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Abstract: In this study, hardware-in-the-loop based real-time state of charge estimation was performed in Li-Ion batteries, which are widely 
used in hybrid and battery electric vehicles. The state of charge is estimated on the Li-Ion battery cell that forms the electric vehicle battery 
system. Multi-layer perceptron approach has been preferred as a method for estimating the battery state of charge. Discharge experiments 
based  on different  electrical  loads  were  applied  to  the  Li-Ion  battery  cell  to  be  used  in  multilayer  perceptron  learning  processes.  An 
experimental setup has been prepared to perform the discharge process under different electrical loads. In each discharge experiment, 
battery open circuit voltage, battery discharge current and battery cell temperature parameters were measured and were recorded. By using 
the data obtained from the experiments on the battery cell, a multilayer perceptron model was created in MATLAB environment. After 
creating the multilayer perceptron model, the real-time battery state of charge the was estimated at different discharge currents in the 
experimental setup and the results obtained were evaluated.

Keywords: Li-Ion  batteries,  hardware-in-the-loop,  electric  vehicles,  multilayer  perceptron,  artificial  neural  networks,  state  of  charge 
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1. Introduction 

Due to the decreasing fossil fuel reserves in the world and the 

increase in CO2 emissions released into the atmosphere, there has 

been a tendency to seek new resources, use sustainable and 

renewable energy in today's automotive industry [1]. Increase of 

new studies in the automotive sector shows that Battery Electric 

Vehicles (BEVs) and Hybrid Electric Vehicles (HEVs) have been 

preferred as a solution of these problems [2]. Generally, Electric 

Motor (EM) is used in BEVs, on the other hand Internal 

Combustion Engine (ICE) and EM together are used in HEVs [3], 

[4]. The widely using of BEVs and HEVs has led to an increase in 

studies on batteries [5]. Today, various battery types such as lead-

acid batteries, Lithium-ion batteries, Sodium-Sulfur batteries, 

Nickel-Cadmium batteries are used in these technologies [6]. The 

most used type of battery in BEVs and HEVs is Lithium-based 

batteries due to their high energy density, durable structure, fast 

charging, low maintenance costs, and long life [7], [8]. However, 

such batteries can easily break down in cases of incorrect charging 

and discharging due to their chemical structure [9]. Therefore, in 

lithium-based batteries, the charging and discharging processes 

must be performed by monitoring the parameters in the battery. 

The State of Charge (SoC) in the batteries is the most important 

parameter that shows the energy capacity of the battery [10] - [12]. 

Knowing the SoC of a battery correctly and without error enables 

the Battery Management System (BMS) to work correctly and 

protect the battery from overcharging, discharge and heating [13]. 

Today, unfortunately, SoC cannot be measured directly using 

sensors [14], [15]. For this reason, some estimation methods 

should be used to measure the SoC [12], [16]. Today, methods and 

algorithms such as direct measurement methods, Artificial 

Intelligence (AI) methods, model-based methods and hybrid 

methods in battery SoC estimation are available in the literature 

[11] - [15], [17] - [19]. It describes three basic methods such as 

direct measurement methods, Coulomb counting method [20]- 

[25], electrochemical impedance spectroscopy method [26]- [31], 

battery Open Circuit Voltage (OCV) based methods [32]- [36]. 

With direct measurement methods, the instantaneous measured 

parameters of the battery are used to estimate the battery SoC [37]. 

However, since the initial parameters of the battery cannot be 

estimated with these methods, it is necessary to know whether the 

battery is fully charged or completely empty for accurate SoC 

estimation. Therefore, it can be said that these methods are poor in 

terms of accuracy [16]. 

In addition to direct measurement methods, indirect measurement 

methods are also used in estimating the battery SoC [38]. Adaptive 

filter-based methods, model-based methods [39] - [42], adaptive 

Artificial Intelligence (AI)-based methods [43] - [47] and hybrid 

methods [48] - [50] are used as indirect measurement methods 

[51]. Unlike direct measurement methods, indirect measurement 

methods yield predictive results with higher accuracy [16]. 

Classification of the methods used today in the SoC estimation in 

batteries and the disadvantages of these methods are given in 

Figure 1.  

