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Abstract: The galactic swarm optimization algorithm is a metaheuristic approach inspired by the motion and behavior of stars and galaxies. 

It is a framework that can use basic metaheuristic search methods. The method, which has a two-phase structure, performs exploration in 

the first phase and exploitation in the second phase. GSO tries to find the best solution in the search space by repeating these two phases 

for the specified number of times. In this study, the analysis of maximum epoch number (EPmax), the number of iterations in the first phase 

(𝐿1), and the number of iterations in the second phase (𝐿2)  parameters, which determine the exploration and exploitation balance in the 

GSO method, was performed. 15 different parameter sets consisting of different values of these three parameters were created. The methods 

with 15 different parameter sets were performed at 30 independent runs. The methods were analyzed using 26 benchmark functions.  The 

functions are tested in 30, 60, and 100 dimensions. Detailed results of the analysis were presented in the study, and the results obtained 

were also evaluated statistically. 
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1. Introduction 

Optimization problems are encountered in many different areas 

such as production, business planning, and transportation in the 

real world. The main purpose of optimization is to find the 

parameters that provide the best solution to the problem within the 

framework of available resources. Mathematical and heuristic 

methods are used to solve optimization problems. Using 

mathematical methods in problems where the solution space is 

very large requires high costs (time, memory, etc.). For this reason, 

methods that try to find the best solution by scanning the solution 

space with heuristic approaches are more advantageous in 

problems with wide solution space [1]. Metaheuristic methods, 

which are created by combining heuristic approaches, achieve 

successful results in solving the problems in the literature. 

Metaheuristic methods that use different heuristic approaches exist 

in the literature. These meta-heuristic methods can be examined in 

different classes such as evolution-based, physics-based, herd-

based, human-based algorithms, etc. [2]. Evolution-based 

algorithms are inspired by the laws of natural evolution. In 

evolution-based methods, the initial population is generated 

stochastically. When creating the new generation, which can be 

named as generation process, the best individuals are chosen for 

the population until the stopping criteria are met. The most 

common algorithms of this category are Genetic Algorithms (GA) 

[3, 4],  Evolution Strategy [5], and Differential Evolution (DE) [6]. 

Physics-based algorithms are developed by simulating the physical 

laws of the universe. The initial population in this class of 

algorithms is also generated stochastically, but the individuals 

interact with each other using physical laws like energy, mass, 

force, and proximity. Then the evolution proceeds by modifying 

the physical laws to get better solutions until the stopping criteria 

are met. Simulated Annealing (SE) [7], Gravitational Search 

Algorithm (GSA) [8], and Charged System Search (CSS) 

algorithm [9] can be categorized as physics-based metaheuristic 

methods. Swarm-based metaheuristic algorithms are inspired by 

the behaviours of the animal swarms, such as ant or bee colonies, 

and solutions of algorithms evolve, imitating interactions in the 

swarm. For this type of method, first, a random new generation is 

created within the search space. Depending upon the best solution 

of the individual obtained so far or the best solution of the swarm 

obtained so far or also both of these achievements, the swarm 

evolves until the stopping criteria met. The evolution of the swarm 

is realized by individuals mimicking the movements and 

interactions of animals within the swarm. Particle Swarm 

Optimization (PSO) algorithm [10] is one of the most investigated 

metaheuristic algorithms in this class. There are also many other 

swarm-based metaheuristic algorithms that exist, including Ant 

Colony Optimization (ACO) algorithm [11], Artificial Bee Colony 

(ABC) algorithm [12], Whale Optimization Algorithm (WOA) 

[13], Cuckoo Search (CS) algorithm [14], Artificial Algae 

Algorithm (AAA) [15],  Bees Algorithm (BEE) [16], Flower 

Pollination Algorithm (FPA) [17] and Bat Algorithm (BAT) [18]. 

The last class of metaheuristic algorithms, human-based 

approaches, developed on human behaviours and characteristics. 

The most commonly employed algorithms of this class can be 

given as Tabu Search (TS) algorithm [19, 20], Harmony Search 

(HS) algorithm [21], and Teaching-Learning-Based Optimization 

(TLBO) algorithm [22]. 

GSO is based on the movement and interaction of stars and 

galaxies. It is not a traditional metaheuristic optimization method; 

it is a framework that traditional metaheuristic optimization 

methods. The algorithm consists of two phases, exploration and 

exploitation. Exploration can be explained as the ability of a search 

algorithm to explore different areas of the search space to have a 

high probability of finding reasonable promising solutions. 
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Exploitation implies the capacity to focus the search around a 

promising area to refine a candidate solution. In the exploration 

phase, independent subpopulations are randomly created, and 

individuals of these populations are improved with a determined 

search algorithm. In the second, exploitation phase an initialization 

population is generated from the best individuals of the 

subpopulations created in the first phase.  

Fig. 1.  Implementation of GSO algorithm with PSO  

The search algorithm tries to reach the best solution by using 

individuals in the generated initialization population and the 

algorithm repeats these two phases for a certain number of times 

to get the best solutions. In the base GSO algorithm, PSO was used 

as a search algorithm in both phases. The primary purpose of the 

first phase is to perform an effective exploration in the solution 

space. The second phase is to search for the best solution 

(exploitation) by developing individuals in the population 

generated from the first phase. "Exploration" and “Exploitation” 

are the most critical performance factors of optimization 

algorithms. A powerful optimization algorithm should optimally 

balance the two conflicting objectives [4, 23]. 

In this study, the parameters of the GSO method were analyzed. It 

tried to determine the most appropriate GSO parameters by using 

benchmark functions with different characteristics. The parameters 

analysed are the maximum epoch number, the number of iterations 

in the first and second phases. The iteration numbers in the first 

and the second phase are the parameters that directly affect the 

exploration and exploitation capabilities of the GSO. The main 

purpose of the study is to determine the most suitable parameters 

for the GSO method by using different benchmark functions. The 

results obtained at this point were also analysed statistically. 

The paper is organized as follows. The GSO algorithm is clearly 

mentioned in Section 2. Experimental Setup and Results and 

Discussion are located in Sections 3 and 4, respectively. Finally, 

the work is concluded in Section 5. 

