

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 206–213 | 206

A Deep Learning Based System for Traffic Engineering in Software

Defined Networks

Sudad Abdulrazzaq*1, Mehmet Demirci2

Submitted: 23/09/2020 Accepted : 09/12/2020 DOI: 10.1039/b000000x

Abstract: Traffic engineering is essential for network management, particularly in today's large networks carrying massive amounts of

data. Traffic engineering aims to increase the network's efficiency and reliability through intelligent allocation of resources. In this paper,

we propose a deep learning-based traffic engineering system in Software-Defined Networks to improve bandwidth allocation among

various applications. The proposed system conducts traffic classification based on deep neural network and one dimensional convolution

neural network models. It aims to improve the Quality of Service by identifying flows from various applications and distributing the

identified flow to multiple queues where each queue has a different priority. Then, it applies traffic shaping in order to manage network

bandwidth and the volume of incoming traffic. To increase the network's performance and avoid traffic congestion, we implement a

technique that considers the port capacity to accomplish general load balancing. We solved the issue of imbalanced dataset by implementing

an oversampling technique called Synthetic Minority Over-Sampling Technique. The performance of DNN and 1-D CNN have been

compared and evaluated with some of machine learning models, such as KNN, SVM, DT, and RF. The results showed 1-D CNN and DNN

are able to achieve more than %88 accuracy of traffic captured in 5s and 10s timeout, while KNN and RF are able to achieve more than

%98 accuracy of traffic captured in 15s and 30s timeout, and the evaluation of the overall system showed applying traffic shaping to the

identified flow increases the network's performance and bandwidth availability.

Keywords: Deep Learning, Quality of Service, Software Defined Networks, Traffic Classification, Traffic Engineering, Traffic Shaping

1. Introduction

In recent decades, enterprise networks have been experiencing a

massive increase in the amount of data handled and made available

to customers, employees, and business partners. As a result,

resource usage and network flow planning became an important

network management practice. Traffic engineering (TE) is a

crucial element of network management in today's network.

Traffic engineering aims to increase the network's efficiency and

reliability through the intelligent allocation of resources.

Software-Defined Networking (SDN) is a network architecture

that enables the separation of the data plane from the control plane.

The forwarding devices in the data plane are managed by the

control plane. One of the essential aspects of SDN is that network

intelligence is logically centralized in one place, which maintains

and provides a global view of the network. The SDN controller

acts as the network's brain and talks with the forwarding devices

through OpenFlow protocol. SDN aims to simplify network

management, improve resource utilization, promote innovation,

and optimize networks' performance [1].

Traffic classification is a technique that deals with the problems of

designating network traffic to a previously defined group of classes

based on their properties or their behaviors. Traffic classification

is crucial for network management, and it is widely used in

different networking fields such as Quality of Service (QoS), flow

planning, network security, resource provisioning, performance

monitoring. There are three commonly used solutions in traffic

classification: end-user application, traffic classes, and application

protocols. After network traffic is classified, any combination of

QoS tools can be applied based on the enterprise network's

requirements [2].

The most common and widely used traffic classification

techniques are port-based, payload-based, and statistics-based.

The port-based technique is considered one of the simplest

techniques because it depends on mapping applications to port

numbers. However, this technique may be ineffective since many

applications are increasingly using random or dynamic port

numbers. A payload-based technique, also known as Deep Packet

Inspection (DPI), has been presented to overcome the port-based

technique's problems. DPI works by checking packet payloads and

comparing them with the signatures of known protocols. This

technique can perform classification accurately, but there are some

downsides: encrypted traffic can be challenging to deal with, it

requires intensive computation and manual signature maintenance.

Another technique is statistics-based, which relies on time series

or statistics of traffic flows. It is capable of handling both

encrypted and unencrypted traffic. This approach generally utilizes

machine learning (ML) algorithms, whose performance is highly

dependent on engineered features, limiting their generalizability.

The statistics-based approach also utilizes deep learning (DL)

algorithms, which overcome ML's limitations. Deep Learning

algorithms can automatically select features through training and

learn very complicated patterns that make DL useful for traffic

1 Dept. of Computer Sci., Informatics Institute, Gazi University

 Ankara – 06560, Turkey

 ORCID ID: 0000-0002-1575-0248
2 Dept. of Computer Eng., Gazi University, Ankara – 06570, Turkey

 ORCID ID: 0000-0002-1088-5215

* Corresponding Author Email: sudad.alajili@protonmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 206–213 | 207

classification [3] [4].

