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Abstract: Following the second wave of Covid-19 infections in India, individuals are now arriving to hospitals with a variety of symptoms, 

not simply for mucormycosis, a fungal infection. The most common symptoms are extreme tiredness, drowsiness, body and joint pain, 

mental fog, and fever, but pneumonia, collapsed lungs, heart attacks, and strokes have all been reported. Pythagorean fuzzy sets (PFSs) 

proposed by Yager [42] offers a novel technique to characterize uncertainty and ambiguity with greater precision and accuracy. The idea 

was developed specifically to describe uncertainty and ambiguity mathematically and to provide a codified tool for dealing with imprecision 

in real-world circumstances. This article addresses novel logarithmic entropy measures under PFSs. Additionally, numerical illustration is 

utilized to ascertain the strength and validity of the proposed entropy measures. Application of the measures is used in detecting diseases 

related to Post COVID 19 implications through TOPSIS method. Comparison of the suggested measures with the existing ones is also 

demonstrated.    
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1. Introduction 

Although most patients with COVID-19 recover within weeks 

after becoming unwell, some people develop post-COVID 

symptoms. After being infected with the virus that causes COVID-

19, people might develop a wide range of new, returning, or 

chronic health problems known as post-COVID disorders. Even 

those who were asymptomatic when infected can develop post-

COVID symptoms. For varying durations of time, these disorders 

can cause various uncertain kinds and combinations of health 

problems. To deal with such uncertainty in data, Zadeh [46] 

proposed FSs theory, in which each element is characterised by 

association grade, non-association grade lying between 0 and 1. 

Extension to this, Atanassov [6] fostered the idea of intuitionistic 

fuzzy sets (IFSs) for the better portrayal on vulnerability where the 

membership grade (δ) and non-membership grade (ζ) both are real 

numbers, and their summation is under 1. The difference between 

1 and the summation precedes to hesitancy grade. The idea of IFSs 

appears to be practical in modelling many real-life circumstances 

like medicinal findings [11-13, 16, 35-37], career endurance [15], 

selection procedure [14], and multi-criteria decision-making [18-

20] amongst others. 

There are circumstances where 𝛿 + 𝜁 ≥ 1 unlike the cases obtained 

in IFSs. This inadequacy in IFSs surely preceded to a 

configuration, called PFSs. PFSs proposed by Yager [42-44] is a 

novel tool to contract with imprecision considering association 

degree 𝛿 and non-association 𝜁 satisfying the conditions 𝛿 + 𝜁 ≤ 1 

or 𝛿 + 𝜁 ≥ 1, and it follows that 𝛿2 + 𝜁2 + 𝜂2 = 1, where 𝜂 is the 

PFS index. Different investigators hypothetically exploited the 

notion of Yager's [44] Pythagorean fuzzy sets and employed it in 

the field of dynamic, clinical finding, design acknowledgment and 

a lot more reasonable issue. To negotiate the dynamic issue with 

PFSs, Zhang and Xu [49] anticipated a similarity technique to 

arrange fuzzy PIS and fuzzy NIS. They extended the technique 

of order preference by similarity to ideal solution to ascertain 

the divergence between every option, separately. Some 

essential tasks for PFSs aggregation operators along with their 

significant properties was also discussed [32]. Another strategy 

for PFSs dynamic issues with the assistance of accumulation 

administrators and divergence measures has been created [47]. 

Aggregation operation using TOPSIS was also deliberated. 

Further, Yager [45] presented a portion of the fundamental set 

tasks for PFSs and set up the connection between Pythagorean 

membership grade and complex grade. Likewise, the 

arrangements of multicriteria dynamic with fulfillments 

through Pythagorean membership grade have been done. Many 

researchers analysed MADM approach using TOPSIS method 

[26]. Many Researchers [2-5, 8-9, 17, 24, 29, 40] and many 

more have applied TOPSIS method in various problems of 

decision making like supplier selection, selection of land, 

robotics, medical diagnosis, ranking of water quality, human 

resource selection personnel problem, and many other real-life 

situations flavoured with fuzzy sets and generalized fuzzy sets. 
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In the information measure theory, the idea of entropy measure 

is used to determine the level of uncertainty of a set. For IFS, 

Burillo and Bustince [10] pioneered the concept of entropy. For 

IFSs, Hung and Yang [26] provide an axiomatic definition of 

entropy. Vlachos and Sergiadis [39] developed a mathematical 

model to compare FS and IFS similarity. The entropy for the 

ambiguous set was created [50]. The generalised entropy of 

order 𝛼 and degree 𝛽 for IFS was reported [21]. Garg [22] 

described an entropy weight and aggregation operators-based 

approach for solving DM problems. The distinct and 

generalized form of the entropy metrics for IFSs was introduced 

[23]. The ambiguous entropy measure for a complicated soft set 

was proposed by [34]. Peng and Selvachandran [31].  Interval 

type-2 fuzzy logic system was demonstrated for power quality 

improvement [1].  Implementation Based on Hybrid Structure 

for power System Using an Interval Type-2 TSK Fuzzy Logic 

Controller was discussed [28]. 