2. Galactic Swarm Optimization 

The GSO algorithm was introduced by Muthiah-Nakarajan and 

Noel in 2016 [24]. It is a two-phase optimization method that 

simulates the movements of the stars, galaxies, and super galaxy 

clusters in space to find the optimal solution for problems. The first 

phase is the explorative phase, which can be summed as improving 

the best solutions of independent subpopulation groups with the 

pre-determined search methods. Here each independent 

subpopulation is run a certain number of iterations, determined by 

the search algorithm. Then a new population, called the super-

population, is formed by selecting the best individual of each 

subpopulation. In the second phase, an optimal solution is searched 

by using the search method. The first and second phases are 

repeated for the number of epoch parameters to find the best 

solution. The PSO algorithm is used as a search method in both the 

first and second phases of the base GSO algorithm[25]. 

PSO is an optimization method inspired by the social behavior of 

bird flocks and fish schools. The best results are obtained by 

moving the randomly generated starting population in the search 

space [10, 26]. For a D-dimensional optimization problem             

𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑] is a position vector, 𝑉𝑖 = [𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑑] is 

a velocity vector, 𝑃𝑖 = [𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑑] is the best position vector 

of the ith particle and is called pbest.  The particles move in the 

solution space according to Eq.1 and Eq.2.  

 

𝑣𝑖(𝑡 + 1) = 𝑤 𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖) + 𝑐2𝑟2(𝑔𝑖 − 𝑥𝑖) (1) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (2) 

 

Where 𝑤 called inertia weight is used to control global and local 

search ability.  𝑟1 and 𝑟2 are random numbers in the range of [0,1]. 

𝑐1 and 𝑐2 are the acceleration coefficients. 𝑔𝑖  is the best solution 

found so far. 

Multilayered product of the GSO algorithm is expressed in Eq.3: 

 

𝑠𝑗
𝑖 ∈ 𝑆𝑖 ∶ 𝑗 = 1,2, … , 𝑁 

𝑏𝑖 ∈ 𝑆𝑖 ∶ 𝑏𝑖 = 𝑏𝑒𝑠𝑡(𝑆𝑖) 

𝐺 =  ⋃ 𝑏𝑖

𝑀

𝑖=1
 

(3) 

 

In the base GSO algorithm, the initial M sub-population, which 

consists of N solutions, is randomly generated. 𝑠𝑗
𝑖 represents the jth 

solution of the ith subpopulation. 𝑆𝑖 represents the ith 

subpopulation. 𝑏𝑖 (𝑏𝑒𝑠𝑡(𝑆𝑖)) represents the best solution of the 

sub-population 𝑆𝑖. Set G represents the super-population that 

consists of the best solutions that come from subpopulations. The 

pseudo-code of the GSO framework that is implemented by PSO 

is given in Fig. 1. 
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3. Experimental Setup 

During the analysis process, 26 numerical optimizations (11 

unimodal and 15 multimodal) problems [27-30] with different 

properties were used.  Function No, Name, Search Ranges, 

Characteristic (C), and mathematical formulations of these 

benchmark problems are given in Table 1. In column C the 

characteristic of the function is indicated as M for multimodal 

functions, U for unimodal functions, S for separable functions, and 

N non-separable functions. 

 

Table 1. Benchmark functions 

No of 

Funct. Name 

Search 

Range C Function 

F1 Sphere [100,100] US 𝑓1(𝑋⃗) = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 

F2 Elliptic [100,100] UN 𝑓2(𝑋⃗) = ∑(106)
(𝑖−1)
(𝑛−1

)
𝑥𝑖

2

𝑛

𝑖=1
 

F3 SumSquares [10,10] US 𝑓3(𝑋⃗) = ∑ 𝑖𝑥𝑖
2

𝑛

𝑖=1
 

F4 SumPower [10,10] MS 𝑓4(𝑋⃗) = ∑|𝑥𝑖|(𝑖+1)

𝑛

𝑖=1
 

F5 Schwefel2.22 [10,10] UN 𝑓5(𝑋⃗) = ∑|𝑥𝑖|

𝑛

𝑖=1

+ ∏|𝑥𝑖|

𝑛

𝑖=1
 

F6 Schwefel2.21 [100,100] UN 𝑓6(𝑋⃗) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛}

 
F7 Step [100,100] US 𝑓7(𝑋⃗) = ∑(⌊𝑥𝑖 + 0.5⌋)2

𝑛

𝑖=1  

F8 Quartic [1.28,1.28] US 𝑓8(𝑋⃗) = ∑ 𝑖𝑥𝑖
4

𝑛

𝑖=1
 

F9 QuarticWN [1.28,1.28] US 𝑓9(𝑋⃗) = ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1)

𝑛

𝑖=1
 

F10 Rosenbrock [10,10] UN 𝑓10(𝑋⃗) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1
 

F11 Rastrigin [5.12,5.12] MS 𝑓11(𝑋⃗) = ∑[𝑥𝑖
2 − 10 𝑐𝑜𝑠( 2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 

F12 

Non-

Continuous  
Rastrigin 

[5.12,5.12] MS 

𝑓12(𝑋⃗) = ∑[𝑦𝑖
2 − 10 𝑐𝑜𝑠( 2𝜋𝑦𝑖) + 10]

𝑛

𝑖=1

  

 𝑦𝑖 = {
𝑥𝑖       |𝑥𝑖| <

1

2
𝑟𝑜𝑢𝑛𝑑(2𝑥𝑖)

2
   |𝑥𝑖| ≥

1

2

}

 

F13 Griewank [600,600] MN 𝑓13(𝑋⃗) =
1

4000
∑ 𝑥𝑖

2

𝑛

𝑖=1

− ∏ 𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
)

𝑛

𝑖=1

+ 1

 

F14 Schwefel2.26 [500,500] UN 𝑓14(𝑋⃗) = 418.98*n − ∑ 𝑥𝑖 𝑠𝑖𝑛 (√|𝑥𝑖|)

𝑛

𝑖=1
 

F15 Ackley [32,32] MN 𝑓15(𝑋⃗) = −20 𝑒𝑥𝑝 {−0.2√
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

