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Abstract: Reject option is introduced in classification tasks to prevent potential misclassifications. Although optimization of error-reject 

trade-off has been widely investigated, it is shown that error rate itself is not an appropriate performance measure, when misclassification 

costs are unequal or class distributions are imbalanced. ROC analysis is proposed as an alternative approach to performance evaluation in 

terms of true positives (TP) and false positives (FP). Considering classification with reject option, we need to represent the tradeoff between 

TP, FP and rejection rates. In this paper, we propose 3D ROC analysis to determine the optimal rejection threshold as an analogy to decision 

threshold optimization in 2D ROC curves. We have demonstrated our proposed method with Naive Bayes classifier on Heart Disease 

dataset and validated the efficiency of the method on multiple datasets from UCI Machine Learning Repository. Our experiments reveal 

that classification with optimized rejection threshold significantly improves true positive rates in biomedical datasets. Furthermore, false 

positive rates remain the same with rejection rates below 10% on average. 
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1. Introduction 

Reject option has been widely tackled by various researchers in the 

field of pattern recognition (e.g. [1-4]) in order to avoid potential 

misclassifications. A rejection in the classification task occurs 

when the cost of rejecting classifying an instance is lower than the 

cost of misclassification. Although it is expected to reduce 

misclassification rate via reject option, correct classifications may 

also be converted into rejects. Therefore, it is not easy to find 

statistically optimal error-reject characteristics of a system. 

Typically, the trade-off between the errors and rejects has been 

used to describe, improve or compare the performance of various 

classification problems [5]. However, in cases when 

misclassification costs are unequal and class distributions are 

imbalanced or skewed, the overall error rate is not an adequate 

performance measure. Receiver Operating Characteristics (ROC) 

curve plots true positive rate (TPR) versus false positive rate (FPR) 

by adjusting the classification decision threshold [6]. ROC analysis 

provides statistically consistent and more comprehensive 

performance assessment compared to error rate. Although the ideal 

case is maximizing TP and minimizing FP rates, classifiers that 

triggers TPR more often, would also cause an increase in FPR [7]. 

Decision threshold optimization on typical two-dimensional (2D) 

ROC curves has been a common machine learning approach to 

balance the trade-off between TP and FP rate, and has been utilized 

in various classification problems including software defect 

prediction and medical diagnosis [8, 9]. 

Considering classification with reject option, error-reject 

characteristics should be interpreted in terms of TPR, FPR and 

reject rate (RR). In this paper, we propose 3D ROC analysis in 

order to optimize the rejection threshold while taking into account 

the tradeoff between TPR and FPR. We employ Naive Bayes 

classifier on eleven medical datasets. Our experimental results 

show that 3D ROC methodology significantly improves TPs with 

average RR below 10% while FPs remain statistically indifferent. 

Our proposed methodology for 3D ROC analysis can be 

summarized as follows:  

- Binary classification based on Naive Bayes classifier on eleven 

datasets: Naïve Bayes is easy to interpret and its results are fairly 

accurate in terms of posterior probabilities of classes. Although 

this algorithm does not have hyper parameters, the single 

parameter that could be optimized is the decision threshold on the 

class posterior probabilities. 

- Optimization of decision threshold using 2D ROC analysis: 

Decision threshold is generally set to 0.5 by default in Naïve Bayes 

classification. However, the number of instances that belong to one 

class may be significantly lower than the other. Further, posterior 

probabilities of this minority class would often be lower than the 

other. Our objective is to optimize the decision threshold of Naive 

Bayes in order to avoid misclassification of minority class. 

- Interpretation of reject option around the decision threshold: We 

have introduced a reject option for the instances whose posterior 

probabilities are less confident than a pre-defined bound. Instead 

of a single rejection threshold, we have defined a rejection interval 

whose left and right boundaries are defined as [t1, tr]. 

- Visualization of the tradeoff between three constraints, i.e. TPR, 

FPR and RR, using 3D ROC curves: We generated 3 dimensional 

ROC surfaces to illustrate the effects of different rejection intervals 

on the performance of Naive Bayes classifier. 

