (TE) is a 

crucial element of network management in today's network. 

Traffic engineering aims to increase the network's efficiency and 

reliability through the intelligent allocation of resources.   

Software-Defined Networking (SDN) is a network architecture 

that enables the separation of the data plane from the control plane. 

The forwarding devices in the data plane are managed by the 

control plane. One of the essential aspects of SDN is that network 

intelligence is logically centralized in one place, which maintains 

and provides a global view of the network. The SDN controller 

acts as the network's brain and talks with the forwarding devices 

through OpenFlow protocol. SDN aims to simplify network 

management, improve resource utilization, promote innovation, 

and optimize networks' performance [1]. 

Traffic classification is a technique that deals with the problems of 

designating network traffic to a previously defined group of classes 

based on their properties or their behaviors. Traffic classification 

is crucial for network management, and it is widely used in 

different networking fields such as Quality of Service (QoS), flow  

 

 

planning, network security, resource provisioning, performance 

monitoring. There are three commonly used solutions in traffic 

classification: end-user application, traffic classes, and application 

protocols. After network traffic is classified, any combination of 

QoS tools can be applied based on the enterprise network's 

requirements [2].  

The most common and widely used traffic classification 

techniques are port-based, payload-based, and statistics-based. 

The port-based technique is considered one of the simplest 

techniques because it depends on mapping applications to port 

numbers. However, this technique may be ineffective since many 

applications are increasingly using random or dynamic port 

numbers. A payload-based technique, also known as Deep Packet 

Inspection (DPI), has been presented to overcome the port-based 

technique's problems. DPI works by checking packet payloads and 

comparing them with the signatures of known protocols. This 

technique can perform classification accurately, but there are some 

downsides: encrypted traffic can be challenging to deal with, it 

requires intensive computation and manual signature maintenance. 

Another technique is statistics-based, which relies on time series 

or statistics of traffic flows. It is capable of handling both 

encrypted and unencrypted traffic. This approach generally utilizes 

machine learning (ML) algorithms, whose performance is highly 

dependent on engineered features, limiting their generalizability. 

The statistics-based approach also utilizes deep learning (DL) 

algorithms, which overcome ML's limitations. Deep Learning 

algorithms can automatically select features through training and 

learn very complicated patterns that make DL useful for traffic 
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classification [3] [4]. 

In this paper, we propose a deep learning based traffic 

classification system based on deep neural network (DNN) and one 

dimensional convolution neural network (1-D CNN) for traffic 

engineering in SDN. Time-based statistical features of the flow are 

used to train the models. The classified flow is tagged with the ToS 

field and sent to the controller through the OpenFlow protocol. The 

proposed system works to improve the Quality of Service of the 

identified flows by distributing the identified flow to multiple 

queues where each queue has a different priority value. Then, it 

applies the traffic shaping technique, which manages network 

bandwidth by controlling the rate and the volume of incoming 

flows to avoid congestion. A load balancing technique is installed 

on the OpenFlow switch that increases the network's performance. 

It tries to accomplish a general load balancing by considering the 

capacity of each egress port. 

The rest of the paper is organized as follows. Section 2 presents an 

overview of the related works. The proposed system is explained 

in Section 3. The evaluation of deep learning models and the 

overall system is shown in Section 4. Finally, we conclude the 

paper in Section 5. 

2. Related Work 

In this section, we present some works to discuss traffic 

engineering and traffic classification in SDN. Traffic engineering 

is an import mechanism and has been one of the hot topics to 

improve Internet performance for decades. Karakus et al. [5] 

presented a detailed QoS study in OpenFlow enabled networks by 

surveying the QoS motivated studies. It gave an overview of the 

relations between QoS and SDN. The studies considered are 

related to the following topics: inter-domain routing, multimedia 

flows routing, queue management, and scheduling, resource 

reservation, Quality of Experience (QoE) awareness, network 

monitoring, and other QoS-centric mechanisms. The study 

concludes that QoS can benefit from the concept of SDN. It also 

discusses the QoS capabilities of OpenFlow and outlines the 

potential challenges and problems that need to be addressed for 

better QoS capabilities.  

