

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 129–134 | 129

Object Detection for Autonomous Vehicles with Sensor-based

Technology Using YOLO

Nurin Miza Afiqah Andrie Dazlee1, Syamimi Abdul Khalil2,
Shuzlina Abdul-Rahman3*, Sofianita Mutalib4

Submitted: 24/08/2021 Accepted : 10/02/2022 DOI: 10.1039/b000000x

Abstract: The year 2020 has been a tough year with the global pandemic situation, and the utmost priority is to live in a clean, green, and

safe environment. One of the areas that the governments are emphasizing for the readiness of our ecosystem is autonomous and contactless

environments in adapting to the new norm. Thus, Autonomous Vehicle (AV) is a promising technology to bring forward. One of the critical

aspects of Autonomous Navigation is object detection. Most AV use multiple sensors to detect objects, such as cameras, radar and Light

Detection and Ranging sensor (LiDAR). Nowadays, the LiDAR sensor is widely implemented due to the ability to detect objects in the

form of pulsed lasers, benefiting in low-light object detection. However, even with advanced technology, poor programming can affect the

performance of object detection system. Thus, the study explores the state-of-the-art of You Only Look Once (YOLO) algorithms namely

Tiny-YOLO and Complex-YOLO for object detection on KITTI dataset. Their performances were compared based on accuracy, precision,

and recall metrics. The results showed that the Complex-YOLO has better performance as the mean average precision is higher than the

Tiny-YOLO model when tested with equal parameters.

Keywords: Autonomous Vehicle, KITTI, LiDAR, Object Detection, Sensor, YOLO.

This is an open access article under the CC BY-SA 4.0 license.

(https://creativecommons.org/licenses/by-sa/4.0/)

1. Introduction

To date, Autonomous Vehicles (AV) is a fast-growing technology

and has sought the attention of many global vehicle companies [1].

This technology enables the vehicle to be on autopilot and navigate

itself with little or zero human input. Nevertheless, there are many

challenges in implementing the technology, which is why there are

not many AVs roaming freely on the roads, especially in Malaysia.

On March 18, 2018, it was reported that a test vehicle from Uber

Technologies, Inc., operating with a self-driving system, killed a

pedestrian in Tempe, Arizona [2]. Uber claims that the car was

working ideally. The probable cause for the crash is poor

programming as they did not equip an alert system for possible

collision, instead of depending solely on the attention of the safety

driver [2]. Therefore, this proves that there are problems with AVs,

and it is vital to improvise every aspect of Autonomous

Navigation.

One of the critical aspects of Autonomous Navigation is Object

Detection. Effective detection is essential as they need to detect

road elements and pedestrians before they can understand and

respond to their surroundings. Some of the challenges of object

detection in AVs are detecting objects in low-light conditions and

slick surfaces. Other challenges would be poor resolution of data

obtained by specific devices. For example, AVs use radar for

object detection as it can handle low-light and adverse weather

conditions. However, the problem with radar is that in some cases,

they cannot distinguish pedestrians, especially children [3].

These days auto manufacturers have implemented Light Detection

and Ranging (LiDAR) sensor for AVs due to the advantage of

detecting objects in low light conditions as camera-based systems

offer dense light projection but lack distance information [4].

However, even with the best performing sensors, most systems

associated with AVs lack accuracy for complete self-drive because

of the limitation of algorithms. Highly claimed for its performance,

You Only Look Once (YOLO) algorithm, is seen as promising [5],

but there is a need to prove these claims. The limitation for AVs to

detect objects precisely will probably endanger the safety of both

vehicle occupants and surrounding pedestrians. Thus, this study

aims to interpret 3D image data from the sensor-based technology

to train LiDAR and image data for object detection and to compare

the performance of YOLO models by varying the epochs and the

amount of data.

This paper is organized as follows: Section 2 presents information

about sensor-based technology and object detection in past

researches and ends with information about YOLO models.

Section 3 describes the study's methodology, while Section 4

discusses the results and discussion of this research. Lastly, section

5 concludes the research.

2. Literature Review

This section provides the review of past research, discussing the

advantages and disadvantages of both camera and LiDAR sensors,

the role of object detection for the implementation of Autonomous

Vehicles and ends by comparing Complex and Tiny-YOLO

algorithms.