- Optimization of rejection interval using Euclidean distance on 

3D ROC surface: Our approach aims to minimize the distance 

between (FPR, TPR, RR) and the ideal case (0,1,0). 

- Employment of the model on eleven datasets in biomedical 
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domain: Paired t-tests between default threshold method and our 

experimental results on multiple datasets validate that reject option 

can be confidently used to improve TP rates, while keeping FP 

rates stable. 

 

Related Work 

In a landmark study, Chow investigated the optimum rejection rule 

using generalized Bayes rule and the costs for making an error, 

correct classification or rejection [1]. If the cost of rejections is 

equal to the cost of misclassifications, the reject threshold becomes 

zero, i.e. no pattern is rejected (simple Bayes rule). Chow's rule 

relies on the exact knowledge of posterior probabilities, so any 

algorithm that provides posterior probabilities as an output of its 

classification could be directly used to evaluate reject option. 

When p(Ci|x) is the probability of an instance x being in the class 

i, the optimum rejection rule implies that an instance should be 

rejected if p(Ci|x) is less than a threshold t. More precisely, its 

formula is given as follows: 

{
  𝑎𝑐𝑐𝑒𝑝𝑡 𝑥 𝑖𝑓 𝑝(𝐶𝑖|𝑥) ≥ (1 − 𝑡)

𝑟𝑒𝑗𝑒𝑐𝑡 𝑥 𝑖𝑓 𝑝(𝐶𝑖|𝑥) < (1 − 𝑡)
  (1) 

In this equation, two disjoint regions are defined such that Va is the 

acceptance region that should be preserved as large as possible to 

classify instances and Vr is the rejection region that should be 

minimized to balance the tradeoff between these two measures. 

Chow presented a typical error-reject tradeoff curve for all levels 

of threshold, between 0 and 1 [1]. 

Error-reject curves have been widely used by other researchers like 

Gorski [5]. Gorski distinguished “good” lists, where the correct 

decision is made by a neural network classifier, from “bad” lists by 

adding the rejection option. He obtained Bayesian optimal error-

reject characteristics by using cost sensitive classification and 

changing the decision threshold. Results of this study on a bank 

check recognition system showed that a single decision parameter 

allows to reject “bad”, in other words, less confident, patterns and 

tunes the overall system towards the desired performance [5]. 

Many authors inspired from Chow's optimum reject rule and 

extended their work for various classification problems. One of 

these works has been completed by Hansen et al. [10] to discuss 

the effects of finite and infinite training sets for binary classifiers. 

Authors focused on setting accurate rejection boundaries in order 

to reject ambiguous inputs near the decision threshold. They also 

investigated this rejection boundary by increasing its thickness on 

different classifiers to form similar error-reject curves. Their 

results revealed that a scaled error-reject ratio would provide 

excellent fit to the data in digit recognition systems. 

Besides error-reject curves, Tortorella utilized ROC curves in 

binary classification tasks with reject option, when prior 

knowledge/probability about the classes are not known in advance 

[11]. Most frequently, ROC curves evaluate the TPR as the fraction 

of actual positive classes classified as “positive” against the FPR 

as the fraction of actual negative classes classified as “positive” 

[11-14]. Tortorella also assessed the classification performance 

with a similar manner, but he used a cost-sensitive classification in 

order to optimize rejection threshold [11]. Our approach is similar 

to Tortorella's view, since they also searched for two rejection 

thresholds for two classes by taking distinct costs of true positives, 

false positives and rejections into account. Ceylan [15] also used 

ROC curves to show true positive ratio to   the   false   positive   

rate   for   different thresholds of the classifier output. According 

to the experimental results in this study, Bayesian optimization-

based K-Nearest Neighbor performs better results with the 

accuracy of 95.833%.  However, assigning costs to 

misclassifications is very difficult since they are unknown or 

controversial.  