Jeong et al. [6] proposed a system that combines traffic engineering 

and DPI in SDN. The proposed system aims to enhance the Quality 

of Service by using Deep Packet Inspection based traffic 

classification to identify traffic flows, and the identified flows are 

being allocated to multiple queues. The system enables the 

network administrator to set a mapping table between the identified 

flow and each queue. The results showed an increase in throughput 

and reduction in packet delay for identified flows. Yan et al. [7] 

presented a detailed study on the techniques used for traffic 

classification and reviewed commonly used machine learning 

algorithms in traffic classification in SDNs. They also presented 

some general challenges from a traffic classification perspective 

and recommendations on traffic classification in SDN. Amaral et 

al. [8] proposed a simple architecture for collecting traffic based 

on SDN, and it was deployed in an enterprise environment. Internet 

traffic was collected using OpenFlow, and ensemble learning 

algorithms were applied to the gathered traffic. The results showed 

that these algorithms could obtain high accuracy, and the proposed 

system is suitable for small enterprise networks to identify traffic 

flows of interest.  

Lashkari et al. [9] proposed an approach to detect and characterize 

Tor traffic based on time analysis of the flows, and only time-based 

statistical features were chosen for the study. The authors showed 

that time-based features could be used to detect Tor traffic 

effectively, and these features can also be used to classify the 

traffic and identify different types of applications. Also, it showed 

that the flow timeout influences the classification efficiency.  

Rezaei et al. [10] presented a general framework for deep learning 

based traffic classification and provided general guidelines for the 

traffic classification process, such as data collection, feature 

selection, and model selection. The authors demonstrated deep 

learning applications for traffic classification and discussed some 

open problems and traffic classification challenges. Choubey et al. 

[11] proposed a traffic classification system based on artificial 

neural network and one dimensional convolutional neural network 

models. The proposed method used a dataset generated by Andrew 

Moore, where the data was collected from two different sites. The 

proposed system results showed that both models gave high 

accuracy without being exposed to overfitting, and the testing 

times of these models were less compared to machine learning 

models. Xu et al. [12] proposed a network architecture that 

combines a traffic classification system based on deep learning and 

SDNs. The traffic classification system was deployed as a 

virtualized network function (VNF) to reduce the load on the SDN 

controller and ensure that the failure of the VNF will not have a 

paralyzing effect on the network. The proposed system aims to 

improve QoS by assigning different network resources to different 

applications. The experiments showed that the proposed model 

performs better than existing classification algorithms, and the 

controller can assign proper route paths for different types of flows. 

3. System Design and Implementation 

Our system consists of a deep learning classifier which sits at the 

edge of the network that provides the controller with the 

classification result of the incoming traffic, a packet scheduler 

which controls the routing decisions, and a traffic monitoring 

module which regularly collects delay and bandwidth statistics 

from the physical network. Other modules can obtain the collected 

data. 

3.1. Deep Learning Classifier 

The deep learning classifier is a stand-alone server with GPU 

power to help in the training phase since this phase requires an 

unlimited number of inputs and outputs, and a large number of 

computing resources.  The classifier is connected to Open vSwitch, 

which is located at the network's edge to capture and analyze the 

incoming packets. 

The traffic classification process followed the deep learning based 

traffic classification framework introduced by [10]. The 

framework consists of six steps: data collection, pre-processing, 

feature selection, model selection, training and validation, and 

periodic model update. 

3.1.1. Data Collection 

There are numerous network traffic datasets available free online, 

but many of them are outdated.  For our experiment, we will be 

using the Tor traffic dataset provided by Lashkari et al. [9]. This 

dataset has time-related statistical features.  

There are eight types of traffic gathered from more than 18 

representative applications and contains 23 time-related features. 

The traffic types are audio-streaming, browsing, file transfer, 

instant messaging, e-mail, P2P, video-streaming, and VOIP. 

Moreover, the dataset contains traffic captured at different flow 

timeout 5, 10, 15, 30, 60, and 120 seconds. Table 1. lists and 

describes the features in the dataset. 