In this article, we are exploring the resourcefulness of entropy 

measures of PFSs in the application to identify disease of the 

patients suffering from Post COVID implications. This paper is 

organized as follows: Section 2 introduces preliminaries of FSs, 

IFSs, PFSs and other recent entropies developed. Section 

3 comprises of the concept of proposed logarithmic entropy 

measures of PFSs. We introduce logarithmic entropy and weighted 

entropy measures of the PFSs and its numerical computations to 

validate our measures. Application is also provided in Section 4 

using TOPSIS approach. Section 5 compares the new entropy 

measures with the existing similarity measure by an 

example. Finally, Section 6 summarizes the document and delivers 

directions for future experiments. 

2. Preliminaries 

In this segment, we bring in some fundamental theories associated 

to FSs, IFSs and PFSs used in the outcome.  

 

Definition 2.1. [46]. A fuzzy set ℳ in ℧ is characterized by 

a membership function: 

ℳ = {〈u, δℳ(u)〉|u ∈ ℧}               (1) 

where δℳ(u): ℧ → [0,1] is a measure of belongingness of 

degree of participation of an element u ∈ ℧ in ℳ.  

 

Definition 2.2. [6]. An IFS ℳ in ℧ is given by 

ℳ = {〈u, δℳ(u), ζℳ(u) 〉|u ∈ ℧}    (2) 

where δℳ(u), ζℳ(u): ℳ → [0,1], and 0 ≤ δℳ(u) +
ζℳ(u) ≤ 1, ∀ u ∈ ℧. The number δℳ(u) and ζℳ(u) 

represents, respectively, the participation and non-

participation grade of the element u to the set P. For each IFS 

ℳ in ℧, if  

ηℳ(u) = 1 − δℳ(u) − ζℳ(u), ∀ u ∈ ℧.       (3)  

Then ηP(x) is the degree of indeterminacy of u to ℧.  

 

Definition 2.3. [42]. An IFS ℳ in ℧ is given by 

ℳ = {〈u, δℳ(u), ζℳ(u) 〉|u ∈ ℧}  

where δℳ(u), ζℳ(u): ℳ → [0,1], and with the condition  

0 ≤ δℳ
2 (u) + ζℳ

2 (u) ≤ 1, ∀ u ∈ ℧ (4) 

and the degree of indeterminacy for any PFS ℳ and u ∈ ℧ 

is given by  

ηℳ
2 (u) = √1 − δℳ

2 (u) − ζℳ
2 (u)             (5) 

 

Definition 2.4. [49]. Let ℳ be a PFS of E and λ > 0, then 

following are the operators: 

λℳ = {< u, (√1 − (1 − δℳ
2 (u))

λ
, (ζℳ(ui))

λ
  ) > |u ∈ ℧}  (6) 

ℳλ = {< u, ((δℳ(ui))
λ
, √1 − (1 − ζℳ

2 (ui))
λ
) > |u ∈ ℧}   (7) 

The score function is defined as  

S(ℳ) = δℳ
2 (ui) − ζℳ

2 (ui) (8) 

 

Definition 2.5. [30]. For PFSs ℳ = [δℳ(u), ζℳ(u)], 
entropy measures ℧1, ℧2: PFSs(℧) → [0,1] as 

ELIN1(ℳ) =
1

n(√2−1)
∑ [sin (

π(τ2+δℳ
2 (ui)−ζℳ

2 (ui))

4τ2
) +n

i=1

sin (
π(τ2−δℳ

2 (ui)+ζℳ
2 (ui))

4τ2
) − 1]                            (9) 

ELIN2(ℳ) =
1

n(√2−1)
∑ [sin (

π(τ2+δℳ
2 (ui)−ζℳ

2 (ui))

4τ2
) +n

i=1

sin (
π(τ2−δℳ

2 (ui)+ζℳ
2 (ui))

4τ2
) − 1]                                     (10) 

 

Definition 2.6. [25]. For PFSs ℳ = [δℳ(u), ζℳ(u)], 
entropy measure ℧3 ∶ PFSs(℧) → [0,1] as 