Tosun and Bener have applied decision threshold optimization 

using Naïve Bayes classifier as the prediction algorithm, to find the 

optimum threshold for software defect data [16]. Their analysis 

showed that it is possible to decrease false alarms without changing 

the true positive rates. Another study [17] showed that using Naïve 

Bayes classifier resulted in higher accuracy on average 75.7%.  

To extend 2D ROC analysis, 3D ROC curves have been utilized in 

few studies in order to assess the effects of three different 

parameters on the classification accuracy (e.g. [18-21]). In the area 

of medical imaging diagnosis, Wang et al. [18] used 3D ROC 

analysis based on three parameters, TPR, FPR and threshold 

parameter. The authors avoided making hard decisions between 0 

and 1 by adding a single threshold parameter resulting from soft 

decisions. Their experiments were conducted on real breast MR 

images by controlling normalized detector probability with the 

optimal threshold. This approach comprehensively evaluated the 

extensions from 2D ROC to 3D ROC curves for medical diagnosis 

systems. 

In recognition systems, imbalanced datasets with unknown costs, 

classes can be defined as “ill”, meaning that they are poorly 

sampled, or “well” [21]. If the major concern is to identify those 

ill-defined classes, such as in the software defect prediction, where 

the objective is to detect few defective modules, both classification 

and rejection thresholds should be well studied. Landgrebe et al. 

[21] proposed 3D ROC analysis to evaluate the rejection 

performance in terms of FPR of rejections, TPR and FPR of 

positive classification. Their evaluation criteria was derived from 

traditional ROC analysis, i.e. area under curve measure, and 

converted to Volume Under Curve (VUC). This approach showed 

that VUC provided to be a powerful and sensitive performance 

evaluation measure, when we are interested in comparing both 

classification and rejection capabilities of different classifiers.  

3D ROC analysis could also be used to interpret the relation 

between TPR, FPR and mis-verifications for example in 

determining the accuracy, for speaker verification applications 

[19]. In the biometrics identification systems, modified versions of 

3D ROC curves showed more comprehensive information for 

system accuracy and performance in terms of FPR and false 

rejection rates, FRR [20].  

Overall, the literature suggests that 3D ROC analysis has gained 

increasing attention in machine learning community. In the present 

study, we employed 3D ROC approach to deal with the typical 

error-reject tradeoff problem on biomedical datasets. 

The rest of this paper is organized as follows: the size and class 

distribution of the datasets used in this study are provided in 

Section 2. In Section 3, we describe the important concepts in the 

methodology such as 2D ROC curves (3.1) and 3D ROC analysis 

of rejection threshold optimization (3.2). We present our 

experimental design and results in Section 4 and we conclude with 

a discussion and future work for further studies in Section 5.  

2. Datasets 

Throughout this study, eleven biomedical datasets have been used 

to evaluate the tradeoff between classification and rejection rates. 

Datasets are from life sciences field, which are downloaded from 

UCI data repository [22]. The first public dataset is Heart Disease 

consisting of four databases concerning heart disease diagnosis. In 

this dataset, there exists a total of 14 numeric and categorical 

attributes such as patient age, sex, pain characteristics and patient  
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Table 1. Characteristics of the datasets used in this study 

Dataset Attributes Positives PR (%) Negatives NR (%) Total 

Heart Disease 14 138 45.5 165 54.5 303 

Pima Indian Diabetes 8 268 34.9 500 65.1 768 

Arrhythmia 279 207 45.8 245 54.2 452 

Cardiotocography 21 176 9.6 1655 90.4 1831 

Immunotherapy 7 19 21.1 71 78.9 90 

Breast Cancer Wisconsin 9 239 34.2 460 65.8 699 

Heart Failure 12 96 32.1 203 67.9 299 

Mammographic Mass 4 403 41.9 558 58.1 961 

Diabetic Retinopathy 19 611 53.1 540 46.9 1151 

SPECTF Heart 44 55 20.6 212 79.4 267 

Mice Protein Expression 77 570 52.8 510 47.2 1080 

*PR: Positive Rate, NR: Negative Rate 

 

records, and a class label indicating positive as the presence of 

heart disease and negative as the healthy status. Our proposed 

methodology has been demonstrated using the Heart Disease 

dataset, and efficiency of rejection threshold optimization has been 

further validated on additional ten datasets. Size and class 

distributions of the datasets are represented in Table 1. 