In this paper, we propose a deep learning based traffic

classification system based on deep neural network (DNN) and one

dimensional convolution neural network (1-D CNN) for traffic

engineering in SDN. Time-based statistical features of the flow are

used to train the models. The classified flow is tagged with the ToS

field and sent to the controller through the OpenFlow protocol. The

proposed system works to improve the Quality of Service of the

identified flows by distributing the identified flow to multiple

queues where each queue has a different priority value. Then, it

applies the traffic shaping technique, which manages network

bandwidth by controlling the rate and the volume of incoming

flows to avoid congestion. A load balancing technique is installed

on the OpenFlow switch that increases the network's performance.

It tries to accomplish a general load balancing by considering the

capacity of each egress port.

The rest of the paper is organized as follows. Section 2 presents an

overview of the related works. The proposed system is explained

in Section 3. The evaluation of deep learning models and the

overall system is shown in Section 4. Finally, we conclude the

paper in Section 5.

2. Related Work

In this section, we present some works to discuss traffic

engineering and traffic classification in SDN. Traffic engineering

is an import mechanism and has been one of the hot topics to

improve Internet performance for decades. Karakus et al. [5]

presented a detailed QoS study in OpenFlow enabled networks by

surveying the QoS motivated studies. It gave an overview of the

relations between QoS and SDN. The studies considered are

related to the following topics: inter-domain routing, multimedia

flows routing, queue management, and scheduling, resource

reservation, Quality of Experience (QoE) awareness, network

monitoring, and other QoS-centric mechanisms. The study

concludes that QoS can benefit from the concept of SDN. It also

discusses the QoS capabilities of OpenFlow and outlines the

potential challenges and problems that need to be addressed for

better QoS capabilities.

Jeong et al. [6] proposed a system that combines traffic engineering

and DPI in SDN. The proposed system aims to enhance the Quality

of Service by using Deep Packet Inspection based traffic

classification to identify traffic flows, and the identified flows are

being allocated to multiple queues. The system enables the

network administrator to set a mapping table between the identified

flow and each queue. The results showed an increase in throughput

and reduction in packet delay for identified flows. Yan et al. [7]

presented a detailed study on the techniques used for traffic

classification and reviewed commonly used machine learning

algorithms in traffic classification in SDNs. They also presented

some general challenges from a traffic classification perspective

and recommendations on traffic classification in SDN. Amaral et

al. [8] proposed a simple architecture for collecting traffic based

on SDN, and it was deployed in an enterprise environment. Internet

traffic was collected using OpenFlow, and ensemble learning

algorithms were applied to the gathered traffic. The results showed

that these algorithms could obtain high accuracy, and the proposed

system is suitable for small enterprise networks to identify traffic

flows of interest.

Lashkari et al. [9] proposed an approach to detect and characterize

Tor traffic based on time analysis of the flows, and only time-based

statistical features were chosen for the study. The authors showed

that time-based features could be used to detect Tor traffic

effectively, and these features can also be used to classify the

traffic and identify different types of applications. Also, it showed

that the flow timeout influences the classification efficiency.

Rezaei et al. [10] presented a general framework for deep learning

based traffic classification and provided general guidelines for the

traffic classification process, such as data collection, feature

selection, and model selection. The authors demonstrated deep

learning applications for traffic classification and discussed some

open problems and traffic classification challenges. Choubey et al.

[11] proposed a traffic classification system based on artificial

neural network and one dimensional convolutional neural network

models. The proposed method used a dataset generated by Andrew

Moore, where the data was collected from two different sites. The

proposed system results showed that both models gave high

accuracy without being exposed to overfitting, and the testing

times of these models were less compared to machine learning

models. Xu et al. [12] proposed a network architecture that

combines a traffic classification system based on deep learning and

SDNs. The traffic classification system was deployed as a

virtualized network function (VNF) to reduce the load on the SDN

controller and ensure that the failure of the VNF will not have a

paralyzing effect on the network. The proposed system aims to

improve QoS by assigning different network resources to different

applications. The experiments showed that the proposed model

performs better than existing classification algorithms, and the

controller can assign proper route paths for different types of flows.