EHAN(ℳ) =
1

2n
∑ [2 −

δℳ(ui)

2τ
−

ζℳ(ui)

2τ
−n

i=1

|δℳ(ui)−δℳ(ui)|

2τ
]                                                               (11) 

 

Definition 2.7. [38]. For PFSs ℳ = [δℳ(u), ζℳ(u)], 
entropy measure ℧4 ∶ PFSs(℧) → [0,1] as ETS(ℳ) =
1

n
∑ [1 − |δℳ

2 (ui) −
1

3
| − |ζℳ

2 (ui) −
1

3
|]n

i=1                      (12) 

 

Definition 2.8. [7]. For PFSs ℳ = [δℳ(u), ζℳ(u)], 
entropy measure ℧5, ℧6 ∶ PFSs(℧) → R+ ∪ {0} as  

EATHIRA1(ℳ) =

1

√2−1
∑ ∑ [sin (

π(1+δℳ
2 (ui)−ζℳ

2 (ui))

4
) +n

i=1
m
j=1

sin (
π(1−δℳ

2 (ui)+ζℳ
2 (ui))

4
) − 1]                                        (13) 

EATHIRA1(ℳ) =
1

√2−1
∑ ∑ [cos (

π(1+δℳ
2 (ui)−ζℳ

2 (ui))

4
) +n

i=1
m
j=1

cos (
π(1−δℳ

2 (ui)+ζℳ
2 (ui))

4
) − 1]                                       (14) 

 

3. Entropy Measures for PFSs 

Firstly, we reminiscence the self-evident definition of similarity 

for Pythagorean fuzzy sets. 

 

Preposition 1. [31]. Let 𝐴 = {𝑥𝑖 , 𝛿A(𝑥𝑖), 𝜁A(𝑥𝑖)|𝑥𝑖 ∈ Χ } and 𝐵 =
{𝑥𝑖 , 𝛿B(𝑥𝑖), 𝜁B(𝑥𝑖)|𝑥𝑖 ∈ Χ } be two PFS(X), the entropy for 

𝐸: 𝑃𝐹𝑆𝑠 → [0,1] which is a crisp function should meet the 

requirements of the following properties: 

(P1) Boundedness: 0 ≤ 𝐸(𝐴), 𝐸(𝐵) ≤ 1  

(P2) Crispness: If 𝛿A(𝑥𝑖) = 0, 𝜁A(𝑥𝑖) = 1 or 𝛿A(𝑥𝑖) = 1,  

𝜁A(𝑥𝑖) = 0, then 𝐸(𝐴) = 0.    

(P3) Separability: 𝛿A(𝑥𝑖) = 𝜁A(𝑥𝑖), 𝑡ℎ𝑒𝑛 𝐸(𝐴) = 1. 

(P4) Duality: 𝐸(𝐴𝑐) =  𝐸(𝐴). 
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(P5) Inequality: 𝐸(𝐴) ≤ 𝐸(𝐵), if 𝛿𝐴
2(𝑥𝑖) ≤ 𝛿𝐵

2(𝑥𝑖), 𝜁𝐴
2(𝑥𝑖) ≤

𝜁𝐵
2(𝑥𝑖) or 𝛿𝐴

2(𝑥𝑖) ≥ 𝛿𝐵
2(𝑥𝑖), 𝜁𝐴

2(𝑥𝑖) ≥ 𝜁𝐵
2(𝑥𝑖) for all 𝑥𝑖 ∈ 𝑋.  

In several circumstances, the weight of the elements 𝑥𝑖 ∈ 𝑋 must 

be considered. For instance, in decision making, the attributes 

usually have distinct significance, and thus ought to be designated 

unique weights. In extension to the results obtained, we propose 

fuzzy entropy for PFSs as follows: 

Let 𝑃 ∈ PFS (Χ) such that 𝑋 = {𝑥1, 𝑥2 … , 𝑥𝑛} then   

𝐸𝑃𝐹𝑆𝐿(𝑃) = −𝑙𝑜𝑔2 [
1

2
+

1

𝑛
∑ {|𝛿𝑃

2 (𝑥𝑖)−𝜁𝑃
2(𝑥𝑖)| }𝑛

𝑖=1

2
]    (15) 

𝐸𝑊𝑃𝐹𝑆𝐿(𝑃) = −𝑙𝑜𝑔2 [
1

2
+

1

𝑛
∑ 𝜔𝑖{|𝛿𝑃

2 (𝑥𝑖)−𝜁𝑃
2(𝑥𝑖)| }𝑛

𝑖=1

2
]  (16) 

where, 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)𝑇 is the weight vector of 𝑥𝑖(𝑖 =
1,2, … , 𝑛), with 𝜔𝑘 ∈ [0,1], 𝑘 = 1,2, … , 𝑛,   ∑ 𝜔𝑘 = 1𝑛