Many studies have been carried out on the estimation of SoC, and 

a new one is added to the studies on this subject every day. The 

correlation between OCV and SoC is often used in SoC calculation 

algorithms. However, the relationship between OCV and SoC is 

not the same for each battery. The SoC and capacity of the 

Lithium-Ion (Li-Ion) battery is estimated using the double 

Extended Kalman Filter (EKF) and SoC-OCV relation. According 

to the experimental results, this method works with an error of less 

than 5% [17]. In a study on the methods and applications of SoC 
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determination, it was emphasized that the operating conditions 

from battery to battery will be different, so the method of 

estimating the battery SoC may be suitable for some batteries or 

not for others. For example, batteries used in solar energy storage, 

batteries used in electric vehicles and batteries used in 

telecommunication be different from each other [53]. In battery 

SoC estimation, electrical circuit model is widely used due to ease 

of calculation. However, the SoC estimation performance of this 

method is low and the modeling time is short [54]. Using adaptive 

iterative Artificial Neural Network (ANN), SoC estimation in Li-

Ion batteries yields successful results [46]. In a study using ANN 

and EKF in the SoC estimation of Li-Ion batteries, electrical 

measurement data during the charging or discharging process are 

used to train the neural network [17]. In the estimation of battery 

SoC, the combination of Genetic Algorithm (GA)-ANN yields 

efficiently results avoid from complex mathematical operations 

[55]. It is claimed that the artificial intelligence approach is 

efficient and can predict SoC in advance [56]. The ANN algorithm 

is used to estimating the SoC value with the discharge test [47]. 

In this study, the SoC estimation of Li-Ion battery cell, which is 

widely used in BEVs and HEVs today, was performed using a 

Multi-Layer Perceptron (MLP).
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Since battery initial parameters cannot be estimated in this method, errors of 
estimation are inevitable. Battery initial parameters must be known for high accuracy 
of the prediction result. The current measurement sensor must have high sensitivity.

While determining the state of charge in battery with this method, the battery should 
not be in charge or discharge state. Therefore, it is not a usable method in real time 
estimation.

With this method, battery state of charge can only be estimated during the charging 
process. As it is affected by high temperature values, estimation process with this 
method should be made under high frequencies.

Battery model parameters are determined in a laboratory environment on a newly 
produced battery. However, this process is long, costly and has disadvantages in 
terms of accuracy due to the changes in production-related parameters in each 
battery. In addition, electrical model-based approaches are complex.

Since it is necessary to analyze the chemical structure of the battery with this 
method, it is seen as a long, costly and difficult and heavy method due to production -
related errors even if the batteries produced are in the same model.

Although these methods have been studied extensively in the literature due to their 
high complexity, high computational power and inconsistency, they force researchers 
to propose new methods.

Although they have a better performance than similar methods, it is seen that these 
methods are not a commercially preferred method because of the high computing 
power required.

In cases such as battery aging factor and temperature effects, it remains at a 
disadvantage just like Kalman filter-based methods.

With this method, the design of the Fuzzy Logic Controller (FLC) system must be 
made according to the battery characteristics in order to accurately estimate the 
battery SoC. In addition, the aging factor of the battery should be evaluated.

In this method, a data set is prepared using the parameter measurements obtained 
from only one type of battery, and the battery SoC is estimated by training in the 
neural network with the obtained data set. In this method, the battery aging factor 
stands out as a disadvantage.

Experimental data obtained from the battery are needed for the application of this 
method. It also requires high computing power.

These methods are insufficient in real-time forecasting applications because they 
require high computing power and there are delays in calculation time.

It is a method that has the disadvantages of genetic algorithm-based prediction 
methods. In addition, the complexity increases in this method because the 
convergence term is analyzed by the object function.

Luenberger Based Methods,
Multivariate Adaptive Regression Spline (MARS)

Smooth Variable Structure Filter (SVSF)
Sliding Mode Observer (SMO)

 

Fig. 1. Battery SoC estimation methods and disadvantages [52] 
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Fig. 2. Multilayer perceptron network model for battery SoC estimation. 

The battery temperature, OCV, current and instantaneous electrical 

power parameters used in the training of the MLP were obtained 

by the discharge process on different electrical loads on the battery 

with an experimental setup. A programmable load device was used 

to discharge the battery, and a Li-Ion battery charger was used to 

charge the battery. A temperature sensor was used for battery 

temperature measurement, a voltage sensor for OCV 

measurement, and a current sensor for current measurement. 