3. Methodology 

Studies show that adequately trained machine learning algorithms 

are not significantly different than each other [23]. In this study, 

we used Naive Bayes algorithm because the outputs of the 

classifier are posterior probabilities which can be directly used in 

our approach. Naive Bayes classifier assumes that each attribute is 

independent, normally distributed and equally important. It is 

derived from the Bayes theorem such that posterior probability of 

an instance x belonging to class Ci is proportional to prior 

probability of the class, Ci, and the likelihood p(x|Ci), normalized 

by the evidence, p(x). 

𝑝(𝐶𝑖|𝑥) =
𝑝(𝑥|𝐶𝑖)∗𝑝(𝐶𝑖)

𝑝(𝑥)
   (2) 

3.1. 2D ROC Analysis 

In the machine learning community, after realization of the 

weakness of simple error rate as a performance measure, the use of 

ROC curves has gained an increasing attention [6]. In this study, 

we use ROC curve analysis to evaluate the performance of binary 

Naive Bayes classifier, where each instance x is mapped to one of 

the positive and negative classes labelled as p and n respectively. 

Given a classifier and an instance, the prediction outcomes 

depending on actual class labels of instances can be represented as 

a 2x2 confusion matrix as shown in Table 2.  

Table 2: Confusion Matrix 

Actual Case Predicted 

Positive Negative 

Positive TP FN 

Negative FP TN 

 

Common classifier performance metrics such as TPR and FPR are 

derived from the confusion matrix above. 

 

- TP rate (TPR) is a measure of accuracy for correct prediction 

of positive instances and is equal to the ratio of number of true 

positives (TP) over the sum of true positives and false negatives 

(FN). TPR corresponds to sensitivity in medical diagnosis. 

𝑇𝑃𝑅 = (𝑇𝑃)/(𝑇𝑃 + 𝐹𝑁)   (3) 

- FP Rate (FPR) represents the number of positive predictions 

when the actual is negative (FP), over the sum of true negative 

(TN) and false positives (FP). FPR corresponds to (1 - specificity) 

in medical domain. 

𝐹𝑃𝑅 = (𝐹𝑃)/(𝑇𝑁 + 𝐹𝑃)   (4) 

In classification with Naive Bayes algorithm, TPR and FPR have 

been calculated for a single decision threshold (default: 0.5) that 

maps to a single point on the ROC curve. Varying TPR and FPR 

can be calculated by changing the decision threshold in the range 

of [0:0.1:1]. The resulting set of (TPR, FPR) pairs are plotted in a 

2D space that represents all possible classification outcomes as a 

results of threshold variation.  

An example ROC curve has been shown in Figure 1. The lower 

left point (0,0) in the curve represents assigning all instances to the 

negative class. Since there are no positive predictions, both TPR 

and FPR becomes 0. Conversely, upper right corner (1,1) indicates 

positive prediction for all instances. The upper left point (0,1), 

where TPR is 1 and FPR is 0 represents perfect classification. Any 

point on the ROC curve closer to the upper left corner would be 

closer to the perfect classification. Therefore, the decision 

threshold that provides the nearest point to (0,1) is accepted as the 

optimum decision threshold (t_opt). The Euclidean distance 

between (TPR, FPR) values and perfect classification (0,1) can be 

calculated using the below formula: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(1 − 𝑇𝑃𝑅)2 + (0 − 𝐹𝑃𝑅)2  (5) 

Figure 1 demonstrates the effect of threshold optimization on the 

variation of TPR and FPR. After classification with the default 

decision threshold 0.5, the Euclidean distance to the ideal point 

(0,1) is 0.249, whereas it is 0.238 with topt = 0.4. In this study, we 

assume equal misclassification costs. However, we can define the 

desired trade-off between TPR and FPR depending on the 

requirements of the specific application domains. Then, the 

distance in 2D ROC would be weighted. 
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Fig. 1. Example 2D ROC curve for Heart Disease data 