𝑘=1 . If 𝜔 =

(
1

𝑛
,

1

𝑛
, …

1

𝑛
)

𝑇
, then the weighted entropy measure reduces to 

proposed entropy measure i.e., if we take 𝜔𝑘 = 1, 𝑘 = 1,2, … , 𝑛, 

then 𝐸𝑊𝑃𝐹𝑆𝐿(𝑃) = 𝐸𝑃𝐹𝑆𝐿(𝑃).  

 

Theorem 3.1. The Pythagorean fuzzy entropy measures 𝐸𝑃𝐹𝑆𝐿(𝑃) 

and 𝐸𝑊𝑃𝐹𝑆𝐿(𝑃) defined in equations (15) - (16) are valid measures 

of Pythagorean fuzzy entropy. 

Proof. All the necessary four conditions to be an entropy measure 

are satisfied by the new measures as follows: 

 

(P1) Boundedness: 0 ≤ 𝐸𝑃𝐹𝑆𝐿(𝑃), 𝐸𝑊𝑃𝐹𝑆𝐿(𝑃) ≤ 1 

Proof. For 𝐄𝐏𝐅𝐒𝐓(𝐏): By the definition of PFSs, we have 𝟎 ≤

𝜹𝐏(𝒙𝒊) ≤ 𝟏 and 𝟎 ≤ 𝛇𝐏(𝒙𝒊) ≤ 𝟏. This implies that 𝟎 ≤ 𝜹𝑷
𝟐 (𝒙𝒊) ≤

𝟏 and 𝟎 ≤ 𝛇𝑷
𝟐 (𝒙𝒊) ≤ 𝟏. We have,  ⇒ 𝟎 ≤ |𝛅𝐏

𝟐(𝐱𝐢) − 𝛇𝐏
𝟐(𝐱𝐢)| ≤ 𝟏.  

⇒ 0 ≤
1

𝑛
∑ {|𝛿𝑃

2(𝑥𝑖) − 𝜁𝑃
2(𝑥𝑖)|}𝑛

𝑖=1 ≤ 1     

⇒ 0 ≤  
1

𝑛
∑ {|𝛿𝑃

2 (𝑥𝑖)−𝜁𝑃
2(𝑥𝑖)|}𝑛

𝑖=1

2
≤

1

2
  

⇒
1

2
≤

1

2
+ 

1

𝑛
∑ {|𝛿𝑃

2(𝑥𝑖)−𝜁𝑃
2(𝑥𝑖)|}𝑛

𝑖=1

2
≤ 1      

⇒  0 ≤ −𝑙𝑜𝑔2 [
1

2
+

1

𝑛
∑ {|𝛿𝑃

2(𝑥𝑖)−𝜁𝑃
2(𝑥𝑖)| }𝑛

𝑖=1

2
]   

⇒ 0 ≤ EPFSL(P) ≤ 1.  

Measure 𝐸𝑊𝑃𝐹𝑆𝐿(𝑃) can be proved similarly. 

 

(P2) Crispness: EPFSL(P),   𝐸𝑊𝑃𝐹𝑆𝐿(𝑃) = 0, if P is a crisp set. 

Proof. For 𝐸𝑃𝐹𝑆𝑇(𝑃): If P is a crisp set i.e., if 𝛿P(𝑥𝑖) = 0, 𝜁P(𝑥𝑖) =

1 or 𝛿P(𝑥𝑖) = 1, 𝜁P(𝑥𝑖) = 0, then |δP
2(xi) − ζP

2(xi)| = 1. 

⇒
1

2
+ 

1

𝑛
∑ {|𝛿𝑃

2 (𝑥𝑖)−𝜁𝑃
2(𝑥𝑖)|}𝑛

𝑖=1

2
= 1   

⇒  −𝑙𝑜𝑔2 [
1

2
+

1

𝑛
∑ {|𝛿𝑃

2 (𝑥𝑖)−𝜁𝑃
2(𝑥𝑖)| }𝑛

𝑖=1

2
] = 0  

⇒ 𝐸𝑃𝐹𝑆𝐿(𝑃) = 0.  

Measure 𝐸𝑊𝑃𝐹𝑆𝐿(𝑃) can be proved similarly.  