Battery parameters obtained from the sensors were monitored in 

real-time with the experiment control card and recorded on the 

Secure Digital (SD) memory card. At the same time, the battery 

SoC was calculated in real-time with the Coulomb Counter method 

on the experiment control card and recorded on the SD memory 

card. MLP designed in Matlab environment was trained with the 

part of the data obtained from discharge experiments reserved for 

training. After the network training, the MLP performance was 

tested and the results were interpreted. 

In the second part of the article, modeling of MLP, in the third part, 

the Real-time SoC estimation using MLP, in the fourth part the 

results and discussions are given. 

2. Modeling a Multi-layer Perceptron 

MLPs are one of the artificial intelligence methods in the sub-class 

of machine learning used in different fields such as system 

modeling, anomaly detection, classification applications [57]. The 

MLP consists of a series of structures called neurons that mimic 

the information processing and information acquisition capabilities 

of the human brain. MLPs are frequently used especially in 

modeling processes of systems with complex mathematical models 

[44]. MLPs work with the principle of transmitting the input 

parameter values to the output by connecting layers consisting of 

a series of neurons among themselves. In the process of 

transferring input parameters to the output, the values transmitted 

to individual neurons in each layer are mathematically processed 

with different weights and threshold values in the neurons, and 

then transmitted to the next layer. Thus, complex system models 

can be easily adapted using MLP [58]. MLPs can perform learning 

and updating processes in their structures in order to adapt to the 

system they are adapted. MLPs need data in accordance due to 

their working principles. Without the need for detailed physical 

parameters related to a complex system, they create a high-

accuracy model of the system by imitating the responses of the 

system according to certain input variables. Thus, they take their 

place in the literature as one of the best methods of avoiding the 

difficulties and computational complexity encountered in the 

process of mathematical modeling of systems [59]. 

2.1. Multi-layer Perceptron Model  

The MLP structurally consists of the input layer, at least one 

hidden layer consisting of nodes to similar the relationship between 

input and output layers, and the output layer. In Figure 2, the MLP 

structure used in the estimation of SoC of the Li-Ion battery is 

given. The network inputs consist of the current, voltage, 

temperature and electrical power parameters obtained from the 

battery discharge experiments, while the MLP output consists of 

the battery SoC parameter obtained by the Coulomb count method 

during the battery discharge experiments. 

In the MLP structure given in Figure 2, each layer is connected to 

each other through nodes. There are special weight values and a 

threshold value parameter for each input parameter on the neurons 

forming the layers in the neural network. After the weight values 

and neuron threshold value parameters are processed in the neuron, 

the results of the mathematical operation are applied to the 

activation function defined for each node output. Hyperbolic 

tangent sigmoid function is generally used as activation function 

in MLP structures. The hyperbolic tangent sigmoid function is 

given in Eq. (1). The neuron outputs in the layers are 

mathematically given in Eq. (2). 

 

ℱ𝑡𝑎𝑛𝑠𝑖𝑔(𝑢) =
2

1+𝑒−2𝑢 − 1    (1) 

𝑦𝑗 = ℱ(𝑢𝑗) = ℱ (∑ 𝜔𝑖𝑗𝑥𝑖
𝑖

+ 𝑏𝑗)   (2) 

Here, 𝑥𝑖 represents the output of node i of the layer before the 

relevant neuron, 𝜔𝑖𝑗  represents the weight of the connection 

between node j of the current layer from node i of the layer before 

the neuron, and 𝑏𝑗  represents the threshold value of node j. The 

weight and threshold values defined for each node and connection 

in the hidden layer and output layers of the neural network are 
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determined by the training data of the network. In this study, Back 

Propagation (BP) algorithm was used to adjust weight and 

threshold parameters. During the training process of the network, 

the BP algorithm transmits the error value between the output 

parameter and the output parameter of the network to hidden 

layers, and operates according to the principle of iterative updating 

of weight and threshold parameters and minimization of error 

owing to the learning function. For detailed information about the 

BP algorithm, see. [60]. Figure 3 gives an example of a neuron. 

