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Abstract: Brain-computer interfaces (BCI) provide new communication and control channels to restore and support these functions of the 

restricted users. Among these Visual Evoked Potential (VEP) based BCIs are the most promising in terms of ease of use and 

performance. The frequency following phenomenon of VEPs produce Steady State Visual Evoked Potentials (SSVEP) at the frequency 

of stimulation of the human visual system. In such interface systems, each target is encoded with a particular stimulation frequency and 

phase. In communication purpose speller interfaces each target flickers a letter or character with a particular stimulation frequency and 

phase. The detection of the focused target by the computer is required. In this process, classification methods and feature extraction 

method play critical roles. This study used a publicly available benchmark dataset of a 40 target SSVEP BCI. In the analysis, two feature 

vectors are obtained from power spectrum parameters and one from stimulus template matching correlation coefficients. The 

performance of the three classification methods, namely Fine Tree, Linear Discriminant Analysis (LDA) and K-Nearest Neighbors 

(KNN), are compared using these feature vectors. Spectral features performed better than the template matching features. Especially the 

feature vector of the target frequency signal ratio (TFSR) to the total stimulation band energy features provided better accuracy values. 

LDA and KNN performed better than decision tree in classification. 
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1. Introduction 

Visual Evoked Potentials (VEPs) are electrophysiological signals 

from the electrical activity of the visual cortex and recorded with 

electrodes placed over the scalp. There exist three VEP types 

depending on the stimulus type, namely Flash VEP, Pattern-

onset/offset VEP, and Pattern-reversal VEP [1]. In Flash VEP 

paradigm, a brief luminance increment or flash is presented to the 

subject, and it produces a characteristic response with the most 

stable peaks occurring at N2 (90ms) and P2 (120ms) [2]. 

Normally this response is difficult to observe due to background 

EEG activity. It requires many repetitions of the experiment and 

synchronous averaging to enhance the characteristic VEP signal. 

If the stimulus repetition interval is long enough, greater than 

250ms (stimulation rate < 4Hz), such that the visual system can 

return to a stationary initial state before the beginning of each 

stimulus, a brief input of luminance change creates a 

characteristic response known as Transient VEP [3][4][5]. 

Transient VEP has a number of characteristic peaks time-locked 

to the stimulus. For this reason, Transient VEP has been widely 

studied in Event Related Potential (ERP) studies and monitoring 

diseases of visual pathway. On the other hand, rapid visual 

stimulation with fixed stimulus repetition interval less than 

250ms (stimulation rate >4Hz) generates a Steady-State Visual 

Evoked Potential (SSVEP) that contains a constant fundamental 

frequency due to periodic overlapping of each evoked potential 

peaks [6][7][8]. SSVEP spectra contain a major frequency the 

same as the stimulation as well as its harmonics and 

subharmonics. 

Brain-Computer Interface (BCI) is a system developed to provide 

its users ability to interact with the environment by translating the 

specific brain signals into desired words or actions to improve the 

quality of life. A BCI records electrical brain activity and links it 

to the external environment actions or internal body parts in order 

to improve the natural brain outputs [9]. BCIs have gained 

tremendous popularity in the last decade. Especially SSVEP BCIs 

gained much interest during the last decade due to some 

particular properties. The advantages of SSVEP BCIs include 

easy system configuration without a need for synchronization 

[10]. Neither a training nor an initial recording to generate a VEP 

template is required. It provides a high Information Transfer Rate 

(ITR) (usually >50bpm). Although the LCD screen refresh rate 

limits the number of frequencies available for targets, phase 

encoding provides more targets assigned with one frequency [11]. 

Another advantage is that it is implementable by common LCD 

screens and stimuli can vary from color, pattern to faces possible.  

In a multiple target SSVEP BCI, target detection is challenging 

due to mixing of frequencies. There exist time and spectral 

features for EEG classification, there lacks an ideal feature set for 

multi-target SSVEP classification application.  Since the optimal 

selection of features give rise to the best performance, the 

potential feature extraction methods for SSVEP need to be 

studied in detail. This research aims to investigate the effects of 

three feature extraction mechanisms and three classification 

methods on the accuracy of the classification. These feature 

extraction methods employ different domain features, either 
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spectral components or time domain template matching based 

correlation coefficient components. 