} − 𝑒𝑥𝑝 {
1

𝑛
∑ 𝑐𝑜𝑠( 2𝜋𝑥𝑖)

𝑛

𝑖=1

} + 20 + 𝑒

 

F16 Penalized1 [50,50] MN 

𝑓16(𝑋⃗) =
𝜋

𝑛
{10 𝑠𝑖𝑛2( 𝜋𝑦1) + ∑(𝑦𝑖 − 1)2

𝑛−1

𝑖=1

[1 + 10 𝑠𝑖𝑛2( 𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2} 

+ ∑ 𝑢(𝑥𝑖 , 10,100,4)

𝑛

𝑖=1

 

𝑦𝑖 = 1 +
1

4
(𝑥𝑖 + 1)  𝑢𝑥𝑖,𝑎,𝑘,𝑚 = {

𝑘(𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 > 𝑎
0    − 𝑎 ≤ 𝑥𝑖 ≤ 𝑎
𝑘(𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 < −𝑎

 

F17 Penalized2 [50,50] MN 

𝑓17(𝑋⃗) =
1

10
{𝑠𝑖𝑛2( 𝜋𝑥1) + ∑(𝑥𝑖 − 1)2

𝑛−1

𝑖=1

[1 + 𝑠𝑖𝑛2( 3𝜋𝑥𝑖+1)] + 

(𝑥𝑛 − 1)2[1 + 𝑠𝑖𝑛2( 2𝜋𝑥𝑖+1)]} + ∑ 𝑢(𝑥𝑖 , 5,100,4)

𝑛

𝑖=1
 

F18 Alpine [10,10] MS 𝑓18(𝑋⃗) = ∑|𝑥𝑖   ⋅   𝑠𝑖𝑛( 𝑥𝑖) + 0.1  ⋅   𝑥𝑖|

𝑛

𝑖=1
 

F19 Levy [10,10] MN 

𝑓19(𝑋⃗) = ∑(𝑥𝑖 − 1)2

𝑛−1

𝑖=1

[1 + 𝑠𝑖𝑛2( 3𝜋𝑥𝑖+1)] + 𝑠𝑖𝑛2( 3𝜋𝑥1) + 
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|𝑥𝑛 − 1|[1 + 𝑠𝑖𝑛2( 3𝜋𝑥𝑛)]

 

F20 Weierstrass [0.5,0.5] MN 

max max

20

1 0 0

max

( ) ( [ cos(2 ( 0.5))]) [ cos(2 0.5)]

0.5, 3, 20

k kD
k k k k

i

i k k

f X a b x D a b

a b k

 
= = =

= + −

= = =

  
 

F21 Schaffer [100,100] MN 𝑓21(𝑋⃗) = 0.5 +
𝑠𝑖𝑛2(√∑ 𝑥𝑖

2𝑛
𝑖=1 ) − 0.5

(1 + 0.001 ∗ [∑ 𝑥𝑖
2𝑛

𝑖=1 ])2

 

F22 
Shifted 

Sphere 
[100,100] US 𝑓24(𝑋⃗) = ∑ 𝑧𝑖

2

𝑛

𝑖=1

 𝑧 = 𝑥 − 𝑜

 

F23 
Shifted 
Rastrigin 

[5.12,5.12] MS 𝑓25(𝑋⃗) = ∑[𝑧𝑖
2 − 10 𝑐𝑜𝑠( 2𝜋𝑧𝑖) + 10]

𝑛

𝑖=1

 𝑧 = 𝑥 − 𝑜

 

F24 
Shifted 

Griewank 
[600,600] MN 𝑓26(𝑋⃗) =

1

4000
∑ 𝑧𝑖

2

𝑛

𝑖=1

− ∏ 𝑐𝑜𝑠 (
𝑧𝑖

√𝑖
)

𝑛

𝑖=1

+ 1 𝑧 = 𝑥 − 𝑜

 

F25 
Shifted 

Ackley 
[32,32] MN 

𝑓27(𝑋⃗) = −20 𝑒𝑥𝑝 {−0.2√
1

𝑛
∑ 𝑧𝑖

2

𝑛

𝑖=1

} − 𝑒𝑥𝑝 {
1

𝑛
∑ 𝑐𝑜𝑠( 2𝜋𝑧𝑖)

𝑛

𝑖=1

}  

𝑧 = 𝑥 − 𝑜

 
F26 

Shifted 
Alpine 

[10,10] MN 𝑓28(𝑋⃗) = ∑|𝑧𝑖   ⋅  𝑠𝑖𝑛( 𝑧𝑖) + 0.1  ⋅   𝑧𝑖|

𝑛

𝑖=1

 𝑧 = 𝑥 − 𝑜

 
 

For a fair comparison, all experimental studies were performed 

at 30 independent runs, and the maximum fitness evaluation 

count was determined as Dimension*5000. In the experimental 

study, benchmark functions were used in 30, 60, and 100 

dimensions. As a result, the maximum fitness evaluation count 

for 30, 60, and 100 dimensions are calculated as 150000, 

300000, and 450000, respectively. In addition, the parameters M 

(the number of sub-population) and N (the number of solutions 

in a sub-population) were determined as 10 and 5 as in the 

original GSO study. Also, the parameters c1, c2, c3, and c4 of the 

PSO algorithm used as the search algorithm in the original GSO 

study were determined as 2.05. The inertial weight 𝑤 is reduced 

linearly from one to nearly zero with each iteration. In this 

experimental study, the parameters of the original study were 

used for PSO. 

In this study, the analysis of the parameters of maximum epoch 

number (EPmax), the number of iterations in the first phase (𝐿1), 

and the number of iterations in the second phase (𝐿2) in the GSO 

algorithm was performed. In the original GSO study, the EPmax 

parameter was determined as 5, and in cases where the problem 

dimension is large, it was determined as 9. 𝐿1 and 𝐿2 parameters 

are determined in such a way that an equal number of fitness 

evaluations are made in the first and second phases. In other 

words, the fitness evaluation balance in the first and second 

phases is %50 - %50. In this study, experimental studies were 

designed as EPmax parameter 3, 5 and 9, the fitness evaluation 

balance as %20 - %80, %40 - %60, %50 - %50, %60 - %40, and 

%80 - %20. The name and parameter settings of all methods are 

given in table 2. The naming of the methods is made in the 

GSOeb template. Where e is the maximum epoch parameter and 

b is the fitness evaluation balance type. 20% - 80%, 40% - 60%, 

50% - 50%, 60% - 40%, and 80% - 20% balance parameters are 

expressed as 1, 2, 3, 4, and 5 types, respectively. 