 



biasweightsinputs

Activation function

 

Fig. 3. An artificial neuron 

2.2. Preparation of Training Data 

In BEVs and HEVs, the most important process in MLP and SoC 

estimation in their batteries is the preparation of the data required 

for training the neural network. The situation that should be taken 

into consideration in the preparation process of the training data of 

the network is that BEVs and HEVs are exposed to variable loads 

in their real-life use. Changes in electrical loads vary according to 

road conditions, vehicle speed and driving style. Therefore, in 

order for the network to have high prediction accuracy, the variable 

parameters of the data used in the training of the network should 

include the closest results to real life. In the study, a Li-Ion battery 

cell was discharged using different electrical loads in order to 

perform the discharge process of the batteries of BEVs and HEVs 

in the battery SoC estimation in a way that best fits the discharge 

profile. A programmable electrical load device was used to 

generate different electrical loads. Considering the battery 

discharge profiles of BEVs and HEVs, the electrical load device 

was programmed at 1 Ω, 2 Ω, 3 Ω, 4 Ω, 5 Ω, 6 Ω, 7 Ω, 8 Ω, 9 Ω 

and 10 Ω resistance values and Discharges were repeated over the 

battery. In each discharge experiment, the OCV, current and 

temperature parameters of the Li-Ion battery were measured in 

real-time. After the discharge process, the battery was recharged 

and prepared for the next discharge experiment. Figure 4 shows the 

flow diagram of the method designed during the experiments. 

During the battery discharge experiments, a main control card is 

designed to perform the discharge and charging process 

synchronously, to process and record the measurement data 

obtained from the sensors during the experimental processes, and 

to send them to the computer. Thanks to the main control card 

produced, the battery cell temperature, voltage and current 

parameters were measured and processed with the help of sensors 

on the card. The processed measurement value was recorded in the 

SD memory card. 

Since all of the experiments were carried out on a fully charged Li-

Ion battery cell, the direct SoC measurement method was applied 

with the current sensor connected on this card, and the battery was 

calculated and recorded on the SD memory card in the 

experiments. The technical characteristics of the battery cell used 

in the discharge experiments are given in Table 1, and the charge 

and discharge curves of the battery cell are given in Figure 5. In 

the experimental studies, the current, temperature and voltage 

parameters of the battery cell were measured and the battery SoC 

was performed by the Coulomb counting method, which is in the 

direct measurement methods class. Battery SoC estimation with 

Coulomb Counting method is easy and simplier than other 

methods. The biggest disadvantage of this method is that the initial 

capacity of the battery cannot be predicted. 

Start

Soc= %100 ?

Discharging

Measurement 
Data 

Collection

Measurement of 
battery parameters 
(current, voltage, 

temperature)

Measuring Battery 
SoC with Coulomb 

Counter

Soc = % 0 ?

Charging

Save Data

Send data 
to PC

Neural 
Network 

Training Data 
Set

SoC = % 100?

NO

YES

NO

YES

NO

YES
 

Fig. 4. Flow diagram of battery discharge experiments 

Table 1. Panasonic NCR18650B Li-Ion battery cell specifications 

Parameter, Unit Value 

Nominal capacity, mAh 3.200 

Nominal voltage, V 3.6 

Charging time, hour 4 

Weight, g 48.5 

Temperature, ℃ 

Charging 0…45 

Discharging –20…60 

Energy density, W/kg 243 

 

However, in experimental studies, the battery being in a fully 

charged state eliminates this disadvantage [24]. Therefore, by 

measuring and counting the battery discharge current and 

iteratively subtracting it from the nominal capacity of the battery, 

the battery SoC can be easily calculated. The mathematical 

expression of the Coulomb Counting method is given in Eq. (3). 

 

𝑆𝑜𝐶𝑡 = 𝑆𝑜𝐶𝑡−1 + (
1

𝐶𝑁
) ∫ 𝜂𝐼𝑏𝑎𝑡𝑑𝑡

𝑡

𝑡−1
   (3) 

In Equation 3, 𝑆𝑜𝐶𝑡 is the SoC of the battery at time t, 𝑆𝑜𝐶𝑡−1  is 

the SoC of the battery at t-1, 𝐶𝑁 is the nominal capacity of the 

battery, 𝜂 Coulomb efficiency coefficient (𝜂 = 1 at the time of 

battery discharge, 𝜂 <at the time of battery charge. 1), 𝐼𝑏𝑎𝑡 

represents battery current, 𝑡 represents sampling time. Figure 6 

shows the working block diagram of the experimental setup used 

in experimental studies. The current measurements of the 

Panasonic NCR18650B Li-Ion battery cell used in the discharge 

experiments in the experimental setup were made using the LEM 

brand LTS25np current sensor. Thanks to the different connection 

configurations on the LTS25np, discharge current can be measured 

between ± 80 A and ± 8 with high precision and accuracy. LEM 

brand LV25p voltage sensor is used for OCV measurement. Using 

the LV25p, the voltage between 10 V and 500 V is measured with 

high precision and accuracy. 