 

 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 206–213  |  208 

Table 1. Features Description 

Feature Description 

Forward Inter Arrival Time 

(Mean, Min, Max, Std) 

The period among two packets 

sent in a forward way. 

Backward Inter Arrival 

Time (Mean, Min, Max, 

Std) 

The period among two packets 

sent in a backward way. 

Flow Inter Arrival Time  

(Mean, Min, Max, Std) 

The period among two packets 

sent in either way. 

Active (Mean, Min, Max, 

Std) 
Active time flow 

Idle (Mean, Min, Max, Std) The idle time of a flow 

Fb Psec Flow bytes sent per second 

Fp Psec Flow packets sent per second 

Duration Flow duration 

3.1.2. Pre-processing 

Preprocessing is a process that involves transforming raw data into 

a well-formatted dataset. It can affect classification performance 

significantly. The missing values were dropped from the dataset 

during the data cleaning stage. All the features are numerical; thus, 

there is no need to convert their values other than rescaling them. 

The target feature is converted to its numerical representation.  

To make the classification process simpler, we decided to group 

the traffic of similar applications into different classes. Thus, we 

grouped the eight classes mentioned before into three classes based 

on priority where latency and bandwidth are considered important 

criteria. Table 2. lists the grouped classes and their priority.  

Table 2. Traffic Classes 

Class Application Priority 

0 Chat, VOIP High 
1 Audio-Streaming, Browsing, E-mail Moderate 

2 File Transfer, P2P, Video-Streaming Low 

   

 

During grouping, the classes of 15 and 30 second flow duration 

datasets into three groups, the number of examples in Class 1 was 

relatively low compared to the other two classes. We have used 

Synthetic Minority Over-Sampling Technique (SMOTE) to 

resolve the imbalanced dataset issue. 

Furthermore, the data has been scaled to improve the model's 

performance before starting the training process.  

Normalization is the process where the values of all features are 

rescaled to be between zero and one. This the most commonly used 

scaling method for neural networks. 

𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑖 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−min (𝑥)
                                                               (1) 

Standardization is the process of rescaling all values of all features 

so that their mean is 0, and their standard deviation is equal to 1. 

 

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑥𝑖 − 𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑(𝑥)
                                                        (2) 

3.1.3. Synthetic Minority Over-Sampling Technique 

Synthetic Minority Over-Sampling Technique (SMOTE) is an 

over-sampling technique used to create synthetic examples for the 

minority class rather than replacing them. It was first inspired by a 

technique used in handwritten character recognition. The 

technique works on generating synthetic samples in a less 

application-specific way by operating in feature space.  

The minority class is over-sampled by taking each minority class 

sample, then introducing the synthetic examples along the line 

segments joining any or all of the k minority class nearest 

neighbors. The k nearest neighbors are chosen at random based on 

the number of required samples. 

Synthetic samples are generated by taking the difference between 

the considered feature vector and its nearest neighbor, multiply the 

difference by a random number 0 or 1, then add it to the considered 

feature vector. That leads to selecting a random point along the line 

segment between two specific features. The synthetic samples 

make the classifier create big and less specific decision regions 

rather than small and more specific regions [15]. 

3.1.4. Feature Selection 

Feature selection is a process of identifying irrelevant or redundant 

features and remove them. Unneeded features may affect the 

performance of the model. The most commonly used feature for 

traffic classification is time series, header data, payload data, and 

statistical features. 

All 23 features are considered to be relevant to the purpose of the 

study. As stated before, these features are statistical. The 

advantages of using statistical features are capable of handling both 

encrypted and unencrypted traffic since it relies on time series or 

statistics of traffic flows,  and the computational complexity is low. 

3.1.5. Model Selection 

Many aspects will affect the choice of deep learning models for 

traffic classification. The important one is input features, they will 

affect the accuracy of the model, but it will also affect the input 

dimension, which affects computational complexity and the 

number of packets for classification. Also, the size of the dataset 

will affect the selection of the model. In the our study, deep neural 

networks and one dimensional convolution neural network were 

chosen to train the classifier, and were build from groud up.  