1 Faculty of Computer and Mathematical Sciences, UiTM Shah Alam,

 Selangor, Malaysia. ORCID ID : 0000-0002-2180-4804
2 Faculty of Computer and Mathematical Sciences, UiTM Shah Alam,

 Selangor, Malaysia. ORCID ID : 0000-0002-9145-4280
3 Faculty of Computer and Mathematical Sciences, UiTM Shah Alam,

 Selangor, Malaysia. ORCID ID : 0000-0002-5498-9606
4 Faculty of Computer and Mathematical Sciences, UiTM Shah Alam,

 Selangor, Malaysia. ORCID ID : 0000-0001-8384-3131

* Corresponding Author Email: shuzlina@fskm.uitm.edu.my

https://creativecommons.org/licenses/by-sa/4.0/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 129–134 | 130

2.1. Sensor-based Technology

Autonomous Vehicles or AV use a variety of sensors to detect their

surroundings. Cameras are widely used for AV object detection

due to their low price and low cost in processing the data [6]. One

advantage of using cameras is that it utilizes the same method of

human vision. They perceive the situation by interpreting colours,

reading street signs as humans do [7]. However, cameras would

also imply problems in object detection as they function poorly in

low-light conditions [3]. Another paper also stated the camera's

limitations in lighting condition change because it has the same

problems as human vision; the data would not be as in-depth as

LiDAR data [6].

Therefore, LiDAR has been a promising sensor-based technology

in auto manufacturing to overcome this issue. LiDAR uses lasers

to calculate the time taken for each pulse to bounce back from the

object to the sensor, producing a 3D map with a detailed shape.

Using the time obtained, the distance can be calculated, and

mapping is performed [8]. The compact measurement size of

LiDAR enables online data transfer and processing; thus, it can

record accurate and high framerate point cloud sequences from

large environments [9].

Although there are many advantages to implementing LiDAR

technology, there are also some downsides. It is said that LiDAR

lacks in coverage and range compared to cameras. LiDAR are also

known to have some issues in rainy conditions because it can cause

glare and reflections [3][10]. Another disadvantage is that LiDAR

is expensive compared to other sensors such as cameras and radars.

However, these days the cost for LiDAR has shown to be cheaper

than before, and the efficiency of the technology makes it worth

investing on.

2.2. Object Detection for Autonomous Vehicles

Object detection is essential for AVs because, to drive safely, AVs

need to detect their surroundings efficiently. At present, object

detection is paired mainly with deep learning models to perform

feature extractions, classifications, and localization (Jiao et al.,

2019). In 2019, research presented a deep learning-based method

of 3D person detection using camera images and LiDAR point

clouds. It is stated that LiDAR is proposed as camera-based

systems tend to impose challenges caused by weather changes and

illumination. The proposed architecture is inspired by Aggregate

View Object Detection (AVOD). The results stated that on

moderate difficulty, using KITTI 3D as the benchmark produced

an average precision of 46.06% [4].

Another interesting research that also implemented LiDAR to

solve the camera's low-light problem uses deep learning

algorithms. The algorithms used were You Only Look Once v2 and

Single Shot Detection (SSD). It is shown that YOLOv2 is better at

detecting objects in a single frame than SSD [1]. However, their

study lacks in making the model being able to process video data.

2.2.1. Datasets Used

An abundant of research have collected their own data when

studying LiDAR data which serves as an advantage since LiDAR

data is quite hard to find online. It is undeniable that there are some

LiDAR datasets are available online, although not all are

accessible for free.

One of the most popular used datasets for 3D object detection

specifically for autonomous cars is the KITTI dataset. The KITTI

dataset created with a 64-channel LiDAR, provides large scale data

in front camera view and LiDAR point cloud data. It contains three

classes which are Class Car, Pedestrian and Cyclist, however, it

has been observed that there are more cars in the data compared to

pedestrians and cyclists. This may lead to bias an inaccuracy in

training of data.

Other datasets are NuScenes and the H3D dataset by Honda, which

are larger compared to KITTI. NuScenes contains one million

bounding boxes while H3D contains 1.4 million, which is about 5

times than KITTI. Like KITTI, H3D was created with 64-channel

LiDAR while NuScenes are created with 32-channel LiDAR. The

more the number of channels, the denser and more complete 3D

maps produced. Thus, this means that it will likely be more

difficult to detect far-away objects as the beam divergence is larger

[11].