3.2. 3D ROC Analysis of Rejection Threshold Optimization 

When reject option is introduced, a binary classification task can 

be assumed to be transformed into a three-class problem, since the 

rejected samples can be thought to be assigned to a new pseudo-

class r [2]. In this case, a portion of the instances will be rejected 

and the FPR and TPR will be evaluated again on the remaining 

classified samples. In this study, we extend the 2D ROC analysis 

approach to 3D analysis of TPR, FPR and RR for classifiers with 

reject option. The aim of classification with reject option is to 

maximize TPR, while minimizing FPR and RR. This trade-off can 

be illustrated in a similar manner to 2D ROC curves. 

Considering rejection, the initial problem is to decide which 

samples to reject. For Naive Bayes classifier, the outputs are 

posterior class probabilities. We want to reject the samples whose 

posterior probabilities are below a confidence level such that 

rejecting these samples would avoid potential misclassifications. 

In other words, when posterior probabilities of two classes are 

close to the decision threshold, it is likely that classifying those 

instances are error prone. 

After threshold optimization on 2D ROC curve, a rejection interval 

can be defined in the neighbourhood of topt, which can also be 

called as critical interval due to the uncertainty of the classifier's 

decision. The final decision rule, together with optimized threshold 

and reject option, is given in (6) where tr is the rejection interval 

on the right hand side of the topt, and tl is the rejection interval on 

the left hand side. This rejection principle represents an 

asymmetric behavior because of the unequal intervals on two sides 

of the topt. A graphical view that shows the rejection intervals for 

each decision threshold between 0 and 1 is shown in Figure 2. 

 

Fig. 2. Demonstration of the search space for rejection intervals 

 

  

{

𝑝, 𝑖𝑓 𝑝(𝐶𝑝|𝑥) ≥ 𝑡𝑜𝑝𝑡 + 𝑡𝑟

𝑛, 𝑖𝑓 𝑝(𝐶𝑝|𝑥) ≤  𝑡𝑜𝑝𝑡 − 𝑡𝑙

𝑟, 𝑖𝑓 𝑡𝑜𝑝𝑡 − 𝑡𝑙 < 𝑝(𝐶𝑝|𝑥) <  𝑡𝑜𝑝𝑡 + 𝑡𝑟

   (6) 

By applying the above decision rule with reject option, a set of 

(TPR, FPR, RR) tuples have been obtained by varying the reject 

region around the topt. The effect of rejection threshold adjustment 

is illustrated on a sample dataset in Figure 3. 

As the final step of our methodology, the objective is to find the 

optimum rejection interval. This issue has been performed as an 

analogy to threshold optimization in 2D ROC curves. The ideal 

case is the point (0,1,0) on the 3D ROC surface corresponding to 

FPR, TPR and RR, respectively. This point minimizes FPR and 

RR and maximizes TPR, which is also the desired case in the 

domains we have been working. In order to find the distance 

between (FPR, TPR, RR) and the point (0,1,0), Euclidean distance 

formula is given in (7). The computations for TPR and FPR are 

shown in (3) and (4). 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇𝑃𝑅, 𝐹𝑃𝑅, 𝑅𝑅) =

√(0 − 𝐹𝑃𝑅)2 + (1 − 𝑇𝑃𝑅)2 + (0 − 𝑅𝑅)2  (7) 

- Rejection Rate (RR) Rejection rate (RR) represents the number 

of instances whose threshold is within the rejection interval. Those 

instances that are not classified by our model are not represented 

in the confusion matrix. So this measure is calculated using (8), 

where N is the total number of instances, NR is the number of 

rejected instances. 

𝑅𝑅 = 𝑁𝑅/𝑁   (8) 

Finally, (9) can be used in order to find the optimum rejection 

interval. Pseudocode of our methodology is illustrated in 1 for 2D 

ROC decision threshold optimization and 2 for 3D ROC rejection 

threshold optimization. 