 
Fig. 1.  A typical BCI recording system block diagram is shown. 

In general, power spectral density (PSDA) or Signal to Noise 

Ratio (SNR) analysis of the target frequency is an easy and 

efficient solution. However, it can be further improved by 

incorporating the information in the other target frequencies in a 

feature vector as well. This study aims to illustrate the potential 

of this feature vector in SSVEP BCI classification. 

2. Materials and Methods 

2.1. Setup and Stimulation 

A general SSVEP BCI recording system is shown in Figure 1.  A 

stimulus matrix of 5 rows and 8 columns was created to present 

40 characters to the subject using a 23.6 inch Acer GD245HQ 

LCD monitor [12]. The response time of the monitor was 2ms. 

Pixel resolution and refresh rate were 1920 x 1080 pixels and 

60Hz. From 70cm away viewing distance, total speller area 

covered 34° x 24° for horizontal and vertical axes respectively. 

Each target stimulus covered 3.2° x 3.2°of visual field. The 

separation between stimulus targets were 1.14° for both 

horizontal and vertical axes. Joint frequency and phase 

modulation (JFPM) method was used to present the 40 visual 

target stimuli [13]. A sampled sinusoidal stimulation method was 

applied, the details can be found in [12][14][15]. Target 

frequencies to elicit SSVEP responses ranged from 8Hz to 

15.8Hz with steps of 0.2Hz and target phases changed by 

multiples of π/2 as shown in Figure 2.  

 

Fig. 2.  5x8 target stimulus matrix layout is shown. Each square 

represents one character and flickers with the frequency and phase given.   

2.2. Dataset 

The dataset is obtained from the University of Tsinghua 

Biomedical Engineering BCI Group webpage 

(http://bci.med.tsinghua.edu.cn/download.html). It contains data 

of 35 subjects tested on a BCI setup with a wide range of (40) 

target frequencies encoded with JFPM. For each subject, 

experimental paradigm consisted of gazing tasks at each targets. 

One trial was recorded for each target.  Each gazing and VEP 

recording task was repeated 6 times in one trial. Total number of 

epochs is 40 trials x 6 epochs/trial = 240 epochs. In each epoch, 

5s simultaneous stimulation of all the targets on the screen was 

preceded by a 0.5s target cue. At the end of each epoch, there was 

a 0.5s rest interval. Total epoch duration was 6s. Each epoch was 

resulted from a 5s visual flicker stimulation of 60Hz LCD screen. 

Data was collected from 64 electrode channel EEG recording 

setup using international 10/20 EEG electrode system. Data was 

referenced to Cz.  The sampling rate was 1kHz and a notch filter 

was applied to remove 50Hz power-line noise. To reduce data 

storage size, data was down-sampled to fs=250Hz. Since the 

dataset includes both experienced and inexperienced subjects, the 

equal number of subjects (7subject) was selected for analysis for 

each group. The data for subject 5 was not available in the dataset 

and excluded from the analysis. The details of the subjects are 

shown in the Table-1. 

Table 1. Subject properties 

Subject ID    Gender Age Group 

S1 Male 31 Experienced 

S2 Male 29 Experienced 

S3 Male 26 Experienced 

S4 Female 25 Experienced 

S6 Male 26 Experienced 

S7 Female 28 Experienced 

S8 Female 23 Experienced 

S9 Female 31 Inexperienced 

S10 Male 25 Inexperienced 

S11 Female 18 Inexperienced 

S12 Male 21 Inexperienced 

S13 Female 17 Inexperienced 

S14 Male 18 Inexperienced 

S15 Female 19 Inexperienced 

2.3. Data Pre-processing 

In this study a laplacian spatial filtering of four channels is 

utilized such that the data is obtained from subtracting the 

average of O1 (61), O2 (63), and Pz (48) from the Oz (62) 

electrode recordings. Laplacian spatial filtering improves the BCI 

performance [16]. This spatial filtering reduced the common 

background EEG noise and enhanced the SSVEP response at the 

Oz channel. In addition to the spatial filtering a bandpass filter 

was applied. The filter was a 3rd order Butterworth band-pass 

filter with pass-band frequencies from 4Hz to 32Hz. The filtfilt() 

function in Matlab was used to prevent the phase delays in the 

signal due to filtering 

2.4. Feature Extraction 

Feature vectors based on three methods are compared in this 

study, namely time domain SSVEP template-matching cross-

correlation coefficients (TMCC), PSDA (SNR) based feature 

vector, and target frequency power ratio (TFSR) in stimulation 

frequency band feature vector. Although there exists other time 

and spectral domain features in literature, their use in SSVEP 

detection have been found very limited in a preliminary analysis. 