 

(P3) Separability: 𝐸𝑃𝐹𝑆𝐿(𝑃), 𝐸𝑊𝑃𝐹𝑆𝐿(𝑃) = 1 ⇔ 𝛿P(𝑥𝑖) = 𝜁P(𝑥𝑖).  

Proof. For 𝐸𝑃𝐹𝑆(𝑃): For all 𝑥𝑖 ∈ 𝑋, if 𝛿P(𝑥𝑖) = 𝜁P(𝑥𝑖) or 𝛿𝑃
2(𝑥𝑖) =

𝜁𝑃
2(𝑥𝑖) , then 

|𝛿𝑃
2(𝑥𝑖) − 𝜁𝑃

2(𝑥𝑖)| = 0. Hence,  
1

2
+  

1

𝑛
∑ {|𝛿𝑃

2 (𝑥𝑖)−𝜁𝑃
2(𝑥𝑖)|}𝑛

𝑖=1

2
=

1

2
. 

⇒ −𝑙𝑜𝑔2 [
1

2
+

1

𝑛
∑ {|𝛿𝑃

2(𝑥𝑖)−𝜁𝑃
2(𝑥𝑖)| }𝑛

𝑖=1

2
] = 1  

Therefore, 𝐸𝑃𝐹𝑆𝐿(𝑃) = 1.  If 𝐸𝑃𝐹𝑆𝐿(𝑃) = 1, this implies, 

1

2
+ 

1

𝑛
∑ {|𝛿𝑃

2(𝑥𝑖)−𝜁𝑃
2(𝑥𝑖)|}𝑛

𝑖=1

2
=

1

2
  

⇒ |𝛿𝑃
2(𝑥𝑖) − 𝜁𝑃

2(𝑥𝑖)| = 0.  

Therefore 𝛿𝑃
2(𝑥𝑖) = 𝜁𝑃

2(𝑥𝑖). Hence 𝛿P(𝑥𝑖) = 𝜁P(𝑥𝑖). 

Measure 𝐸𝑊𝑃𝐹𝑆𝐿(𝑃) can be proved similarly.  

 

(P4) Complement: 𝐸𝑃𝐹𝑆𝑇
𝑐 (𝑃) = 𝐸𝑃𝐹𝑆𝑇(𝑃)  and 𝐸𝑊𝑃𝐹𝑆𝐿

𝑐 (𝑃) =
𝐸𝑃𝐹𝑆𝐿(𝑃) 

Proofs are self-explanatory and straight forward. 

 

(P5) Inequality: 𝐸(𝑃) ≤ 𝐸(𝑄), if P is crisper than Q, i.e., if 

𝛿𝑃
2(𝑥𝑖) ≤ 𝛿𝑄

2(𝑥𝑖), 𝜁𝑃
2(𝑥𝑖) ≤ 𝜁𝑄

2(𝑥𝑖) or 𝛿𝑃
2(𝑥𝑖) ≥ 𝛿𝑄

2(𝑥𝑖), 𝜁𝑃
2(𝑥𝑖) ≥

𝜁𝑄
2(𝑥𝑖) for all 𝑥𝑖 ∈ 𝑋.  

Proof. For 𝐸𝑃𝐹𝑆(𝑃): For 𝑥𝑖 ∈ Χ, we have 

0 ≤ 𝛿P(𝑥𝑖) ≤ 𝛿Q(𝑥𝑖) ≤ 1 and 1 ≥ 𝜁P(𝑥𝑖) ≥ 𝜁Q(𝑥𝑖) ≥ 0. This 

implies that 

0 ≤ 𝛿𝑃
2(𝑥𝑖) ≤ 𝛿𝑄

2(𝑥𝑖) ≤ 1 and 1 ≥ 𝜁𝑃
2(𝑥𝑖) ≥ 𝜁𝑄

2(𝑥𝑖) ≥ 0.  