[𝑡𝑙 , 𝑡𝑟]∗ = 𝑎𝑟𝑔𝑚𝑖𝑛[𝑡𝑙,𝑡𝑟]𝑑𝑖𝑠𝑡(𝑇𝑃𝑅, 𝐹𝑃𝑅, 𝑅𝑅)  (9) 

 

Algorithm 1 Pseudocode for 2D ROC Decision Optimization 

1: Dataset = (Heart Disease, Pima Indian Diabetes, Arrhythmia, 

Cardiotocography, Immunotherapy, Breast Cancer Wisconsin, 

Heart Failure, Mammographic Mass, Diabetic Retinopathy, 

SPECTF Heart, Mice Protein Expression)  

2: threshold = [0: 0.1: 1] 

3: for all D in Dataset do 

4:  Output = load "wekaOutput:txt" 

5:  for all t in threshold do 

6:  for all x in Output do 

7:    if p(Cp|x) >= t then 

8:     Predict  Cp 

9:    else {p(Cp|x) is smaller than t} 

10:     Predict  Cn 

11:    end if 

12:   end for 

13:   calculate TPR, FPR using Equation 3, 4 

14:   DistArray   calculate the distance using Equation 5 

15:  end for 

16:  topt  threshold giving the minimum distance in DistArray 

17: end for 
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Algorithm 2 Pseudocode for 3D ROC Rejection Optimization 

1: Dataset = (Heart Disease, Pima Indian Diabetes, Arrhythmia, 

Cardiotocography, Immunotherapy, Breast Cancer Wisconsin, 

Heart Failure, Mammographic Mass, Diabetic Retinopathy, 

SPECTF Heart, Mice Protein Expression) 

2: threshold = [0: 0.1: 1] 

3: for all D in Dataset do 

4:  Output = load"wekaOutput:txt" 

5:  for all t in threshold do 

6:   for interval = 0:1 to 1 do 

7:    [tl, tr] = [interval * t; interval * (1 - t)] 

8:    RejectRegion  [tl, tr] 

9:    for all x in Output do 

10:    if  p(Cp|x) >= t + tr  then 

11:      PredictWithReject  Cp; 

12:     else if  p(Cp|x) <= t - tl  then 

13:      PredictWithReject  Cn; 

14:    else {p(Cp|x) is within the rejection region} 

15:      Reject x 

16:     end if 

17:    end for 

18:    calculate TPR,FPR,RR using Equation 3,4,8 

19:    DistArrayWithReject  calculate distance using Equation 7 

20:   end for 

21:  end for 

22:  find the optimal [tl, tr] using Equation 9 

23: end for 

4. Experiments and Results 

We used Weka machine learning tool [24] to perform Naive Bayes 

classification. We conducted our experiments using 10-fold cross 

validation technique in order to overcome sampling bias. For 10-

fold cross validation, each dataset is divided into 10 equal subsets, 

9 subsets were used for training and 1 subset was used for testing. 

Repeating these 10 times ensures that each data sample was used 

for training and testing. This random splitting has been performed 

using stratification principle in order to ensure that the proportions 

of positive and negative classes remain the same in both training 

and test sets as in the original dataset [25]. 

We implemented post-processing steps for 2D and 3D ROC 

analysis using Matlab environment. Our experiments consist of 

three sequential steps: classification with default threshold, 

classification with optimal threshold and classification with reject 

option. 3D ROC representation for Heart Disease can be seen in 

Figure 3. The results of these steps for each dataset can be seen in 

Table 3. We have derived important conclusions for the 

classification problems in biomedical datasets. First, 2D ROC 

analysis, second column in Table 3, shows that optimum decision 

threshold is different from its default value 0.5 in each dataset. 

Overall, decision threshold optimization improves the TPR, on the 

average, from 68.7% to 85.7%, with a cost of an increase in FPR, 

on the average, from 10.3% to 15.8%. Paired t-tests with α = 0.05 

were applied on 10-fold cross validation classification results in 

order to validate the statistical significance of the findings. 