Table 2. The parameters settings of all methods 

Method 

Name 
EPmax Balance 

 
The count of fitness 

evaluation in the first phase 
 

The count of fitness 

evaluation in the second phase 
 

The number of iterations 

in the first phase (𝑳𝟏) 
 

The number of iterations 

in the second phase (𝑳𝟐) 

 Dimension  Dimension  Dimension  Dimension 

 30 60 100  30 60 100  30 60 100  30 60 100 

GSO31 3 %20 - %80  30000 60000 90000  120000 240000 360000  200 400 600  4000 8000 12000 

GSO32 3 %40 - %60  60000 120000 180000  90000 180000 270000  400 800 1200  3000 6000 9000 

GSO33 3 %50 - %50  75000 150000 225000  75000 150000 225000  500 1000 1500  2500 5000 7500 

GSO34 3 %60 - %40  90000 180000 270000  60000 120000 180000  600 1200 1800  2000 4000 6000 

GSO35 3 %80 - %20  120000 240000 360000  30000 60000 90000  800 1600 2400  1000 2000 3000 

GSO51 5 %20 - %80  30000 60000 90000  120000 240000 360000  120 240 360  2400 4800 7200 

GSO52 5 %40 - %60  60000 120000 180000  90000 180000 270000  240 480 720  1800 3600 5400 

GSO53 5 %50 - %50  75000 150000 225000  75000 150000 225000  300 600 900  1500 3000 4500 

GSO54 5 %60 - %40  90000 180000 270000  60000 120000 180000  360 720 1080  1200 2400 3600 

GSO55 5 %80 - %20  120000 240000 360000  30000 60000 90000  480 960 1440  600 1200 1800 

GSO91 9 %20 - %80  30000 60000 90000  120000 240000 360000  66 133 200  1333 2666 4000 

GSO92 9 %40 - %60  60000 120000 180000  90000 180000 270000  133 266 400  999 1999 3000 

GSO93 9 %50 - %50  75000 150000 225000  75000 150000 225000  166 333 500  833 1666 2500 

GSO94 9 %60 - %40  90000 180000 270000  60000 120000 180000  200 400 600  666 1333 2000 

GSO95 9 %80 - %20  120000 240000 360000  30000 60000 90000  266 533 800  333 666 1000 
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Table 3: The experimental results for D=30 

F.No GSO31 GSO32 GSO33 GSO34 GSO35 GSO51 GSO52 GSO53 GSO54 GSO55 GSO91 GSO92 GSO93 GSO94 GSO95 

F1 2.980E-02 8.760E-02 0.000E+00 1.215E-06 0.000E+00 0.000E+00 7.056E-04 6.417E-01 1.510E-03 3.100E-01 2.165E-03 0.000E+00 0.000E+00 1.114E-03 0.000E+00 

F2 1.817E+06 3.838E+05 3.576E+05 7.262E+05 3.111E+05 9.481E+02 1.110E+05 1.661E+04 3.152E+04 5.461E+04 2.226E+04 4.048E+03 1.554E+06 0.000E+00 7.656E+05 

F3 3.333E+00 0.000E+00 0.000E+00 1.513E-01 4.726E-04 1.649E-06 1.155E-01 4.338E-04 0.000E+00 0.000E+00 8.234E-06 0.000E+00 1.040E-01 5.267E-05 1.911E-02 

F4 1.070E-08 5.870E+06 3.333E+04 3.367E+05 3.333E+01 0.000E+00 0.000E+00 0.000E+00 3.485E-11 3.806E-11 3.333E+04 3.367E+04 6.002E-11 4.153E-08 1.361E-03 

F5 8.236E-01 2.750E-03 7.305E-01 3.019E-01 4.934E-01 0.000E+00 3.333E-01 0.000E+00 1.767E-02 3.117E-02 4.833E-01 0.000E+00 2.537E-01 3.333E-01 4.019E-07 

F6 7.780E-02 1.084E-02 0.000E+00 4.276E-03 1.468E-01 0.000E+00 0.000E+00 7.899E-03 0.000E+00 0.000E+00 1.030E-02 0.000E+00 1.604E-02 0.000E+00 1.113E-02 

F7 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3.345E+02 2.000E-01 2.000E-01 0.000E+00 3.333E-02 0.000E+00 

F8 8.305E-13 6.024E-11 0.000E+00 5.090E-11 1.882E-06 0.000E+00 1.369E-11 6.316E-20 0.000E+00 1.459E-10 0.000E+00 8.399E-17 2.378E-09 0.000E+00 0.000E+00 

F9 1.073E-04 1.598E-04 1.258E-04 1.804E-04 2.942E-04 9.798E-05 8.993E-05 2.347E-04 2.618E-04 6.484E-04 1.073E-04 8.279E-05 1.565E-04 1.599E-04 4.944E-04 

F10 2.499E+01 3.147E+01 2.778E+01 2.491E+01 2.874E+01 1.459E+01 2.924E+01 2.295E+01 2.390E+01 2.879E+01 1.358E+01 1.361E+01 1.541E+01 1.538E+01 2.158E+01 

F11 1.661E-02 2.825E+00 3.344E-03 3.443E+00 2.773E+00 5.839E+00 4.382E+00 2.241E-01 1.759E+00 1.559E+00 0.000E+00 1.232E+00 4.085E+00 2.092E+00 2.816E+00 

F12 2.929E-04 4.016E+00 3.467E+00 1.934E+00 5.054E+00 7.965E+00 5.819E+00 2.667E-01 2.136E+00 1.290E+00 3.334E+00 6.667E-02 5.004E+00 0.000E+00 8.032E-03 

F13 2.954E-02 4.351E-02 1.650E-02 1.962E-02 2.601E-02 0.000E+00 2.954E-03 5.782E-03 7.365E-03 1.732E-03 5.524E-03 7.580E-03 8.399E-02 9.653E-04 0.000E+00 