3. System Design and Implementation

Our system consists of a deep learning classifier which sits at the

edge of the network that provides the controller with the

classification result of the incoming traffic, a packet scheduler

which controls the routing decisions, and a traffic monitoring

module which regularly collects delay and bandwidth statistics

from the physical network. Other modules can obtain the collected

data.

3.1. Deep Learning Classifier

The deep learning classifier is a stand-alone server with GPU

power to help in the training phase since this phase requires an

unlimited number of inputs and outputs, and a large number of

computing resources. The classifier is connected to Open vSwitch,

which is located at the network's edge to capture and analyze the

incoming packets.

The traffic classification process followed the deep learning based

traffic classification framework introduced by [10]. The

framework consists of six steps: data collection, pre-processing,

feature selection, model selection, training and validation, and

periodic model update.

3.1.1. Data Collection

There are numerous network traffic datasets available free online,

but many of them are outdated. For our experiment, we will be

using the Tor traffic dataset provided by Lashkari et al. [9]. This

dataset has time-related statistical features.

There are eight types of traffic gathered from more than 18

representative applications and contains 23 time-related features.

The traffic types are audio-streaming, browsing, file transfer,

instant messaging, e-mail, P2P, video-streaming, and VOIP.

Moreover, the dataset contains traffic captured at different flow

timeout 5, 10, 15, 30, 60, and 120 seconds. Table 1. lists and

describes the features in the dataset.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 206–213 | 208

Table 1. Features Description

Feature Description

Forward Inter Arrival Time

(Mean, Min, Max, Std)

The period among two packets

sent in a forward way.

Backward Inter Arrival

Time (Mean, Min, Max,

Std)

The period among two packets

sent in a backward way.

Flow Inter Arrival Time

(Mean, Min, Max, Std)

The period among two packets

sent in either way.

Active (Mean, Min, Max,

Std)
Active time flow

Idle (Mean, Min, Max, Std) The idle time of a flow

Fb Psec Flow bytes sent per second

Fp Psec Flow packets sent per second

Duration Flow duration

3.1.2. Pre-processing

Preprocessing is a process that involves transforming raw data into

a well-formatted dataset. It can affect classification performance

significantly. The missing values were dropped from the dataset

during the data cleaning stage. All the features are numerical; thus,

there is no need to convert their values other than rescaling them.

The target feature is converted to its numerical representation.

To make the classification process simpler, we decided to group

the traffic of similar applications into different classes. Thus, we

grouped the eight classes mentioned before into three classes based

on priority where latency and bandwidth are considered important

criteria. Table 2. lists the grouped classes and their priority.

Table 2. Traffic Classes

Class Application Priority

0 Chat, VOIP High
1 Audio-Streaming, Browsing, E-mail Moderate

2 File Transfer, P2P, Video-Streaming Low

During grouping, the classes of 15 and 30 second flow duration

datasets into three groups, the number of examples in Class 1 was

relatively low compared to the other two classes. We have used

Synthetic Minority Over-Sampling Technique (SMOTE) to

resolve the imbalanced dataset issue.

Furthermore, the data has been scaled to improve the model's

performance before starting the training process.

Normalization is the process where the values of all features are

rescaled to be between zero and one. This the most commonly used

scaling method for neural networks.

𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑖 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−min (𝑥)
 (1)

Standardization is the process of rescaling all values of all features

so that their mean is 0, and their standard deviation is equal to 1.

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑥𝑖 − 𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑(𝑥)
 (2)

3.1.3. Synthetic Minority Over-Sampling Technique

Synthetic Minority Over-Sampling Technique (SMOTE) is an

over-sampling technique used to create synthetic examples for the

minority class rather than replacing them. It was first inspired by a

technique used in handwritten character recognition. The

technique works on generating synthetic samples in a less

application-specific way by operating in feature space.

The minority class is over-sampled by taking each minority class

sample, then introducing the synthetic examples along the line

segments joining any or all of the k minority class nearest

neighbors. The k nearest neighbors are chosen at random based on

the number of required samples.

Synthetic samples are generated by taking the difference between

the considered feature vector and its nearest neighbor, multiply the

difference by a random number 0 or 1, then add it to the considered

feature vector. That leads to selecting a random point along the line

segment between two specific features. The synthetic samples

make the classifier create big and less specific decision regions

rather than small and more specific regions [15].

3.1.4. Feature Selection

Feature selection is a process of identifying irrelevant or redundant

features and remove them. Unneeded features may affect the

performance of the model. The most commonly used feature for

traffic classification is time series, header data, payload data, and

statistical features.