𝑏𝑗 𝑥1 

𝑥2 

𝑥𝑖 

𝜔1𝑗 

𝜔2𝑗 

𝜔𝑖𝑗 

𝑦𝑗  ℱ𝑡𝑎𝑛𝑠𝑖𝑔(𝑢) 
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(a) 

 
(b) 

Fig. 5. Panasonic NCR18650B Li-Ion battery cell charge and discharge 
profiles [61], (a) Charge profile (1- voltage, 2- capacity, 3- current), (b) 

Discharge profile (1- 0.65 A, 2-3.2 A, 3- 6.5 A) 

The LV25p transducer requires a power supply that supplies 

symmetrical voltage to operate. Therefore, in the study, a muRata 

brand NMH1205SC-2W PCB type DC-DC power supply was 

used. Thanks to this product, 5V input voltage is converted to ± 

12V output voltage. In addition, since the fully charged voltage of 

the battery is 4.2 V, OCV cannot be measured with the voltage 

sensor in this range. Therefore, the OCV signal was increased 

using the Op-Amp circuit known as gain amplifier and OCV was 

measured. The temperature of the battery cell was measured using 

the Melexis brand MLX90615 digital infrared temperature sensor. 

The temperature sensor can measure between -40 and +115 

degrees with a resolution of 0.02 degrees. The temperature of the 

battery cell was measured accurately in the experimental setup due 

to its high measurement sensitivity and non-contact measurement 

capability with infrared technology. The data obtained from the 

sensors in the battery cell was processed on the Arduino Mega 

2560 microcontroller card, recorded on the SD memory card and 

transferred to the computer via the UART protocol. Arduino Mega 

2560 is a development board with 54 Input / Output (I / O), 16 

analog inputs and 16 Pulse Width Modulation (PWM) ports on the 

microcontroller board. Today, it is widely used in R&D and 

academic studies. Liquid Crystal Display (LCD) was used to 

monitor the sensor data in the experiments and the test processes 

were monitored on the card in real-time. In battery discharge 

experiments, ARRAY brand 3711A programmable DC load 

device was used to load the battery cell. 

 

 

Fig. 6. Working block diagram of experimental setup 
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Fig. 7. Battery discharge experimental setup 

 

 

Fig. 8. The data obtained from the battery discharge experiments, a) battery temperature (R = 1-10 Ω), b) Battery discharge current (R = 1-10 Ω), c) 

Battery voltage (R = 1-10 Ω), d) Battery discharge power (R = 1-10 Ω), e) Battery SoC (R = 1-10 Ω) 
Thanks to the load device, it can be loaded up to 300 W power 

values and current, power and electrical load can be adjusted with 

0.2% accuracy. The main control card is powered by an AATech 

brand ADC3306D model external AC / DC power supply. In the 

process of charging the battery cell after each discharge 

experiment, HTRC brand T240 Duo model battery charger with 

240 W charging power was used. The visual of the experimental 

setup is given int he Figure 7. To be used in experimental studies, 

the sampling time for each parameter was determined as one 

second. Parameter measurement data set is obtained with ten 

different discharge experiments consists of ≌173K data. Of the 

data set, 70% (≌121K) and 30% (≌49K) were used for training 

and testing purposes of network, respectively. 

The experimental results of the battery temperature, voltage, 

current parameters, calculated instantaneous power and battery 

SoC parameters obtained from sensor measurements are given in 

the Figure 8. 