This we have, |𝛿𝑃
2(𝑥𝑖) − 𝜁𝑃

2(𝑥𝑖)| ≥ |𝛿𝑄
2(𝑥𝑖) − 𝜁𝑄

2(𝑥𝑖)| 

From the above we can write, 
1

𝑛
∑ {|𝛿𝑃

2(𝑥𝑖)−𝜁𝑃
2(𝑥𝑖)|}𝑛

𝑖=1

2
≥

1

𝑛
∑ {|𝛿𝑄

2 (𝑥𝑖)−𝜁𝑄
2 (𝑥𝑖)|}𝑛

𝑖=1

2
  

⇒
1

2
+

1

𝑛
∑ {|𝛿𝑃

2 (𝑥𝑖)−𝜁𝑃
2(𝑥𝑖)|}𝑛

𝑖=1

2
≥

1

2
+

1

𝑛
∑ {|𝛿𝑄

2 (𝑥𝑖)−𝜁𝑄
2 (𝑥𝑖)|}𝑛

𝑖=1

2
  

⇒ −𝑙𝑜𝑔2 [
1

2
+

1

𝑛
∑ {|𝛿𝑃

2(𝑥𝑖)−𝜁𝑃
2(𝑥𝑖)| }𝑛

𝑖=1

2
] ≤ −𝑙𝑜𝑔2 [

1

2
+

1

𝑛
∑ {|𝛿𝑄

2 (𝑥𝑖)−𝜁𝑄
2 (𝑥𝑖)| }𝑛

𝑖=1

2
]  

⇒  𝐸𝑃𝐹𝑆𝐿(𝑃) ≤ 𝐸𝑃𝐹𝑆𝐿(𝑄).  

Similar proof can be made 𝐸𝑊𝑃𝐹𝑆𝐿(𝑃) ≤ 𝐸𝑊𝑃𝐹𝑆𝐿(𝑄).  

 

3.1 Numerical Verification of the Entropy Measures  

Now, we will verify whether proposed entropy measures satisfy 

above four properties: 

Example 1. Let 𝑃, 𝑄 ∈ 𝑃𝐹𝑆(𝑋) for 𝑋 = {𝑥1, 𝑥2, 𝑥3}. Suppose  

𝑃 = {⟨𝑥1, 0.2, 0.7⟩, ⟨𝑥2, 0.4, 0.9⟩, ⟨𝑥3, 0.3, 0.8⟩}  and 

𝑄 = {⟨𝑥1, 0.3, 0.6⟩, ⟨𝑥2, 0.7, 0.8⟩, ⟨𝑥3, 0.4, 0.6⟩}  

Calculating the entropy using proposed measures as follows: 

𝐸𝑃𝐹𝑆𝐿(𝑃) = −𝑙𝑜𝑔2 [
1

2
+

1

3
∑ {|0.22−0.72|+|0.42−0.92|+|0.32−0.82| }𝑛

𝑖=1

2
]   

= −𝑙𝑜𝑔2 [
1

2
+

1.65

6
] = −𝑙𝑜𝑔2(0.775) = 0.367731785           (17) 

𝐸𝑃𝐹𝑆𝐿(𝑄) = −𝑙𝑜𝑔2 [
1

2
+

1

3
∑ {|0.32−0.62|+|0.72−0.82|+|0.42−0.62| }𝑛

𝑖=1

2
]   

= −𝑙𝑜𝑔2 [
1

2
+

0.62

6
] = −𝑙𝑜𝑔2(0.6033) = 0.728972803    (18) 

From equation (17) and (18), it has been concluded that 𝐸(𝑃) ≤
𝐸(𝑄), if 𝛿𝑃

2(𝑥𝑖) ≤ 𝛿𝑄
2(𝑥𝑖), 𝜁𝑃

2(𝑥𝑖) ≤ 𝜁𝑄
2(𝑥𝑖) or 𝛿𝑃

2(𝑥𝑖) ≥ 𝛿𝑄
2(𝑥𝑖), 

𝜁𝑃
2(𝑥𝑖) ≥ 𝜁𝑄

2(𝑥𝑖) for all 𝑥𝑖 ∈ 𝑋. 

Moreover, if we cconsider weights assigned be 𝜔 = {0.5, 0.3, 0.2} 

and using proposed entropy measures stated in equation (13), 

numerical values are 0.765294317 and 0.897901812. Hence, in 

this case also, 𝐸(𝑃) ≤ 𝐸(𝑄). Extended Euclidean distance 

measure, proposed by Szmidt, and J. Kacprzyk [35], is used to find 

the weighted divergence as 

𝐷𝐸(𝑃, 𝑄) =

√
1

2
𝜔𝑖 [{δP

2(xi) − δQ
2 (xi)}

2
+ {𝜁P

2(xi) − 𝜁Q
2(xi)}

2
+ {𝜂P

2(xi) − 𝜂Q
2 (xi)}

2
]

                                       (19)  

 

4. TOPSIS Approach to Logarithmic Entropy Measures for 

PFSs   

This segment presents MADM issue under PFSs environment. A 

viable dynamic methodology is proposed to manage such MADM 

issues. Each decision matrix in MADM techniques has four main 

components as (a) criteria, (b) alternatives, (c) weight or relative 

importance of each attribute and (d) assessment value of 

alternatives with respect to the criteria. An algorithm of the 

proposed technique is too introduced which will be applied in 

selection procedure of a marketing expert in any manufacturing 

organization in this session.  