Statistical tests revealed that classification with reject option, when 

the reject region is optimized using the proposed 3D ROC based 

technique, improves TPR without significantly increasing FPR. 

Reject option did not change the decision threshold optimization 

results in two datasets, Immunotherapy and Heart Failure. This 

suggests, decision threshold optimization provides the optimum 

balance between TPR and FPR in some decision making problems. 

Fig. 3. 3D ROC Analysis for Heart Disease dataset 

 

 

Table 3. Experimental Results 

 

  

Dataset 

Default threshold - t0=0.5 2D ROC 3D ROC with rejection 

AUC 
TPR 

(%) 

FPR 

(%) 
t_opt 

TPR 

(%) 

FPR 

(%) 
[tl,tr] 

TPR 

(%) 

FPR 

(%) 

RR 

(%) 

Heart Disease 0.792 78.9 13.3 0.4 82.6 16.3 [0.24,0.64] 85.7 12.9 9.9 

Pima Indian Diabetes 0.731 61.2 15.6 0.3 71.6 24.2 [0.18,0.28] 80.9 27.8 9.6 

Arrhythmia 0.747 59.5 10.2 0.6 76.2 16.3 [0.59,0.67] 80 17.8 6.6 

Cardiotocography 0.892 80 1.5 0.76 94.3 3.6 [0.76,0.86] 100 3.8 3.6 

Immunotherapy 0.667 33.3 0 0.7 100 7.1 [0.68,0.69] 100 7.1 0 

Breast Cancer Wisconsin 0.937 89.6 2.2 0.68 93.8 5.6 [0.56,0.89] 97.8 4.7 4.4 

Heart Failure 0.809 78.9 17.1 0.53 84.2 17.1 [0.51,0.52] 84.2 17.1 0 

Mammographic Mass 0.812 81.3 18.8 0.58 86.3 22.4 [0.66,0.79] 93.3 11.4 15.3 

Diabetic Retinopathy 0.702 62.6 22.2 0.57 78.9 31.5 [0.55,0.57] 77.6 28.2 5.2 

SPECTF Heart 0.681 45.5 9.3 0.66 81.8 25.6 [0.17,0.3] 86.7 19.4 16.4 

Mice Protein Expression  0.909 85.3 3.5 0.56 93.1 4.4 [0.56,0.59] 95 4.5 2.3 

*AUC: Area Under the ROC Curve, TPR: True Positive Rate, FPR: False Positive Rate, RR: Rejection Rate 
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5. Conclusion 

In this study, we have presented a novel approach to classification 

with reject option: rejection threshold optimization based on 3D 

ROC analysis. We have analysed the trade-off between (TPR, 

FPR, RR) tuples as an analogy to 2D ROC analysis on (TPR, FPR) 

pairs. We have projected the error/misclassification rate into TPR 

and FPR for more appropriate evaluation of the classifier 

performance in imbalanced datasets. Then, considering rejection 

option, we have combined error-reject curves and 2D ROC curves 

as a 3D ROC surface that allows the optimization of a rejection 

interval. We have demonstrated our method using Naive Bayes on 

eleven biomedical datasets. Experimental results show that 

optimization of rejection boundaries using 3D ROC significantly 

increases TPR. The proposed model is directly applicable to 

classifiers such as Naive Bayes that produce continuous outputs as 

an estimate of class posterior probabilities. Other algorithms such 

as Decision Trees, Support Vector Machines and Artificial Neural 

Networks produce continuous or discrete outputs that can be 

converted to class posterior probabilities using post-processing 

steps. As a future work, we aim to extend the proposed model for 

other classification techniques. 

In this study, we have tackled the problem of finding the optimal 

rejection interval. As another future direction, we are interested in 

analysing the rejected samples. There are two approaches to handle 

rejected samples: multistage approach using the same classifier but 

increasing information content of data [2], cascading classifiers 

with different learners [26]. We plan to use either of these methods 

to re-investigate rejected samples in medical diagnosis domains. 
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