Deep neural networks (DNNs), also known as multilayer 

perceptrons, are a collection of multiple perceptrons. Deep neural 

networks architecture consists of an input layer, one or more 

hidddn layers, and an output layer. Networks with over four layers 

are considered deep neural networks and are commonly used to 

solve complex and abstract data problems. The architecture of 

DNN that used to train the classifier consists of one input layer, 

three hidden layers, one output layer.  

One-dimensional convolution neural network search to create 

models that use different groups of neurons to recognize various 

aspects of the data. These groups need to communicate with each 

other so that they can form the big picture. Its architecture consists 

of collection of multiple perceptrons, and one or more convolution 

layer. These layers are either interconnected or pooled. 

Convolutional Layer works on extracting features by using the 

matrix, and the result is a feature map. Pooling Layer reduces the 

features number while maintaining the important information. 

Spatial Pooling Layer, also known as downsamplin, will decreases 

the number of features while keeping the important information. 

After the convolution layers, fully connected neural network in 

used for the final task [20]. 

The architecture of 1D-CNN that used to train the classifier 

consists of one input layer, two of one-dimensional convolution 

layers, two of one-dimensional max pooling layers, one flatten 

layer, two of fully connected network layers, and one output layer. 

 

Machine learning models, such as K-Nearest Neighbors, Support 

Vector Machine, Decision Tree, and Random Forest were used for 

comparison with deep learning models performance. 
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K-Nearest Neighbor (KNN) algorithm is one of supervised 

learning methods, and it is considered as one of the simplest of all 

machine learning algorithms.  KNN works by memorizing the 

training set, and then try to predict the label of new samples based 

on the labels of its closest neighbors in the training set. The 

classification of samples is applied to determine the distance 

between the unlabeled sample and its neighbors. Such as City-

block, Euclidean, Chebyshev and Manhattan are used to measure 

the distance. Support Vector Machines (SVM) algorithm is also 

one of supervised learning methods, it is commonly used for 

classifying objects and pattern recognition. SVM works by 

mapping the input vector into a high-dimensional feature scope, 

and the mapping is done by implementing different kernel 

functions. Kernel function selection, such as linear, polynomial 

and Radial Based Function, is considered as a crucial job in SVM 

which can have effect on the accuracy of the classification result. 

The purpose of Support Vector Machine is finding a separating 

hyperplane in the feature scope to maximize the margin among 

different classes [18].  

Decision Tree (DT) algorithm is a supervised learning technique 

that is used to perform classification by a learning tree. DT is 

consisting of internal decision nodes and terminal leaves. Each 

node in the tree denotes an attribute, branches denotes the 

conjunctions of attributes that lead to classifications, and each leaf 

is a class label. The unlabeled samples are classified according to 

its feature value with the decision tree nodes. DT is easy to 

implement and it is capable to achieve high accuracy. Three of 

most common decision tree algorithms are ID3, C4.5 and CART. 

The core difference between them is the splitting criteria. 

Random Forest (RF) algorithm is a supervised learning technique 

that is used for classification and regression problems. RF made of 

many decision trees. RF is randomly choose a subset of the feature 

scope to construct each decision tree in order to minimize the over-

fitting and improve the classification accuracy. RF works by 

putting the samples to each tree, each tree gives a result which is 

the tree’s vote, then the samples will be classified into the class 

according to which has the most votes [19].  

3.2. System Design 

As mentioned before, the deep learning classifier is located at the 

network's edge to capture and analyze the incoming flow. 

OpenFlow networks typically run in a reactive mode that means 

when the packet arrives at the network, the switch looks it up in its 

flow tables. If there is no match found, the switch forwards the 

packet to the controller asking how to handle the new arrival 

packet. The controller has no information about which application 

generates traffic and how much network resources it needs. 

Therefore, the first packet of flow will be replicated and directed 

to the classifier; when the packet arrives at the classifier, it will be 

classified according to the previously defined classes, then the 

classified packets will be tagged with the result of the 

corresponding class through modifying Type of Service (ToS) 

field in the IP packet header. After that, the packet will be sent out 

to the controller. 