The procedure of the TOPSIS method can be depicted in the 

subsequent flowchart in figure 1 as follows: 
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Figure 1. Flowchart for TOPSIS Approach 

4.1 A Case Study 

In India, it is observed that most people suffering from corona virus 

disease will return completely within a few weeks. However, many 

people with mild illness still have signs after recovery. These 

indications are thought to be a side effect of treatment that lasts 

more than four weeks after the patient's diagnosis of the virus. The 

following are some of the most common long-term indications and 

symptoms: Post COVID cough (𝓢𝟏), joint aches and muscle pain 

(𝓢𝟐), fatigue and dyspnea (𝓢𝟑), weight loss and poor appetite 

(𝓢𝟒), loss of taste and smell (𝓢𝟓) and sleep disorder (𝓢𝟔). Six 

different diseases: cardiac arrest (𝑫𝟏), diabetic (𝑫𝟐), lung fibrosis 

(𝑫𝟑), pneumonia (𝑫𝟒), kidney failure (𝑫𝟓) and brain stroke (𝑫𝟔) 

are to be evaluated as Pythagorean fuzzy number by the doctors 

under the six symptoms criteria, whose weights are completely 

unknown, is presented in the table 1 as follows: 

 

Table 1. Patient’s Disease Pythagorean relation 

Relation     𝒮1     𝒮2     𝒮3     𝒮4     𝒮5      𝒮6 

    𝐷1 <0.8, 

0.4> 

<0.4, 

0.9> 

<0.2, 

0.3> 

<0.5, 

0.8> 

<0.3, 

0.6> 

<0.4, 

0.7> 

    𝐷2 <0.8, 
0.1> 

<0.4, 
0.8> 

<0.5, 
0.4> 

<0.6, 
0.4> 

<0.6, 
0.5> 

<0.7, 
0.5> 

    𝐷3 <0.5, 

0.8> 

<0.4, 

0.7> 

<0.3, 

0.5> 

<0.4, 

0.7> 

<0.8, 

0.1> 

<0.4, 

0.9> 

    𝐷4 <0.9, 
0.4> 

<0.1, 
0.8> 

<0.4, 
0.2> 

<0.5, 
0.7> 

<0.7, 
0.2> 

<0.7, 
0.4> 

    𝐷5 <1.0, 

0.0> 

<0.6, 

0.1> 

<0.5, 

0.4> 

<0.4, 

0.6> 

<0.2, 

0.6> 

<0.4, 

0.5> 

   𝐷6 <0.4, 
0.5> 

<0.7, 
0.2> 

<0.6, 
0.3> 

<0.2, 
0.5> 

<0.8, 
0.4> 

<0.2, 
0.6> 

 

Now, we compute the overall entropy of each criteria using 

equation (15) as 

 

𝑬𝑷𝑭𝑺𝑳(𝓢𝟏) = 0.3770696       𝑬𝑷𝑭𝑺𝑳(𝓢𝟐) = 𝟎. 𝟒𝟑𝟐𝟕𝟕𝟗              

𝑬𝑷𝑭𝑺𝑳(𝓢𝟑) = 0.8236772  𝑬𝑷𝑭𝑺𝑳(𝓢𝟒) =0.664669201             

𝑬𝑷𝑭𝑺𝑳(𝓢𝟓) =  𝟎. 𝟓𝟑𝟖𝟖𝟐  𝑬𝑷𝑭𝑺𝑳(𝓢𝟔) = 0.59219407 

 

Next, we calculate the weight of each criteria using equation 

𝒘𝒋 =
𝟏−𝑬𝑷𝑭𝑺𝑳(𝑫𝒋)

𝒏−∑ 𝑬𝑷𝑭𝑺𝑳(𝑫𝒋)𝒏
𝒋=𝟏

         (20) 

as  𝑤1 =0.242311    𝑤2 =0.22064 𝑤3 =0.068587               

𝑤4 = 0.130439         𝑤5 =0.179392       𝑤6 =0.158631 

 