F14 3.595E+03 3.148E+03 3.076E+03 2.942E+03 3.303E+03 3.072E+03 2.793E+03 2.567E+03 3.541E+03 3.550E+03 2.981E+03 2.837E+03 3.223E+03 3.088E+03 3.174E+03 

F15 9.200E-01 5.774E-01 1.665E+00 1.003E+00 1.008E+00 0.000E+00 1.118E-01 9.400E-03 1.372E-01 5.808E-02 3.491E-04 2.409E-04 9.698E-03 1.020E+00 8.764E-01 

F16 1.118E-01 8.577E-02 7.273E-02 9.708E-02 1.225E-01 9.211E-02 6.357E-02 6.383E-02 7.991E-02 1.078E-01 3.949E-02 3.377E-02 3.519E-02 7.355E-02 9.143E-02 

F17 1.627E+00 1.568E+00 1.529E+00 1.557E+00 1.691E+00 1.409E+00 1.453E+00 1.318E+00 1.528E+00 1.507E+00 1.120E+00 1.109E+00 1.209E+00 1.281E+00 1.573E+00 

F18 2.962E-01 2.380E-03 1.895E-03 0.000E+00 3.185E-03 4.769E-03 2.746E-03 9.914E-02 0.000E+00 1.512E-01 9.881E-03 2.387E-02 1.917E-03 2.380E-01 8.841E-03 

F19 1.136E+01 1.087E+01 1.215E+01 9.612E+00 1.329E+01 6.978E+00 8.510E+00 8.475E+00 1.136E+01 1.136E+01 5.701E+00 3.746E+00 6.869E+00 6.679E+00 8.803E+00 

F20 4.354E-01 6.870E-01 3.163E-01 4.474E-01 5.592E-01 2.657E-01 1.127E-02 0.000E+00 5.370E-01 7.188E-02 1.333E-01 5.264E-02 3.019E-01 0.000E+00 3.279E-01 

F21 1.777E-02 1.241E-03 3.847E-03 3.221E-02 3.239E-04 1.914E-02 0.000E+00 6.265E-03 1.565E-03 4.557E-03 1.565E-03 0.000E+00 0.000E+00 0.000E+00 2.415E-02 

F22 1.669E+04 1.224E+04 7.641E+03 5.026E+03 8.572E+03 1.076E+04 3.610E+03 4.742E+03 7.172E+03 6.272E+03 7.897E+03 7.624E+03 6.138E+03 6.408E+03 1.635E+03 

F23 1.835E+02 1.691E+02 1.734E+02 1.630E+02 2.012E+02 1.865E+02 1.640E+02 1.747E+02 1.635E+02 1.909E+02 1.765E+02 2.229E+02 1.847E+02 1.585E+02 1.892E+02 

F24 1.321E+02 6.712E+01 5.126E+01 6.351E+01 2.221E+01 1.094E+02 3.245E+01 6.395E+01 2.379E+01 5.172E+01 6.547E+01 8.856E+01 5.714E+01 2.156E+01 4.643E+01 

F25 1.458E+01 1.222E+01 1.311E+01 1.341E+01 1.357E+01 1.239E+01 1.112E+01 1.174E+01 1.299E+01 1.248E+01 1.342E+01 1.138E+01 1.262E+01 1.137E+01 1.209E+01 

F26 1.652E+01 1.589E+01 1.833E+01 1.900E+01 1.959E+01 1.663E+01 1.682E+01 1.812E+01 1.940E+01 2.020E+01 1.554E+01 1.668E+01 1.772E+01 2.018E+01 2.170E+01 

Avg. 11.0192 9.5769 8.0577 9.3654 11.1731 6.6346 6.3846 6.3654 7.4038 9.2692 6.8269 5.4423 7.9615 6.1154 8.4038 

Winner 1/26 2/26 5/26 2/26 2/26 8/26 5/26 5/26 5/26 2/26 4/26 9/26 3/26 8/26 5/26 
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Table 4: The experimental results for D=60 

F.No GSO31 GSO32 GSO33 GSO34 GSO35 GSO51 GSO52 GSO53 GSO54 GSO55 GSO91 GSO92 GSO93 GSO94 GSO95 

F1 3.783E-02 3.334E+02 1.684E+03 3.341E+02 4.116E-02 0.000E+00 1.532E-05 0.000E+00 3.337E-02 8.722E-02 6.930E+00 1.148E-03 7.070E+00 3.302E+02 5.293E-03 

F2 8.721E+05 1.189E+05 4.630E+06 1.571E+06 3.531E+06 2.507E+06 2.810E+05 1.654E+06 1.242E+04 5.298E+05 1.664E+04 2.129E+06 2.149E+05 1.125E+04 1.777E+05 

F3 1.182E-04 5.453E-03 1.754E-05 1.286E-05 6.815E+00 2.944E+01 0.000E+00 6.546E-04 0.000E+00 1.251E-02 6.233E-04 4.638E-02 1.777E-05 2.485E-08 0.000E+00 

F4 3.370E+15 3.333E+00 3.333E+19 3.333E+21 3.334E+18 3.333E+20 7.033E+05 3.333E+02 3.333E+27 2.891E+02 6.046E-11 3.667E+09 2.400E-08 5.633E-09 5.388E-04 

F5 2.340E+00 1.689E+00 3.469E-01 3.802E+00 3.105E+00 3.355E-01 0.000E+00 1.886E-02 3.413E+00 1.060E+00 3.333E-01 1.889E+00 7.591E-01 3.520E-01 3.573E-01 

F6 2.519E-04 1.020E-03 7.579E-02 0.000E+00 0.000E+00 0.000E+00 4.345E-03 7.258E-05 8.537E-03 1.646E-03 0.000E+00 4.372E-04 2.683E-05 2.209E-01 1.895E-03 

F7 0.000E+00 0.000E+00 3.333E+02 3.333E+02 1.157E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

F8 0.000E+00 2.865E-14 3.846E-13 6.366E-07 3.675E-11 0.000E+00 9.115E-09 5.973E-09 1.852E-13 1.937E-05 0.000E+00 7.119E-13 7.179E-16 1.536E-19 8.948E-02 