Once the controller receives the packet from the classifier, it 

decodes ToS in the packet header and matches the value of ToS 

with rules installed on the controller; after that, packet flows are 

mapped to a specific queue by enqueueing, and flows will be 

treated according to that queue's configuration. The decisions 

taken by the controller will be sent to the switches to install them 

in their routing tables, so the following packets that belong to the 

first packet will be handled the same way. 

Since OpenFlow does not support queue configuration, as a result, 

the configuration and setup are done in the OpenFlow switch. Also, 

the OpenFlow switch allows us to specify a packet scheduler type 

and prioritize flows. The packet scheduler works on attaching or 

detaching packets for queues and allows for prioritizing flows by 

setting different priority values for each queue, enabling flow to be 

handled differently and guarantee the necessary communication. 

So, low priority flows are installed first, and then the other flows 

are installed. The HTB packet scheduler is used to delay packets to 

meet each queue's desired rate, and it enables to configure 

minimum and maximum bandwidth capacity. Configuring the 

bandwidth capacity allows for allocating bandwidth for each queue 

to guarantee the minimum bandwidth for each application type and 

avoid bandwidth starvation. After the flows are enqueued to the 

related queue and handled by the packet scheduler, traffic shaping 

is used to manage network bandwidth by controlling the rate and 

the volume of incoming flows to avoid congestion. Applying 

traffic shaping increases the network's performance, bandwidth 

availability, and prevents an unexpected increase in bandwidth 

usage. 

The controller looks up the source IP and destination IP to make a 

routing decision, so the controller from the global view calculates 

multiple routes between the source and the destination. In general, 

it selects the route with the least hop counts, though it is possible 

to select the same route to transmit dense flows, causing 

congestion. For the routes with the same number of hop counts, 

port-based algorithms consider each port's capacity to accomplish 

general load balancing. A load balancing technique is implemented 

Fig. 1. System Design 
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on the switch that works on splitting the workload on the number 

of physical links to decrease traffic congestions, increasing the 

throughput, and using the available physical links effectively. It 

tries to accomplish a general load balancing by considering the 

capacity of each egress port. 

The flow monitoring module monitors the link availability by 

collecting the delay and available link bandwidth of the physical 

network periodically. Also, other models can acquire all the 

monitor information. 

3.2.1. OpenFlow Switch 

The OpenFlow's current specification does not support queue 

configuration; thus, queue configuration is being handled by 

specific OF-CONFIG and Open vSwitch Database Management 

Protocol (OVSDB) protocols. Even though the OVSDB protocol 

is already implemented in Open vSwitches, there are no controllers 

that offer consistent queues management [5]. 

In the proposed system, we used Open vSwitch as the OpenFlow 

switch. Open vSwitch is an open-source virtual multilayer switch 

intended for programmatic network automation, it supports 

implementing the OpenFlow protocol, and its implementations 

consist of flow tables with each flow entry having match 

conditions and associated actions. Open vSwitch connects to the 

controller through a secure channel and uses OpenFlow protocol 

to control network flows. Open vSwitch supports a wide range of 

tools, such as managing queuing disciplines, switch port queues, 

port mirroring rules, and other tools [13].  

3.2.2. Queuing 

Queuing is used to provide QoS by managing the queues that hold 

packets while waiting for their turn to be transmitted. When a 

network device receives packets, it makes a forwarding decision 

and sends the packets to the outgoing interface. However, when 

the outgoing interface is busy, it keeps the outgoing packets in 

queues, waiting for the outgoing interface to be available [14]. 

The queuing system requires a scheduler to decide which packet 

will be transmitted next when the interface becomes available. 

Also, the scheduler can perform prioritization, giving a certain 

level of priority to a queue. Each queue can have a different priority 

value in a multi-queue system that enables that queue to handle 

packets over other queues. Hierarchical Token Bucket (HTB) is 

used to manage our queuing discipline, enabling network admins 

to assign a particular priority to each set of data packets based on 

what type of transmission it is. 