All 23 features are considered to be relevant to the purpose of the

study. As stated before, these features are statistical. The

advantages of using statistical features are capable of handling both

encrypted and unencrypted traffic since it relies on time series or

statistics of traffic flows, and the computational complexity is low.

3.1.5. Model Selection

Many aspects will affect the choice of deep learning models for

traffic classification. The important one is input features, they will

affect the accuracy of the model, but it will also affect the input

dimension, which affects computational complexity and the

number of packets for classification. Also, the size of the dataset

will affect the selection of the model. In the our study, deep neural

networks and one dimensional convolution neural network were

chosen to train the classifier, and were build from groud up.

Deep neural networks (DNNs), also known as multilayer

perceptrons, are a collection of multiple perceptrons. Deep neural

networks architecture consists of an input layer, one or more

hidddn layers, and an output layer. Networks with over four layers

are considered deep neural networks and are commonly used to

solve complex and abstract data problems. The architecture of

DNN that used to train the classifier consists of one input layer,

three hidden layers, one output layer.

One-dimensional convolution neural network search to create

models that use different groups of neurons to recognize various

aspects of the data. These groups need to communicate with each

other so that they can form the big picture. Its architecture consists

of collection of multiple perceptrons, and one or more convolution

layer. These layers are either interconnected or pooled.

Convolutional Layer works on extracting features by using the

matrix, and the result is a feature map. Pooling Layer reduces the

features number while maintaining the important information.

Spatial Pooling Layer, also known as downsamplin, will decreases

the number of features while keeping the important information.

After the convolution layers, fully connected neural network in

used for the final task [20].

The architecture of 1D-CNN that used to train the classifier

consists of one input layer, two of one-dimensional convolution

layers, two of one-dimensional max pooling layers, one flatten

layer, two of fully connected network layers, and one output layer.

Machine learning models, such as K-Nearest Neighbors, Support

Vector Machine, Decision Tree, and Random Forest were used for

comparison with deep learning models performance.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 206–213 | 209

K-Nearest Neighbor (KNN) algorithm is one of supervised

learning methods, and it is considered as one of the simplest of all

machine learning algorithms. KNN works by memorizing the

training set, and then try to predict the label of new samples based

on the labels of its closest neighbors in the training set. The

classification of samples is applied to determine the distance

between the unlabeled sample and its neighbors. Such as City-

block, Euclidean, Chebyshev and Manhattan are used to measure

the distance. Support Vector Machines (SVM) algorithm is also

one of supervised learning methods, it is commonly used for

classifying objects and pattern recognition. SVM works by

mapping the input vector into a high-dimensional feature scope,

and the mapping is done by implementing different kernel

functions. Kernel function selection, such as linear, polynomial

and Radial Based Function, is considered as a crucial job in SVM

which can have effect on the accuracy of the classification result.

The purpose of Support Vector Machine is finding a separating

hyperplane in the feature scope to maximize the margin among

different classes [18].

Decision Tree (DT) algorithm is a supervised learning technique

that is used to perform classification by a learning tree. DT is

consisting of internal decision nodes and terminal leaves. Each

node in the tree denotes an attribute, branches denotes the

conjunctions of attributes that lead to classifications, and each leaf

is a class label. The unlabeled samples are classified according to

its feature value with the decision tree nodes. DT is easy to

implement and it is capable to achieve high accuracy. Three of

most common decision tree algorithms are ID3, C4.5 and CART.

The core difference between them is the splitting criteria.

Random Forest (RF) algorithm is a supervised learning technique

that is used for classification and regression problems. RF made of

many decision trees. RF is randomly choose a subset of the feature

scope to construct each decision tree in order to minimize the over-

fitting and improve the classification accuracy. RF works by

putting the samples to each tree, each tree gives a result which is

the tree’s vote, then the samples will be classified into the class

according to which has the most votes [19].

3.2. System Design

As mentioned before, the deep learning classifier is located at the

network's edge to capture and analyze the incoming flow.

OpenFlow networks typically run in a reactive mode that means

when the packet arrives at the network, the switch looks it up in its

flow tables. If there is no match found, the switch forwards the

packet to the controller asking how to handle the new arrival

packet. The controller has no information about which application

generates traffic and how much network resources it needs.