2.3. Training of Multi-layer Perceptron 

Training of the network was carried out by applying training data 

obtained from battery discharge experiments on MLP using Neural 

Network Toolbox in Matlab environment. MLP modeled on 

Matlab-Neural Network Toolbox consists of 4 input parameters 

and one output parameter. MLP input parameters represent the 

battery temperature, voltage, discharge current and electrical 

power parameters obtained from discharge experiments. MLP 

output parameter represents the battery SoC obtained by Coulomb 

Counting method from the discharge experiments. In the modeled 

MLP structure, there are two separate hidden layers consisting of 

"8" and "4" neuron cells, respectively. BP algorithm was used in 

training the network. The tangent hyperbolic sigmoid "Tansig" 

function given in Equation 1 was used as the activation function in 

each nerve cell in the MLP. Network structure modeled on Matlab-

Neural Network Toolbox is given in Figure 9(a). In Figure 9(b) and 

Figure 9(c), MLP training results are given. The input parameters 

obtained from the battery discharge experiments were used in 

training the network at 1000 iterations according to the MLP target 

parameter. The success performance of MLP training was 

measured by the Mean Square Error (MSE) method. As can be 

understood from Figure 9(b), the MSE value of the network has 

decreased to 0.52198 at the end of the training. In Figure 9(c), the 

regression graphs obtained as a result of MLP training are given. 

(e) 
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(a) 

  
(b) (c) 

Fig. 9. MLP on Matlab-Neural Network Toolbox, a) Modeled MLP structure, b) MLP Training performance graph, c) MLP training regression graphs 

Regression graphics are evaluated in the training, testing processes 

of the network, it is seen that the data are collected on the 

regression curve. Thus, training of the network has been 

successfully provided. 

3. Real-time Battery SoC Estimation  

In this part of the article, using the data obtained from the battery 

discharge experiments, the SoC was estimated in real-time with the 

trained MLP. Matlab/Simulink Arduino Real-time Toolbox has 

been used to estimate the battery SoC in real-time. ARRAY brand 

3711A DC electronic load device used in the experiments for real-

time SoC estimation is programmed according to different 

discharge current profiles. The OCV, temperature and current 

parameters of the battery cell discharged with different discharge 

currents were measured by using sensors and the raw sensor data 

were transferred to the computer via UART protocol. The raw data 

transferred to the computer in real-time was imported to the Matlab 

environment with Arduino Real-time Toolbox and processed using 

various Simulink blocks. Battery current, OCV and temperature 

parameters were obtained from the processed raw sensor data on 

Matlab/Simulink via mathematical calculations. In addition, the 

real SoC of the battery and the electrical power consumption in the 

battery were calculated over the OCV and current parameters using 

the Coulomb Counting method over the battery current parameter, 

respectively. The data obtained from Matlab/Simulink were 

applied to the trained MLP in real-time. The battery SoC is 

estimated in real-time in different discharge current profiles until 

the battery is completely discharged. The working block diagram 

of the battery SoC estimation experiments is given in Figure 11 (a), 

and the Simulink software blocks of the real-time SoC estimation 

are given in Figure 11 (b). For real-time battery SoC estimation, 

three separate discharge current profiles were programmed in the 

DC electronic load device and were applied to the fully charged 

battery on experiment, respectively in three times. The discharge 

current profiles applied to the battery cell in real-time SoC 

estimation experiments are given in Figure 10. 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Discharge current profiles, a) Profile-1, b) Profile-2, c) Profile-3 

In order to better observe the estimation accuracy of the MLP 

modeled for real-time battery SoC estimation, three different 

discharge current profiles were selected. The data used in MLP 

training were created by using fixed resistors in discharge 

experiments. Undoubtedly, if SoC estimation experiments were 

made in the same discharge profiles, the prediction accuracy would 

be high and error rate would be low in the SoC estimation. 

However, considering that batteries used in systems with many 

dynamic variables such as BEVs and HEVs may have irregular 

discharge profiles, it is thought that it is useful to use variable 

discharge profiles in order to analyze the MLP performance in 

battery SoC estimation. 
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Fig. 11. Real-time battery SoC estimation, a) Experimental setup working block diagram, b) Matlab/Simulink software blocks. 

 

Therefore, variable current profiles were chosen instead of fixed 

resistance profiles in order to better observe the success and 

prediction ability of MLP in real-time battery SoC estimation 

experiments. Thus, diversity is provided between the battery 

parameters measured in the SoC estimation experiments and the 

MLP training data. According to the discharge profiles given in 

Figure 10, the battery discharge process in Figure 10 (a) takes a 

shorter time compared to the profiles given in Figure 10 (b). The 

battery discharge process in Figure 10 (b) takes a shorter time 

compared to the profiles given in Figure 10 (c). MLP battery SoC 

estimation results and estimation errors were obtained from the 

experiments performed in three different discharge profiles. 