2.2.2. YOLO Algorithms

Object detection algorithms are categorised as either classification-

based (2-stage detectors) or regression-based (1-stage detectors).

Classification-based algorithms detects objects in two stages; the

first stage marks a set of regions if interest where the probability

of objects is high while the second stage finds objects in the

marked area by implementing Convolution Neural Networks

(CNN). In contrast, single stage detectors or regression-based

algorithms like You Only Look Once (YOLO) detects objects in

one go. They do not select region of interest, instead, they predict

classes by bounding boxes, which makes detection faster.

Therefore, YOLO has been a popular choice for fast and accurate

object detection.

First founded by Joseph Redmon et al. in 2015 [12], YOLO is a

regression-based algorithm that is proven effective for end-to-end

training and real-time detection, while maintaining high average

precision. Ever since it launched, it is cited more than 16 thousand

times and researchers have been implementing this algorithm in

multiple use cases, even in detecting objects for Autonomous

Vehicles and in intelligent video analytics.

YOLO divides images into grids, which contains equal

dimensional region of S x S. The grid cell where the centre of an

object is located, will be the cell assigned for detection. In each

grid cell, B bounding boxes, the coordinate (x,y), height (h) and

width (w) of the centre point and confidence scores (cs) are the

predictive elements. Also, each cell has conditional class

probabilities (C) used to predict to which class the object detected

belongs to. Confidence scores (cs) reflect the model’s confidence

whether the box contains an object. If there are no objects in a

particular cell, then the confidence score should be zero. Or else,

the confidence score would be equals to the intersection over union

(IOU) between the predicted box and the ground truth. The IOU is

the calculation of area overlapped divided by the area of union,

which provides a good estimate on how close the bounding box is

to the original prediction. Figure 1 shows the basic structure of

YOLOv3.

Fig. 1. Basic Structure of YOLOv3 algorithm [1]

Complex-YOLO is a state-of-the-art 3D object detection that

works best in delivering point clouds of any surrounding

environment in real-time. The algorithm is a 3D version of

YOLOv2 that calculates the distance for any enclosed objects

instantaneously. As point cloud processing is immensely

significant for autonomous driving, Complex-YOLO has come

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 129–134 | 131

with an algorithm that gives approximate values of position and

directions of different objects precisely in 3D [13].

Complex-YOLO has been proposed and tested to meet the needs

of autonomous vehicles adequately. Its feasibility in object

detection holds the potential solutions for problems that might

occur in the said field as it can detect multiple objects just by a

single inference [14]. On top of that, the multi-stage detector also

complements any lower accuracy detector as it consists of

convolution layers composed of a deep network. For point cloud-

based 3D object detection, its complexity predominantly shows the

irregularity of the point clouds from LiDAR sensors. As LiDAR is

one of the common 3D sensors in autonomous driving, it is crucial

to have a precise solution [15]. Another property of Complex-

YOLO is its 3D detection methods that support a 2D detection

framework in projecting point clouds from different types of

views.

With a backbone network like the Darknet-53 network, Complex-

YOLO works efficiently to present accurate detections but known

to acquire complexity which requires exceedingly high

computational power for hardware. For that reason, detection

speed is highly affected. Thus, another simplified algorithm was

introduced to overcome the issue. Tiny-YOLOv3 is technically a

simplified algorithm of YOLOv3 that enhances the speed of object

detection while maintaining its accuracy [16][17]. It is a real-time

detector designed for low performance of data processing in a

device. With a backbone network consisting of seven

convolutional layers and six pooling layers, it improves the

detection speed. In cases where it might lose detection accuracy, it

is undeniably a good substitute for a costly algorithm [18].

Experiments like forming a three-scale detection from a two-scale

and replacing traditional convolution with a deep separable

convolution are still ongoing to counter Tiny-YOLOv3 limitations

[19][20].

3. Methodology

This section describes the methodology of the study, which

comprises two main phases: Data Collection & Preparation and

Model Architecture & Training, which is done in Python language

using Google Colaboratory with GPU.