Therefore, these basic features are excluded from further analysis. 

Each feature extraction method is described below. 

 

 

http://bci.med.tsinghua.edu.cn/download.html
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2.4.1. Target Frequency SNRs as Feature Vector 

PSDA based methods are the common target detection methods 

used in SSVEP BCIs [17][18][19]. In PSDA based target 

frequency detection, SNR in terms of energies of the each target 

frequency is computed using the following formula (1): 

 

 
(1) 

where S is defined as the ratio of energy in kth frequency to the 

overall energy in the n neighbouring frequency bins. P(fk) is the 

amplitude FFT value at the kth frequency bin.  fk is the stimulus 

frequency, fres  is the frequency resolution of the FFT. P=FFT(x)  

where x( ) is the 1250-points temporal EEG data. Since the 

sampling rate is 250 Hz, fres is 250/1250=0.2Hz. The number of 

neighboring frequencies is set to n=5 to include the -1Hz and 1Hz 

spectrum in the PSDA energy ratio S(fk) computation. Finally an 

output vector of 40 S(fk) values for each epoch is constructed as 

feature vector.  

2.4.2. Target Frequency Signal Ratio (TFSR) in Stimulation 

Frequency Band Feature Vector 

Target Frequency Signal Ratio (TFSR) is basically the ratio of the 

target frequency energy to the total stimulation frequency band 

energy. It incorporates the each target frequency energies which 

is not included in the SNR feature vector. The TFSR can be 

computed using (2) as follows: 

 
(2) 

where N is the number of total stimulus frequencies (N=40), k is 

the target frequency index for each target (k=1:40). A feature 

vector of all 40 TFSR is computed for each epoch for training and 

test data. 

2.4.3. Template Matching Correlation Coefficient (TMCC) 

Feature Vector 

Another method for target frequency detection is template 

matching based method. An SSVEP template is created for each 

target SSVEP using the stimulus properties. An example of an 

SSVEP recorded signal and template is shown in Figure 3.  

 
Fig. 3.  SSVEP template from 8Hz target stimulus (red) and the 

corresponding recorded population average SSVEP (blue) are shown.  

The SSVEP response is expected to be with the same stimulation 

frequency with a delay about 136ms since the flash VEP response 

first peak latency is about 136ms in [12]. Therefore, an SSVEP 

template Tk(n) for each target frequency is created using (3). 

 
(3) 

Here fk is the target stimulus frequency given in Figure 2 and θk is 

the corresponding phase. The average latency delay (Δ) of the 

flash VEP is subtracted from the phase. TMCC feature vector is 

computed using correlation coefficient equation [19] as in (4). 

 
 (4) 

2.5. Classification 

In the classification stage, three classifiers are used namely; 

decision tree (fine tree), Discriminant Analysis (LDA) and KNN. 

To avoid possible errors due to the non-homogenous distributions 

in the data, a 5-fold cross validation is applied to the 

classification learning stage. The data is divided into 5 random 

partitions, among these 4 partitions are used in the training and 1 

partition is used in the test process, this is repeated 5 times. The 

performance outputs at the end of classification with each data 

division process are gathered. The arithmetic mean of the 

performance outputs from each classification process is obtained 

as the final metric, particularly training accuracy. Two third of 

the data is used in training. For evaluation of the performance 

with unseen data, remaining one third of the data is used as test 

data. Performance assessment is done using accuracy metric 

which can be computed using (5).  

 
(5) 

where TP, TN, FP and FN represent true positive, true negative, 

false positive and false negative classification counts 

respectively. 

2.5.1. Decision Tree 

Decision tree based classification simplifies a complex 

classification  process into a collection of simpler decisions, [20]. 