Therefore, the first packet of flow will be replicated and directed

to the classifier; when the packet arrives at the classifier, it will be

classified according to the previously defined classes, then the

classified packets will be tagged with the result of the

corresponding class through modifying Type of Service (ToS)

field in the IP packet header. After that, the packet will be sent out

to the controller.

Once the controller receives the packet from the classifier, it

decodes ToS in the packet header and matches the value of ToS

with rules installed on the controller; after that, packet flows are

mapped to a specific queue by enqueueing, and flows will be

treated according to that queue's configuration. The decisions

taken by the controller will be sent to the switches to install them

in their routing tables, so the following packets that belong to the

first packet will be handled the same way.

Since OpenFlow does not support queue configuration, as a result,

the configuration and setup are done in the OpenFlow switch. Also,

the OpenFlow switch allows us to specify a packet scheduler type

and prioritize flows. The packet scheduler works on attaching or

detaching packets for queues and allows for prioritizing flows by

setting different priority values for each queue, enabling flow to be

handled differently and guarantee the necessary communication.

So, low priority flows are installed first, and then the other flows

are installed. The HTB packet scheduler is used to delay packets to

meet each queue's desired rate, and it enables to configure

minimum and maximum bandwidth capacity. Configuring the

bandwidth capacity allows for allocating bandwidth for each queue

to guarantee the minimum bandwidth for each application type and

avoid bandwidth starvation. After the flows are enqueued to the

related queue and handled by the packet scheduler, traffic shaping

is used to manage network bandwidth by controlling the rate and

the volume of incoming flows to avoid congestion. Applying

traffic shaping increases the network's performance, bandwidth

availability, and prevents an unexpected increase in bandwidth

usage.

The controller looks up the source IP and destination IP to make a

routing decision, so the controller from the global view calculates

multiple routes between the source and the destination. In general,

it selects the route with the least hop counts, though it is possible

to select the same route to transmit dense flows, causing

congestion. For the routes with the same number of hop counts,

port-based algorithms consider each port's capacity to accomplish

general load balancing. A load balancing technique is implemented

Fig. 1. System Design

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 206–213 | 210

on the switch that works on splitting the workload on the number

of physical links to decrease traffic congestions, increasing the

throughput, and using the available physical links effectively. It

tries to accomplish a general load balancing by considering the

capacity of each egress port.

The flow monitoring module monitors the link availability by

collecting the delay and available link bandwidth of the physical

network periodically. Also, other models can acquire all the

monitor information.

3.2.1. OpenFlow Switch

The OpenFlow's current specification does not support queue

configuration; thus, queue configuration is being handled by

specific OF-CONFIG and Open vSwitch Database Management

Protocol (OVSDB) protocols. Even though the OVSDB protocol

is already implemented in Open vSwitches, there are no controllers

that offer consistent queues management [5].

In the proposed system, we used Open vSwitch as the OpenFlow

switch. Open vSwitch is an open-source virtual multilayer switch

intended for programmatic network automation, it supports

implementing the OpenFlow protocol, and its implementations

consist of flow tables with each flow entry having match

conditions and associated actions. Open vSwitch connects to the

controller through a secure channel and uses OpenFlow protocol

to control network flows. Open vSwitch supports a wide range of

tools, such as managing queuing disciplines, switch port queues,

port mirroring rules, and other tools [13].

3.2.2. Queuing

Queuing is used to provide QoS by managing the queues that hold

packets while waiting for their turn to be transmitted. When a

network device receives packets, it makes a forwarding decision

and sends the packets to the outgoing interface. However, when

the outgoing interface is busy, it keeps the outgoing packets in

queues, waiting for the outgoing interface to be available [14].

The queuing system requires a scheduler to decide which packet

will be transmitted next when the interface becomes available.

Also, the scheduler can perform prioritization, giving a certain

level of priority to a queue. Each queue can have a different priority

value in a multi-queue system that enables that queue to handle

packets over other queues. Hierarchical Token Bucket (HTB) is

used to manage our queuing discipline, enabling network admins

to assign a particular priority to each set of data packets based on

what type of transmission it is.

3.2.3. Quality of Service Module

The Quality of Service (QoS) module in the system design consists

of three main components: Enqueueing, Packet Scheduler, and

Traffic Shaping. The Enqueueing component is responsible for

administering the OpenFlow flow table messages and mapping

flows to corresponding queues; it is located inside the controller.