3.2.3. Quality of Service Module 

The Quality of Service (QoS) module in the system design consists 

of three main components: Enqueueing, Packet Scheduler, and 

Traffic Shaping. The Enqueueing component is responsible for 

administering the OpenFlow flow table messages and mapping 

flows to corresponding queues; it is located inside the controller. 

Whereas, The Packet Scheduler is responsible for managing the 

packets in queues, and Traffic Shaping is in charge of manipulating 

the bandwidth volume in queues, both of these components are 

located inside the switch. 

• Queue Structure 

The OpenFlow based switches can have one or more queues 

attached to a particular output port, and those queues can use 

packet scheduler to schedule existing packets the datapath on that 

output port. Each queue is uniquely identified by queue ID and port 

number. Two queues may have the same queue ID. Packets are 

directed to one of the queues based on the packet output port and 

queue ID; it is done using the Output and Set Queue actions. Packet 

flows are mapped to a specific queue by enqueueing, and flows 

will be treated according to that queue's configuration. 

• Enqueueing 

It is in charge of operating OFPT FLOW MOD messages of the 

OpenFlow Protocol. This message works on modifying the state of 

the flow table. Each packet has action, counters, and header fields 

for matching flow packets. The enqueueing maps packet flows to 

queues using SKB PRIORITY of kernel's data structure named SK 

BUFF. The configuration is completed by using the SO 

PRIORITY option of the packet.  

• Traffic Shaping and Packet Schedulers 

These two components are responsible for running QoS messages 

received from the control plane by allocating the bandwidth 

volume in queues and attaching or detaching packet schedulers for 

these queues. Furthermore, these components manipulate OFPT 

QOS QUEUEING DISCIPLINE messages representing the 

Quality of Services messages in the OpenFlow protocol. HTB 

packet scheduler is used to delay packets to meet each queue's 

desired rate, and it enables to configure minimum and maximum 

bandwidth capacity. 

4. Experimental Evaluation 

4.1. Evaluation of the Deep Learning Models  

The Scikit-learn library is used to train the machine learning 

model, and the PyTorch library is used to train the deep learning 

models. The duration of the flows of 5, 10, 15, and 30 seconds was 

taken into consideration to conduct our experiment. We have also 

examined different flow timeout to demonstrate the flow timeout 

effect on the final results 

The performance of deep learning models is compared with several 

machine learning models, such as K-Nearest Neighbors, Support 

Vector Machine, Decision Tree, and Random Forest. To improve 

the models' performance, the datasets used to train machine 

learning models have been standardized, and the datasets used to 

train deep learning models have been normalized. Since the 

classification's overall accuracy does not give a good insight into 

the classifier performance; thus, precision, recall, and F-score 

metrics are used to assess the models' performance. We used 5-fold 

cross-validation during the evaluation of deep learning and 

machine learning models. Cross-validation is used together with 

regularization to aid in tuning the hyperparameters. Cross-

validation also offer the ability to test the model on unseen data 

while maintaining a test set that will be used for testing at the end. 

At the time of training, we did an exhaustive search over specified 

parameter values for both deep learning and machine learning 

models. 

Accuracy is the proportion of correct classifications. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 ⁄ (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) 

Fig. 2.  shows the accuracy of both ML and DL models. 

Fig. 2. The accuracy of ML and DL models. 
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Precision is the number of true positives divided by the total 

number of true positives and false positives predicted by the model.  

The precision can capture features that determine the positiveness 

of a sample to avoid misclassification as negative. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

Fig. 3.  shows the precision of both ML and DL models.  

Fig. 3.  The Precision of ML and DL models. 

The recall, also known as sensitivity, can identify true positive 

samples between all the potential positives, including the false 

negatives. 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

Fig. 4. shows the recall of both ML and DL models. 

Fig. 4. The recall of ML and DL models. 

F-score is a combination of precision and recall are in a single 

criterion, and it is a measure of a test's accuracy.  