F9 4.325E-05 1.265E-04 7.460E-05 9.232E-05 1.724E-04 7.587E-05 1.727E-04 7.377E-05 3.739E-04 4.340E-04 1.033E-04 7.708E-05 1.790E-01 9.661E-05 1.965E-04 

F10 6.236E+01 7.397E+01 7.527E+01 5.864E+01 5.868E+01 5.843E+01 5.856E+01 5.859E+01 5.870E+01 5.863E+01 5.262E+01 5.449E+01 5.654E+01 5.852E+01 5.860E+01 

F11 1.846E+01 1.344E+01 0.000E+00 6.749E+00 1.246E+01 4.116E+00 3.446E-01 7.791E+00 4.536E+00 1.121E-03 3.857E+00 3.110E-02 5.093E+00 6.635E+00 1.928E+00 

F12 9.201E+00 1.948E+00 7.734E+00 1.755E+01 1.417E+01 5.200E+00 1.185E+00 2.511E-03 6.120E+00 8.333E-01 5.333E-01 4.225E+00 9.175E-01 6.568E-01 6.363E+00 

F13 2.065E-02 0.000E+00 3.430E-03 2.129E-02 4.346E-03 8.607E-04 1.751E-02 2.472E-02 3.891E-03 7.032E-03 1.024E-01 0.000E+00 4.461E-02 1.176E-02 2.330E-02 

F14 9.655E+03 8.655E+03 9.518E+03 8.694E+03 8.460E+03 7.996E+03 7.500E+03 7.699E+03 8.325E+03 8.520E+03 8.324E+03 7.856E+03 8.032E+03 7.268E+03 8.157E+03 

F15 2.419E+00 1.977E+00 2.408E+00 4.603E-01 1.556E+00 3.762E-01 9.143E-01 8.350E-01 1.042E+00 7.386E-01 1.300E-04 7.563E-01 2.208E-02 1.074E-03 6.088E-01 

F16 1.317E-01 1.476E-01 1.739E-01 1.614E-01 2.105E-01 9.697E-02 1.029E-01 1.231E-01 1.678E-01 1.615E-01 6.150E-02 8.101E-02 9.936E-02 8.553E-02 1.309E-01 

F17 4.663E+00 4.575E+00 4.611E+00 4.760E+00 4.999E+00 4.518E+00 4.493E+00 4.708E+00 4.705E+00 4.756E+00 4.114E+00 4.266E+00 4.057E+00 4.473E+00 4.778E+00 

F18 1.558E-01 5.713E-04 1.188E+00 3.057E-01 7.349E-01 3.427E-03 8.095E-01 3.108E-03 2.283E-01 1.630E-01 2.279E-04 8.670E-01 0.000E+00 6.857E-01 2.653E-02 

F19 4.747E+01 4.558E+01 4.773E+01 5.154E+01 4.611E+01 4.031E+01 4.367E+01 4.264E+01 4.859E+01 4.672E+01 3.553E+01 3.836E+01 3.834E+01 4.103E+01 4.323E+01 

F20 4.756E-01 3.372E-02 1.433E-01 3.069E-01 1.224E+00 1.294E+00 5.333E-01 1.256E-03 9.671E-01 1.333E-01 5.630E-01 8.050E-01 7.315E-01 4.175E-01 2.849E-01 

F21 1.653E-02 1.653E-02 3.239E-04 1.810E-02 2.805E-03 2.267E-05 4.992E-02 4.557E-03 1.565E-03 3.847E-03 0.000E+00 0.000E+00 1.777E-02 1.686E-02 2.262E-02 

F22 5.765E+04 4.009E+04 4.300E+04 1.555E+04 3.080E+04 4.191E+04 5.004E+04 3.843E+04 3.577E+04 4.048E+04 3.298E+04 5.748E+04 4.463E+04 3.310E+04 1.987E+04 

F23 5.614E+02 4.985E+02 5.833E+02 6.080E+02 6.370E+02 5.609E+02 5.025E+02 5.525E+02 5.454E+02 5.933E+02 5.685E+02 5.081E+02 5.514E+02 5.554E+02 6.206E+02 

F24 5.585E+02 3.255E+02 4.429E+02 3.573E+02 2.679E+02 3.195E+02 2.276E+02 5.130E+02 2.973E+02 2.912E+02 6.806E+02 4.343E+02 2.944E+02 4.039E+02 3.972E+02 

F25 1.765E+01 1.686E+01 1.756E+01 1.841E+01 1.784E+01 1.734E+01 1.707E+01 1.768E+01 1.842E+01 1.879E+01 1.654E+01 1.583E+01 1.727E+01 1.651E+01 1.797E+01 

F26 6.148E+01 5.747E+01 6.313E+01 5.997E+01 6.886E+01 5.567E+01 6.029E+01 5.972E+01 5.978E+01 7.007E+01 5.427E+01 5.797E+01 6.237E+01 6.025E+01 6.642E+01 

Avg. 9.8077 7.6346 10.1731 10.3462 10.7115 6.2885 7.1346 6.9231 8.9423 9.0577 4.9423 6.6346 6.7885 6.1346 8.4808 

Winner 3/26 3/26 1/26 2/26 1/26 4/26 4/26 4/26 2/26 1/26 10/26 4/26 3/26 3/26 2/26 
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Table 5: The experimental results for D=100 

F.No GSO31 GSO32 GSO33 GSO34 GSO35 GSO51 GSO52 GSO53 GSO54 GSO55 GSO91 GSO92 GSO93 GSO94 GSO95 

F1 1.000E+03 1.000E+03 2.000E+03 1.335E+03 2.750E+00 0.000E+00 6.974E-04 3.333E+02 1.027E-01 7.761E-02 3.178E-04 3.089E-03 1.126E-03 1.483E-02 3.901E-02 

F2 4.483E+07 1.797E+07 2.939E+06 7.666E+06 2.289E+07 1.761E+06 1.055E+06 2.539E+06 8.160E+04 9.640E+06 1.120E+06 8.818E+05 3.244E+07 1.277E+06 9.608E+04 