Whereas, The Packet Scheduler is responsible for managing the

packets in queues, and Traffic Shaping is in charge of manipulating

the bandwidth volume in queues, both of these components are

located inside the switch.

• Queue Structure

The OpenFlow based switches can have one or more queues

attached to a particular output port, and those queues can use

packet scheduler to schedule existing packets the datapath on that

output port. Each queue is uniquely identified by queue ID and port

number. Two queues may have the same queue ID. Packets are

directed to one of the queues based on the packet output port and

queue ID; it is done using the Output and Set Queue actions. Packet

flows are mapped to a specific queue by enqueueing, and flows

will be treated according to that queue's configuration.

• Enqueueing

It is in charge of operating OFPT FLOW MOD messages of the

OpenFlow Protocol. This message works on modifying the state of

the flow table. Each packet has action, counters, and header fields

for matching flow packets. The enqueueing maps packet flows to

queues using SKB PRIORITY of kernel's data structure named SK

BUFF. The configuration is completed by using the SO

PRIORITY option of the packet.

• Traffic Shaping and Packet Schedulers

These two components are responsible for running QoS messages

received from the control plane by allocating the bandwidth

volume in queues and attaching or detaching packet schedulers for

these queues. Furthermore, these components manipulate OFPT

QOS QUEUEING DISCIPLINE messages representing the

Quality of Services messages in the OpenFlow protocol. HTB

packet scheduler is used to delay packets to meet each queue's

desired rate, and it enables to configure minimum and maximum

bandwidth capacity.

4. Experimental Evaluation

4.1. Evaluation of the Deep Learning Models

The Scikit-learn library is used to train the machine learning

model, and the PyTorch library is used to train the deep learning

models. The duration of the flows of 5, 10, 15, and 30 seconds was

taken into consideration to conduct our experiment. We have also

examined different flow timeout to demonstrate the flow timeout

effect on the final results

The performance of deep learning models is compared with several

machine learning models, such as K-Nearest Neighbors, Support

Vector Machine, Decision Tree, and Random Forest. To improve

the models' performance, the datasets used to train machine

learning models have been standardized, and the datasets used to

train deep learning models have been normalized. Since the

classification's overall accuracy does not give a good insight into

the classifier performance; thus, precision, recall, and F-score

metrics are used to assess the models' performance. We used 5-fold

cross-validation during the evaluation of deep learning and

machine learning models. Cross-validation is used together with

regularization to aid in tuning the hyperparameters. Cross-

validation also offer the ability to test the model on unseen data

while maintaining a test set that will be used for testing at the end.

At the time of training, we did an exhaustive search over specified

parameter values for both deep learning and machine learning

models.

Accuracy is the proportion of correct classifications.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 ⁄ (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)

Fig. 2. shows the accuracy of both ML and DL models.

Fig. 2. The accuracy of ML and DL models.

70

75

80

85

90

95

100

KNN SVM DT RF DNN CNN

A
C

C
U

R
A

C
Y

ML AND DL ALGORITHMS

5 Sec 10 Sec 15 Sec 30 Sec

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 206–213 | 211

Precision is the number of true positives divided by the total

number of true positives and false positives predicted by the model.

The precision can capture features that determine the positiveness

of a sample to avoid misclassification as negative.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)

Fig. 3. shows the precision of both ML and DL models.

Fig. 3. The Precision of ML and DL models.

The recall, also known as sensitivity, can identify true positive

samples between all the potential positives, including the false

negatives.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)

Fig. 4. shows the recall of both ML and DL models.

Fig. 4. The recall of ML and DL models.

F-score is a combination of precision and recall are in a single

criterion, and it is a measure of a test's accuracy.

𝐹1 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

Fig. 5. shows the F-score of both ML and DL models

Fig. 5. The F-score of ML and DL models.

It is worth noting that the advantages of implementing DL over ML

models are the following: scale-up effectively compared to other

ML algorithms, provides better performance, and needs no feature

engineering.

4.2. Evaluation of the Overall System

In this experiment, we used Mininet, which is a network emulator,

as a testbed to implement our system on an SDN topology, and we

used the POX controller as the SDN controller [16] [17]. During

the evaluation stage, we used Open vSwitch as an OpenFlow

switch.