Computing positive ideal solution (PIS) and negative ideal solution 

(NIS) for each alternative as 

𝜓+= {
(0.9, 0.0), (0.7, 0.1), (0.6,0.2), (0.6,0.4), (0.8,0.1),

(0.7,0.4)
} and 

𝝍−= {
(𝟎. 𝟒, 𝟎. 𝟖), (𝟎. 𝟏, 𝟎. 𝟗), (𝟎. 𝟐, 𝟎. 𝟓), (𝟎. 𝟐, 𝟎. 𝟖), (𝟎. 𝟐, 𝟎. 𝟔),

(𝟎. 𝟐, 𝟎. 𝟗)
} 

We compute distance measure values by using equation (19) as 

𝑫𝑾𝑷𝑭𝑺𝑳
+ = 𝑫(𝑫𝒋, 𝝍+) =

√
𝟏

𝟐
𝝎𝒊 [

{𝛅𝐏
𝟐(𝐱𝐢) − 𝛅𝐐

𝟐+(𝐱𝐢)}
𝟐

+ {𝜻𝐏
𝟐(𝐱𝐢) − 𝜻𝐐

𝟐+(𝐱𝐢)}
𝟐

+

{𝜼𝐏
𝟐(𝐱𝐢) − 𝜼𝐐

𝟐+(𝐱𝐢)}
𝟐

]    (21) 

𝑫𝑾𝑷𝑭𝑺𝑳
− = 𝑫(𝑫𝒋, 𝝍−) =

√
𝟏

𝟐
𝝎𝒊 [

{𝛅𝐏
𝟐(𝐱𝐢) − 𝛅𝐐

𝟐+(𝐱𝐢)}
𝟐

+ {𝜻𝐏
𝟐(𝐱𝐢) − 𝜻𝐐

𝟐+(𝐱𝐢)}
𝟐

+

{𝜼𝐏
𝟐(𝐱𝐢) − 𝜼𝐐

𝟐+(𝐱𝐢)}
𝟐

]    (22) 

 

The obtained results are summarized in table 2. 

Table 2. Separation measures for ideal solutions for 6 diseases 

    𝐷1    𝐷2    𝐷3    𝐷4    𝐷5    𝐷6 

𝐷(𝐷𝑗 , 𝜓+) 0.8480 0.4790 0.6653 0.5622 0.4781 0.4734 

𝐷(𝐷𝑗 , 𝜓−) 0.4456 0.6761 0.4584 0.6526 0.8360 0.9459 

 

Relative closeness coefficient with respect to each decision maker 

can be found as  

𝑹𝒋 =  
𝑫(𝑫𝒋,𝝍−)

𝑫(𝑫𝒋,𝝍+)+ 𝑫(𝑫𝒋,𝝍−) 
        (23)  

where 𝟎 ≤ 𝑹𝐣 ≤ 𝟏, 𝒋 = 𝟏, 𝟐, … , 𝒏 

Ranking for 6 diseases is depicted in table 3 as follows: 
 

Table 3. Ranking for 6 diseases 

Alternatives 𝑅𝑗 value Ranking 

Cardiac arrest (𝐷1) 0.3444863 6 

Diabetes (𝐷2) 0.5853234 3 

Lung fibrosis (𝐷3) 0.4079063 5 

Pneumonia (𝐷4) 0.5372033 4 

Kidney failure (𝐷5) 0.6361803 2 

Brain stroke (𝐷6) 0.6664158 1 

 
Based on the relative closeness of each disease, we rank these 

diseases. It has been found from the above table that the brain 

stroke (𝐷6) is the optimal disease and are classified as 𝐷6 ≻ 𝐷5 ≻

𝐷2 ≻ 𝐷4 ≻ 𝐷3 ≻ 𝐷1.  The ranking of the alternatives can be 

shown in figure 2 as follows:  

Start 

Collect the subjective evaluations of the decision  

maker on the importance of weights 

Calculate the fuzzy significance coefficients or weights 

based on the decision maker’s subjective evaluations   

Determine the aggregative fuzzy weight for each criterion 

positive and negative ideal solutions (PIS and NIS) 

Determine the fuzzy positive and negative ideal solution 

Calculate the fuzzy distance of each alternative 

Rank the alternatives according to their closeness coefficient 

so that higher order being the best ideal solution  

Finish 

Calculate the fuzzy closeness coefficient 
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Figure 2. Ranking of Alternatives 

5. Conclusion 

We introduce some novel entropy measures between PFSs based 

on the logarithmic function in this study. The desirable 

combinations and their characteristics are thoroughly investigated. 

To demonstrate the efficacy of the suggested entropy measures, we 

provide several paradoxical instances that demonstrate how 

existing measures fail in specific situations, whereas the new one 

categorizes the items. The proposed entropy measures and distance 

measure are then used to solve MADM problem. To demonstrate 

consistency, the numerical findings are compared to previous ones. 

The proposed method reveals that the produced solution is a good 

compromise over the existing ones and is conservative in nature. 

In the future, we will broaden the recommended measures to 

include more uncertain and fuzzy scenarios. 
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