Decision tree classifiers try to have the simplest structure, classify 

the most of the training data accurately as possible, achieve a 

generalization so as to perform good with unseen data, be 

updated easily with more training [20].  Fine tree method is 

selected for the advantages of fast implementation, high 

flexibility, and small memory usage. In fine tree many leafs are 

used in order to have a fine  separation between classes . 

2.5.2. LDA  

LDA classifies the training feature vectors of different classes 

using hyperplanes [21][22]. For a two-class classification, the 

classes are defined using a linear discrimination function 

representing a hyperplane boundary in the feature space. The 

class to which the feature vector belongs depends on the side of 

the plane where the vector is found. To classify more than two 

classes, e.g. N-class problem (N > 2), several hyperplanes are 

used. For multiclass BCI classification one vs all separation is 

repeated for each class to find the correct class among all. Using 

the training data, the location and orientation of the hyperplane 

are set [24]. One decision plane can be defined as g(x): 

 (6) 

where w is the weight vector, x is the input feature vector and w0 

is a threshold.  The sign of g(x) determines the input feature 

vector class [24]. This indicates which side or class the input 

belongs to. 
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LDA classifier is a simple low complexity classifier but efficient. 

It does not need high computation power yet achieves good 

accuracy for BCI classification purposes especially for online 

BCI systems [25][26]. Simplicity of this classifier makes it good 

at generalizing to unseen test data and yields good accuracy 

values in practice [26].   

2.5.3. KNN  

In K-Nearest Neighbours as the name suggests the unseen test 

sample class is set to the dominant class among its k nearest 

neighbours within the training set [22]. It relies on the principle 

that features related to each different class forms a separate 

cluster in feature space [23]. The power of KNN is that if a high k 

and enough training samples are used it can approximate any 

function, even nonlinear decision boundaries [26]. 

3. Results and Discussion 

The accuracy for each subject, feature and classification method 

combination was calculated. Figure-4 illustrates accuracy plots 

for each feature using Fine Tree (A), LDA (B), and KNN (C) 

classifiers for all 14 subjects. Mean classifier training times are 

0.66s , 0.48s, and 0.47s for Fine Tree, LDA and KNN 

respectively. An ANOVA with generalized linear model has been 

carried out to compare the effects of each feature, classifier, and 

the experience on the accuracy performance. This analysis 

revealed all three factors have significant effect on classification 

accuracy (p<0.01). While all three classifiers mean accuracies for 

experienced subjects are 81.4%, 64.8%, and 86.3% for SNR, 

TMCC, and TFSR respectively, inexperienced subject accuracies  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Classification accuracies for each subject and each features of 

SNR, TMCC and TFSR using Fine Tree (A), LDA (B), and KNN (C) 

classifiers are depicted.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Comparison chart of average performances for each classifier and 

feature for experienced subject group is illustrated.   

are 54.3%, 37.4%, and 63.6%. Since there is a huge difference 

between inexperienced and experienced subject performances, I 

carried out further comparison analyses for each separate groups 

of experience independently. TFSR combined with KNN or LDA 

achieved the highest accuracy compared to other features and 

classifiers (p<0.05), see Figure-5. TFSR significantly improved 

accuracies compared to SNR and TMCC by 6% and 33% 

respectively for experienced subjects. On the other hand, for 

inexperienced subjects 17% and 70% improvement is observed 

when TFSR is used instead of SNR or TMCC respectively. The 

correlation coefficient between averages performances of each set 

of features are computed. There is strong correlation between 

each feature performances (0.98 for TFSR-SNR, 0.93 for TFSR-

TMCC, 0.93 for SNR-TMCC), however the TFSR has the highest 

performance in classification and can be used in SSVEP BCI 

classification tasks. 

In conclusion, the inclusion of each target frequency signal ratio 

to the total stimulation frequency band energy is a promising 

feature extraction method to achieve higher accuracy. It is easy 

and efficient. It can replace the traditional PSDA methods. In 

addition, LDA and KNN classifiers provide acceptable 

accuracies, and high and medium prediction speeds respectively, 

see Figure-5. Moreover, these performances are obtained using 

only 4 electrodes which is feasible for a typical BCI realization 

for daily-life usage. For future studies, the performance of the 

proposed TFSR feature with other datasets and classification 

methods can be analyzed.  
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