F3 7.400E+02 5.797E+02 3.300E+02 2.337E+02 2.631E+02 6.966E+00 3.334E+00 2.173E+02 4.151E+02 3.060E+00 0.000E+00 7.017E-08 3.392E-02 1.014E-03 5.871E-02 

F4 3.667E+27 3.333E+66 3.337E+61 3.333E+62 3.333E+63 3.333E+18 7.000E+17 3.333E+36 3.333E+47 5.264E+35 7.994E-15 3.333E+19 3.333E+38 3.367E+02 3.333E+34 

F5 5.020E+00 2.745E+00 2.050E+00 1.340E+00 5.336E+00 3.007E+00 1.669E+00 2.711E+00 4.250E-01 9.699E-01 7.025E-02 5.341E-01 4.537E-01 4.073E-02 2.020E+00 

F6 0.000E+00 0.000E+00 1.348E-03 0.000E+00 3.705E-05 1.051E-03 0.000E+00 2.509E-04 0.000E+00 7.542E-04 8.711E-04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

F7 1.667E+03 1.333E+03 2.333E+03 0.000E+00 3.588E+03 0.000E+00 0.000E+00 0.000E+00 3.333E+02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 6.667E+02 

F8 0.000E+00 0.000E+00 3.943E-07 3.579E-01 3.786E-08 3.178E-13 3.866E-12 2.833E-06 0.000E+00 0.000E+00 2.869E-13 1.687E-10 2.870E-16 1.734E-11 0.000E+00 

F9 3.798E-05 6.442E-05 4.474E-01 6.968E-05 8.949E-01 6.306E-05 6.236E-05 1.799E-04 2.366E-04 2.129E-03 3.580E-01 4.909E-05 1.757E-04 1.157E-04 1.537E-04 

F10 9.845E+01 9.865E+01 9.980E+01 9.863E+01 9.873E+01 9.838E+01 9.849E+01 9.853E+01 9.873E+01 9.866E+01 1.001E+02 9.837E+01 9.838E+01 9.845E+01 9.872E+01 

F11 1.529E+01 1.197E+01 2.078E+01 1.735E+01 7.969E+00 1.298E+01 7.098E+00 3.795E+00 2.928E+00 9.996E+00 0.000E+00 1.465E+00 9.700E+00 2.883E+00 5.156E+00 

F12 2.135E+01 2.834E+01 1.480E+01 5.533E+01 1.238E+01 9.479E+00 2.618E+00 1.731E+01 4.606E+00 1.540E+01 1.721E+00 1.110E+01 7.314E+00 1.681E+01 3.218E+00 

F13 3.908E+01 6.029E+00 2.115E+01 3.018E+00 6.048E+00 4.895E-02 8.618E-05 1.176E-05 1.309E+00 5.870E-02 0.000E+00 0.000E+00 4.920E-03 1.051E-03 4.665E-02 

F14 1.772E+04 1.851E+04 1.797E+04 1.842E+04 1.871E+04 1.647E+04 1.682E+04 1.696E+04 1.685E+04 1.715E+04 1.603E+04 1.569E+04 1.502E+04 1.645E+04 1.656E+04 

F15 2.938E+00 1.762E+00 2.933E+00 1.592E+00 2.419E+00 1.177E+00 7.454E-01 2.411E+00 2.355E+00 1.256E+00 1.083E+00 3.231E-01 9.943E-01 8.454E-01 6.589E-01 

F16 2.055E-01 1.974E-01 2.539E-01 3.385E-01 3.582E-01 1.385E-01 1.956E-01 1.862E-01 1.710E-01 2.835E-01 1.791E-01 1.569E-01 1.622E-01 1.738E-01 1.858E-01 

F17 8.724E+00 8.777E+00 8.919E+00 8.896E+00 9.093E+00 8.516E+00 8.655E+00 8.699E+00 8.828E+00 8.977E+00 8.081E+00 8.110E+00 8.229E+00 8.406E+00 8.762E+00 

F18 1.153E+00 9.453E-01 2.353E+00 7.587E-01 2.346E+00 6.133E-03 4.614E-03 7.386E-01 6.609E-01 3.795E-01 3.189E-01 1.964E-01 6.183E-01 3.940E-01 1.498E-01 

F19 8.593E+01 8.716E+01 8.838E+01 8.686E+01 9.012E+01 9.107E+01 8.600E+01 8.796E+01 8.394E+01 8.536E+01 7.801E+01 8.066E+01 8.658E+01 8.105E+01 9.456E+01 

F20 2.267E+00 3.068E+00 1.847E+00 1.109E+00 4.224E-01 4.572E-01 8.623E-01 2.756E-01 1.099E+00 4.360E-01 1.057E+00 8.498E-01 6.847E-01 2.533E-02 8.765E-01 

F21 3.774E-02 3.316E-02 1.686E-02 3.933E-02 5.018E-02 3.239E-04 1.842E-02 8.237E-03 2.553E-02 2.567E-02 0.000E+00 1.695E-02 2.482E-03 2.193E-02 3.315E-02 

F22 1.635E+05 1.435E+05 8.280E+04 1.376E+05 1.140E+05 1.574E+05 9.661E+04 1.010E+05 1.365E+05 1.110E+05 1.207E+05 1.334E+05 1.377E+05 1.164E+05 7.613E+04 

F23 1.164E+03 1.107E+03 1.188E+03 1.182E+03 1.141E+03 1.205E+03 1.055E+03 1.085E+03 1.080E+03 1.222E+03 1.163E+03 1.159E+03 1.076E+03 1.128E+03 1.120E+03 

F24 1.075E+03 9.720E+02 1.227E+03 7.509E+02 7.966E+02 1.452E+03 1.181E+03 1.343E+03 7.020E+02 8.397E+02 1.151E+03 8.962E+02 1.097E+03 6.644E+02 9.050E+02 

F25 1.995E+01 2.000E+01 1.980E+01 2.033E+01 2.041E+01 2.042E+01 2.027E+01 2.004E+01 2.031E+01 2.026E+01 2.031E+01 2.018E+01 2.023E+01 1.997E+01 2.031E+01 