Battery SoC estimation results obtained from real-time 

experiments are given in Figure 12. 

4. Results and Discussions  

Li-Ion batteries are the most widely used battery type in BEVs and 

HEVs due to their durable and safe structure, high energy density, 

long life and light weight. Charging and discharging Li-Ion 

batteries within their capacity ranges is extremely important for the 

health of these batteries. Over charging and discharging of Li-Ion 

batteries cause their break down. In batteries, the SoC is the most 

important parameter used to protect the health of the battery and 

protect the battery from overcharging and discharging situations. 

The complex chemical structure of the batteries makes the battery 

SoC is cannot measure. Today, many researchers use various 

methods to accurately predict the battery SoC and try to obtain 

results closest to the real SoC of the battery. In this study, the state 

of charge of a Li-Ion battery cell was estimated in real-time with 

an MLP. MLP training data were obtained from a total of 10 

separate discharge experiments performed using different 

resistance values (R = 1-10 ohms) as loads on an experiment set up 

for Li-Ion battery discharge and charging. Training data consists 

of battery current, temperature, OCV, discharge power 

consumption and SoC calculated by Coulomb Counting method. 

Designed in Matlab environment, MLP was trained with discharge 

experiment data and used in the real-time SoC estimation of the 

battery in experiments performed in variable discharge current 

profiles. Battery SoC is estimated in real-time in Matlab/Simulink 

environment. Here, the battery parameter was measured on the 

hardware, the measured parameters were imported to the Matlab 

environment from the hardware, and the battery charge status was 

estimated in real-time with the hardware-in-the-loop platform 

model in the cycle. Battery parameters measured in real-time 

experiments conducted in different discharge current profiles, 

calculated state of charge and charge state data estimated with 

MLP were recorded on Matlab Workspace. Results obtained from 

experimental studies were evaluated and discussed. Below are the 

results and discussions obtained in items. 

• With MLP, the SoC of Li-Ion batteries can be estimated 

successfully. In the study, in order to better emphasize the 

success of the network, the battery parameters obtained from the 

discharge experiments performed under different resistances 

were used in the training of the network. However, Hardware-in-

the-loop based real-time SoC estimation with the trained network 

was used in the battery parameters measured in different 

discharge current profiles. Although the data used for training 

the network and the data used in the performance tests of the 

network differ, the charge state estimation has a prediction error 

of at most ± 10%. Therefore, it can be said that the battery SoC 

estimation with the MLP is successful. 
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Fig. 12. Real-time battery SoC estimation results 

 

• Coulomb Counting method, which is one of the direct SoC 

calculation methods, is a simple, computationally easy and 

inexpensive method. In the study, it was used to determine the 

actual SoC and the MLP performance was compared with the 

SoC parameter calculated with Coulomb Counting method. 

However, in order to get successful and accurate results in this 

method, it should be known how much capacity of battery is 

initially. At this point, MLP be different from direct calculation 

methods such as Coulomb Counting method because of their 

data-driven working principles and their trainability. Thus, it 

does not need the initial capacity value information as in the 

Coulomb Counting method. 

• Although successful predictions have been made with the MLP 

in the study, data is needed for the training and the closest 

simulation of the network. Missing or insufficient training data 

of the network will result in inaccurate estimation results. In 

addition, SoC estimation with MLP model approaches does not 

make SoC estimation possible in other battery types, since it will 

take the data that the network is trained as a sample. It is 

necessary to prepare training data and retraining the network for 

different batteries whose SoC will be estimated. This will cause 

the process to be long time. In addition, the aging factor of the 

battery is an important parameter. Since it is known that the 

capacity of batteries will decrease as they age, it is predicted that 

errors in the estimation results will increase as the battery ages. 

• Another important topic in estimating the battery SoC with the 

MLP approach is the sensor and control equipment used in the 

experiments. In order to increase the accuracy of the results, 

current, voltage and temperature measurements should be 

highly accurate and precise. For this, measuring range wide 

current sensor and high precision Analog Digital Converter 

(ADC) are required. Therefore, sensors with high accuracy and 

sensitivity were used in the study. 

SoC estimation in Li-Ion batteries is a developing issue that keeps 

up to date. Therefore, it is anticipated that the literature will be 

spread with the studies to be carried out in this field and developed 

with the proposed new methods. Today, new methods are being 

developed, discussed and shared in this field day by day. 
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