To evaluate our system, we used three different scenarios: the first

scenario is the baseline where nothing is implemented, the second

scenario involves the implementation of queues only, and the third

scenario involves implementing queues and load balancing

together. The queue rules and load balancing are installed on the

OpenFlow switch, and the rules of the packet scheduler are

implemented on the controller.

The link's bandwidth between connected devices is set to 100 MB

each, and the delay is set from 5ms to 30ms.

Table 3. shows the bandwidth allocation for each group of

applications. A TCP connection is set between the server and the

hosts during the experimenting stage. Fig. 6. Shows the topology

used for the evaluation. We have three hosts connected to a server

with each host using a different application type.

Table 3. Application Bandwidth Requirements

Class Application Bandwidth

Priority Real-time traffic 10 MB

High
Audio-Streaming,
Browsing, E-mail

35 MB

Moderate
File Transfer, P2P,

Video-Streaming
55 MB

Fig. 6. Testbed Topology

In the first scenario, no rules or policies were implemented to

monitor the regular rate of transmitting data between hosts and

servers. At the congestions time, the hosts suffer from bandwidth

starvation, causing data loss and decreasing in receiving and

transmitting rate between data that create a chaotic environment.

This is shown in Fig. 7.

Host - 1

Host - 2

Host - 3

70

75

80

85

90

95

100

KNN SVM DT RF DNN CNN

A
C

C
U

R
A

C
Y

ML AND DL ALGORITHMS

5 Sec 10 Sec 15 Sec 30 Sec

70

75

80

85

90

95

100

KNN SVM DT RF DNN CNN

A
C

C
U

R
A

C
Y

ML AND DL ALGORITHMS

5 Sec 10 Sec 15 Sec 30 Sec

70

75

80

85

90

95

100

KNN SVM DT RF DNN CNN

A
C

C
U

R
A

C
Y

ML AND DL ALGORITHMS

5 Sec 10 Sec 15 Sec 30 Sec

Servers

DL

Classifi

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 206–213 | 212

Fig. 7. Data transmission rate between hosts and servers for the first

scenario

In the second scenario, rules of queues are installed on the

OpenFlow switch, and then traffic shaping is applied to the traffic

flow. Applying traffic shaping increased the performance of the

network and the availability of bandwidth. The regulation of

bandwidth usage helps in guaranteeing resources for each type of

application. This is presented in Fig. 8

Fig. 8. Data transmission rate between hosts and servers for the second

scenario

In the last scenario, the same rules of queues are installed on the

OpenFlow switch, and traffic shaping is applied, in addition to

installing a load balancing technique on the OpenFlow switch too.

This is displayed in Fig. 9.

Fig. 9. Data transmission rate between hosts and servers for the third

scenario

5. Conclusion

In this paper, we propose a traffic engineering system for SDN

based on deep learning models to improve bandwidth allocation

among various applications by classifying the network traffic using

time-based characteristics of flows and applying QoS. The system

distributes traffic to multiple queues with different priorities to

improve the QoS of the traffic flows. To increase the network's

performance and avoid traffic congestion, we implement a

technique to achieve general load balancing. The experimental

result of the traffic captured at 5s and 10s flow timeout showed

CNN and DNN were are to achieve above %88 accuracy more

than machine learning models, while KNN and RF are able to

achieve more than %98 accuracy of traffic captured in 15s and 30s

timeout better than CNN and DNN that are able to achieve more

than %94 accuracy. The advantages of implementing DL over ML

are the ability to scale-up effectively compared to other ML

algorithms, provides better performance, and needs no feature

engineering. The evaluation of the overall system showed applying

traffic shaping to the identified flow increases the network's

performance and bandwidth availability, it also showed that we can

guarantee bandwidth for each type of application, and

implementing the load balancing technique showed an increase in

the throughput of each queue.

As future work, we plan to test the system on larger network

topologies and study the effects of more hosts being involved in

the data transfer. Another interesting research idea is studying the

impact of increased traffic volume per host and more variety in the

applications generating the traffic.

References

[1] Mendiola, A., Astorga, J., Jacob, E., & Higuero, M. (2016). A survey

on the contributions of software-defined Networking to traffic

engineering. IEEE Communications Surveys & Tutorials, 19(2),

918-953.

[2] Robertazzi T.G., Shi L. (2020). Machine Learning in Networking.

In: Networking and Computation. Springer, Cham.

https://doi.org/10.1007/978-3-030-36704-6_7.