F26 1.384E+02 1.414E+02 1.428E+02 1.470E+02 1.487E+02 1.392E+02 1.421E+02 1.320E+02 1.420E+02 1.464E+02 1.410E+02 1.314E+02 1.414E+02 1.373E+02 1.449E+02 

Avg. 10.0769 10.2692 11.6154 10.7692 11.7885 7.5577 5.7308 7.9615 7.6346 8.6923 5.6346 4.2885 6.1154 4.8269 7.0385 

Winner 3/26 2/26 1/26 2/26 0/26 3/26 4/26 1/26 3/26 2/26 9/26 6/26 3/26 5/26 3/26 
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4. Results and Discussion 

In this chapter, 15 parameter sets designed in chapter 3 are 

tested using 26 benchmark functions and their results 

analyzed. Experimental study results were obtained by 

taking the mean of 30 independent runs. The mean test 

results in 30, 60, and 100 dimensions are presented in 

Tables 3, 4, and 5, respectively. In addition, in the last two 

rows of the tables, the average of the results obtained by 

the average of the means (Avg.) and the number of the best 

results (Winner) are given. The best results obtained in the 

tables are shown in bold.  

When the results obtained for 30 dimensions were 

analyzed, the GSO92 method reached more successful 

results in terms of both Average and Winner than other 

methods. The GSO92 method achieved the best value in 9 

out of 26 benchmark functions. In addition, it obtained the 

best Avg value with 5.4423. When the results in Table 5 

are examined, the best method for 60 dimensions is GSO91. 

The GSO91 method reached the best value in 10 

benchmark functions, and its average value is 4.9423. In 

the results obtained for 100 dimensions, the GSO92 method 

reached the best result in terms of Average, while the 

GSO91 method obtained a better result in terms of winner. 

The average value of the GSO92 method is 4.2885. The 

GSO91 method achieved the best results in 9 out of 26 

benchmark functions. When the Average and Winner 

results obtained from all methods are analyzed, it is seen 

that the results of some methods are the same or very close. 

Therefore, determining which method is more successful 

becomes a complicated situation. At this point, the results 

obtained should be analyzed statistically. Friedman test is 

often used in the literature [31-33] to rank the results of 

multiple methods. The Friedman test [34] is a 

nonparametric statistical test. It is particularly suitable for 

situations where the results of more than one classifier are 

evaluated. The level of significance is set at 0.05 for the 

Friedman test. This means that if the p-Value is less than 

0.05, there is a statistically significant difference between 

the results. Otherwise, there is no significant difference. In 

this study, the 15 methods were ranked by using the 

Friedman ranking test for the mean values. The mean rank, 

final rank, and p-Value values obtained in the Friedman 

ranking test result are given in Table 6. Mean ranking 

histograms of all dimensions are shown in Fig. 2. 

 

Table 6: The Friedman ranking results of all methods 

D  GSO31 GSO32 GSO33 GSO34 GSO35 GSO51 GSO52 GSO53 GSO54 GSO55 GSO91 GSO92 GSO93 GSO94 GSO95 

30 

Mean Rank 11.0192 9.5769 8.0577 9.3654 11.1731 6.6346 6.3846 6.3654 7.4038 9.2692 6.8269 5.4423 7.9615 6.1154 8.4038 

Final Rank 14 13 9 12 15 5 4 3 7 11 6 1 8 2 10 

p-Value  1.63E-07               

60 

Mean Rank 9.8077 7.6346 10.1731 10.3462 10.7115 6.2885 7.1346 6.9231 8.9423 9.0577 4.9423 6.6346 6.7885 6.1346 8.4808 

Final Rank 12 8 13 14 15 3 7 6 10 11 1 4 5 2 9 

p-Value  1.96E-07               

100 

Mean Rank 10.0769 10.2692 11.6154 10.7692 11.7885 7.5577 5.7308 7.9615 7.6346 8.6923 5.6346 4.2885 6.1154 4.8269 7.0385 

Final Rank 11 12 14 13 15 7 4 9 8 10 3 1 5 2 6 

p-Value  2.47E-17               

 

Fig. 2.  The Friedman ranking results of all dimensions 

 

When Table 6 is examined, all the p-Value values obtained 

from the Friedman test performed for each dimension all 

are smaller than the level of significance (0.05). It shows 

that there is a statistically significant difference between 
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all results obtained. Final Ranking values also indicate that 

GSO91 and GSO92 are more successful than other methods.  

While the GSO92 method reached the best ranking in 30 

and 100 dimensions, the GSO91 method achieved the best 

ranking value in 60 dimensions. 

 

 

   

   

   

Fig. 3.  Convergence curves of F1, F6 and F21 functions in 30, 60 and 100 dimensions 

 

It is not possible to show convergence curves of all 

methods in all dimensions and functions. For this reason, 

6 methods with the best and worst 3 Friedman rank for 

each dimension were used in the creation of the 

convergence curves. In Fig. 3, convergence curves have 

been presented for 30, 60 and 100 dimensions of F1, F6 

and F21 functions which have different characteristic. 

When the convergence graphs are examined, the methods 

with the EPmax parameter of 9 show a better convergence 

to the optimum solution.   

When evaluated as total, methods in which the EPmax 

parameter is determined to be 9 achieve more successful 

results than other methods. Good results were not obtained 

in cases where the maximum number of epochs was 3. In 

general, more fitness evaluation methods in the second 

phase are more successful than others. 

5. Conclusion 

In this study, EPmax, 𝐿1 and 𝐿2 parameters, which are 

important parameters of the GSO method, were analyzed. 

3, 5, and 9 values for EPmax and 5 different balance values 

for parameters 𝐿1 and 𝐿2 were created. Finally, 15 

different parameter sets were analyzed. 26 benchmark 

functions with different properties were used in the 

analysis study. For detailed analysis, functions are tested 

in 30, 60, and 100 dimensions. Successful parameters were 

revealed by examining the obtained results. Statistical 

analysis of the results was also concluded in the study. 

GSO is an effective framework that can be used as a search 

method for optimization methods available in the 

literature. By using different optimization methods under 

the umbrella of GSO, effective models can be put forward 

in solving different optimization problems. At this point, 

the parameter analysis made in this study can be the basis 

for these studies. 
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