𝐹1 = 2 ×   (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙) 

Fig. 5.  shows the F-score of both ML and DL models 

Fig. 5. The F-score of ML and DL models. 

It is worth noting that the advantages of implementing DL over ML 

models are the following: scale-up effectively compared to other 

ML algorithms, provides better performance, and needs no feature 

engineering. 

4.2. Evaluation of the Overall System  

In this experiment, we used Mininet, which is a network emulator, 

as a testbed to implement our system on an SDN topology, and we 

used the POX controller as the SDN controller [16] [17]. During 

the evaluation stage, we used Open vSwitch as an OpenFlow 

switch. 

To evaluate our system, we used three different scenarios: the first 

scenario is the baseline where nothing is implemented, the second 

scenario involves the implementation of queues only, and the third 

scenario involves implementing queues and load balancing 

together. The queue rules and load balancing are installed on the 

OpenFlow switch, and the rules of the packet scheduler are 

implemented on the controller. 

The link's bandwidth between connected devices is set to 100 MB 

each, and the delay is set from 5ms to 30ms.  

Table 3. shows the bandwidth allocation for each group of 

applications. A TCP connection is set between the server and the 

hosts during the experimenting stage. Fig. 6. Shows the topology 

used for the evaluation. We have three hosts connected to a server 

with each host using a different application type.  

Table 3. Application Bandwidth Requirements 

Class Application Bandwidth 

Priority Real-time traffic 10 MB 

High 
Audio-Streaming, 
Browsing, E-mail 

35 MB 

Moderate 
File Transfer, P2P, 

Video-Streaming 
55 MB 

  
 

 

Fig. 6. Testbed Topology 

 

In the first scenario, no rules or policies were implemented to 

monitor the regular rate of transmitting data between hosts and 

servers. At the congestions time, the hosts suffer from bandwidth 

starvation, causing data loss and decreasing in receiving and 

transmitting rate between data that create a chaotic environment. 

This is shown in Fig. 7. 
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Fig. 7. Data transmission rate between hosts and servers for the first 

scenario 

In the second scenario, rules of queues are installed on the 

OpenFlow switch, and then traffic shaping is applied to the traffic 

flow. Applying traffic shaping increased the performance of the 

network and the availability of bandwidth. The regulation of 

bandwidth usage helps in guaranteeing resources for each type of 

application. This is presented in Fig. 8 

Fig. 8. Data transmission rate between hosts and servers for the second 

scenario 

In the last scenario, the same rules of queues are installed on the 

OpenFlow switch, and traffic shaping is applied, in addition to 

installing a load balancing technique on the OpenFlow switch too. 

This is displayed in Fig. 9.  

 

Fig. 9.  Data transmission rate between hosts and servers for the third 

scenario 

 

5. Conclusion 

In this paper, we propose a traffic engineering system for SDN 

based on deep learning models to improve bandwidth allocation 

among various applications by classifying the network traffic using 

time-based characteristics of flows and applying QoS. The system 

distributes traffic to multiple queues with different priorities to 

improve the QoS of the traffic flows. To increase the network's 

performance and avoid traffic congestion, we implement a 

technique to achieve general load balancing. The experimental 

result of the traffic captured at 5s and 10s flow timeout showed 

CNN and DNN were  are to achieve above %88 accuracy more 

than machine learning models, while KNN and RF are able to 

achieve more than %98 accuracy of traffic captured in 15s and 30s 

timeout better than CNN and DNN that are able to achieve more 

than %94 accuracy. The advantages of implementing DL over ML 

are the ability to scale-up effectively compared to other ML 

algorithms, provides better performance, and needs no feature 

engineering. The evaluation of the overall system showed applying 

traffic shaping to the identified flow increases the network's 

performance and bandwidth availability, it also showed that we can 

guarantee bandwidth for each type of application, and 

implementing the load balancing technique showed an increase in 

the throughput of each queue. 

As future work, we plan to test the system on larger network 

topologies and study the effects of more hosts being involved in 

the data transfer. Another interesting research idea is studying the 

impact of increased traffic volume per host and more variety in the 

applications generating the traffic. 
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