[3] Yan, J., & Yuan, J. (2018, August). A survey of traffic classification

in software defined networks. In 2018 1st IEEE International

Conference on Hot Information-Centric Networking (HotICN) (pp.

200-206). IEEE.

[4] Rezaei, S., & Liu, X. (2019). Deep learning for encrypted traffic

classification: An overview. IEEE communications magazine,

57(5), 76-81.

[5] Karakus, M., & Durresi, A. (2017). Quality of service (QoS) in

software defined Networking (SDN): A survey. Journal of Network

and Computer Applications, 80, 200-218.

[6] Jeong, S., Lee, D., Hyun, J., Li, J., & Hong, J. W. K. (2017,

September). Application-aware traffic engineering in software-

defined network. In 2017 19th Asia-Pacific Network Operations and

Management Symposium (APNOMS) (pp. 315-318). IEEE.

[7] Yan, J., & Yuan, J. (2018, August). A survey of traffic classification

in software defined networks. In 2018 1st IEEE International

Conference on Hot Information-Centric Networking (HotICN) (pp.

200-206). IEEE.

[8] Amaral, P., Dinis, J., Pinto, P., Bernardo, L., Tavares, J., & Mamede,

H. S. (2016, November). Machine learning in software defined

networks: Data collection and traffic classification. In 2016 IEEE

24th International Conference on Network Protocols (ICNP) (pp. 1-

5). IEEE.

15

25

35

45

55

65

1 2 3 4 5 6 7 8 9 1 0

D
A

T
A

 T
R

A
N

S
M

IT
T

E
D

 (
M

B
)

TIME(S)

Host - 1 Host - 2 Host - 3

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 1 0

D
A

T
A

 T
R

A
N

S
M

IT
T

E
D

 (
M

B
)

TIME(S)

Host - 1 Host - 2 Host - 3

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 1 0

D
A

T
A

 T
R

A
N

S
M

IT
T

E
D

 (
M

B
)

TIME(S)

Host - 1 Host - 2 Host - 3

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 206–213 | 213

[9] Lashkari, A. H., Draper-Gil, G., Mamun, M. S. I., & Ghorbani, A.

A. (2017, February). Characterization of Tor Traffic using Time

based Features. In ICISSP (pp. 253-262).

[10] Rezaei, S., & Liu, X. (2019). Deep learning for encrypted traffic

classification: An overview. IEEE communications magazine,

57(5), 76-81.

[11] Choubey, R. N., Amar, L., Khare, S., & Venkanna, U. (2019,

December). Internet Traffic Classifier Using Artificial Neural

Network and 1D-CNN. In 2019 International Conference on

Information Technology (ICIT) (pp. 291-296). IEEE.

[12] Xu, J., Wang, J., Qi, Q., Sun, H., & He, B. (2018, September). Deep

neural networks for application awareness in SDN-based network.

In 2018 IEEE 28th International Workshop on Machine Learning for

Signal Processing (MLSP) (pp. 1-6). IEEE.

[13] The Linux Foundation. (n.d.) Open vSwitch . Retrieved June 19,

2020, from http://openvswitch.org/

[14] Thazin, N., Nwe, K. M., & Ishibashi, Y. (2019, February). Resource

Allocation Scheme for SDN-Based Cloud Data Center Network.

Seventeenth International Conference on Computer Applications

(ICCA 2019).

[15] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P.

(2002). SMOTE: synthetic minority over-sampling

technique. Journal of artificial intelligence research, 16, 321-357.

[16] Kaur, S., Singh, J., & Ghumman, N. S. (2014, August). Network

programmability using POX controller. In ICCCS International

Conference on Communication, Computing & Systems, IEEE (Vol.

138, p. 70).

[17] Mininet. Retrieved May 15, 2020 from http://www.mininet.org.

[18] Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding

machine learning: From theory to algorithms. Cambridge university

press.

[19] Xie, J., Yu, F. R., Huang, T., Xie, R., Liu, J., Wang, C., & Liu, Y.

(2018). A survey of machine learning techniques applied to software

defined networking (SDN): Research issues and challenges. IEEE

Communications Surveys & Tutorials, 21(1), 393-430.

[20] Dargan, S., Kumar, M., Ayyagari, M. R., & Kumar, G. (2019). A

survey of deep learning and its applications: A new paradigm to

machine learning. Archives of Computational Methods in

Engineering, 1-22.