3.1. Data Collection & Preparation

For this study, the KITTI dataset is used. KITTI dataset is captured

around Karlsruhe, within rural areas and highways with up to 15

cars and 30 pedestrians are visible per image [21]. Using an eight-

core i7 computer equipped with a RAID system running Ubuntu

Linux and a real-time database, Geiger et al. recorded the data

using multiple sensors attached to a vehicle. The sensors used

include one Inertial Navigation System (GPS/IMU), one

Laserscanner, four Varifocal lenses, two Grayscale cameras and

two Colour cameras with 1.4 megapixels. Firstly, KITTI data was

transferred to Google Drive to be mounted in Google

Colaboratory. To prepare the data, the directory structure was set

as shown in Figure 2.

3.2. Model Architecture and Training

Point cloud data is converted to BEV image using python NumPy

functions. BEV image is passed through the YOLOv3 network.

Then, YOLO output is decoded, and results are drawn [22][13].

The model for both Complex-YOLO and Tiny-YOLO is made

from many types of layers with its functionalities. In the

configuration file of both models, there are layers described as

convolutional, shortcut, route, upsample and YOLO. The

architecture of YOLO models are shown in Table 1 and 2.

Fig. 2. Data Directory

Table 1. Complex-YOLO Architecture

Layer Filters Size

YOLO Layer
1

conv 32 3x3/1 x2

conv 64 3x3/2

shortcut from -3 activation=linear

conv 128 3x3/2

conv 64 1x1/1

conv 128 3x3/1

shortcut from -3 activation=linear

conv 64 1x1/1

conv 128 3x3/1

shortcut from -3 activation=linear

conv 256 3x3/2

conv 128 1x1/1

conv 256 3x3/1

shortcut from -3 activation=linear

conv 128 1x1/1 x7

conv 256 3x3/1

shortcut from -3 activation=linear

conv 512 3x3/2

conv 256 1x1/1

conv 512 3x3/1

shortcut from -3 activation=linear

conv 256 1x1/1 x7

conv 512 3x3/1

shortcut from -3 activation=linear

conv 1024 3x3/2

conv 512 1x1/1

conv 1024 3x3/1

shortcut from -3 activation=linear

conv 512 1x1/1 x4

conv 1024 3x3/1

shortcut from -3 activation=linear

conv 512 1x1/1 x3

conv 1024 3x3/1

conv 30 1x1/1

YOLO Layer
2

conv 256 1x1/1

upsample stride=2

route layers= -1,61

conv 256 1x1/1 x3

conv 512 3x3/1

conv 30 1x1/1

YOLO Layer
3

route layers= -4

conv 128 1x1/1

upsample stride=2

route layers= -1,36

conv 128 1x1/1 x3

conv 256 3x3/1

conv 30 1x1/1

The layers in Tiny-YOLO are quite similar to that of Complex-

YOLO, but there is a type of layer called Max pool. Maximum

pooling calculates the most significant value in each patch of each

feature map. Then, the output is pooled so that it highlights the

most present feature in the patch. The architecture of Tiny-YOLO

model is shown in Table 2.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 129–134 | 132

Table 2. Tiny-YOLO Architecture

Layer Filter Size

YOLO Layer

1
conv 16 3x3/1

maxpool 2x2

conv 32 3x3/1

maxpool 2x2

conv 64 3x3/1

maxpool 2x2

conv 128 3x3/1

maxpool 2x2

conv 256 3x3/1

maxpool 2x2

conv 512 3x3/1

maxpool 2x1

conv 1024 3x3/1

conv 256 1x1/1

conv 512 3x3/1

conv 30 1x1/1

YOLO Layer

2
route layers=-4

conv 128 1x1/1

upsample stride=2

route layers= -1

conv 256 3x3/1

conv 30 1x1/1

We trained and tested the data in three experiments to study the

Complex-YOLO and Tiny-YOLO models' performance. We have

set the parameters according to the limitation in Google

Colaboratory, limiting the number of data used and runtime using

GPU. The parameters for each experiment are shown in Table 3.

Table 3. Experimental Setup

Experiment
Constant

Variable
Independent Variable

A
Total Data:

1000

Training Data

size

Testing Data

size

800 200

500 500

700 300

600 400

B

Train/Test:

800/200

500/500

Epochs

25, 50

C

(Compared

Complex-

YOLO with

Tiny-YOLO)

Epochs: 50

Training Data

size

Testing Data

size

800 200

500 500

Based on the above parameters, this study evaluates the model's

performance according to four metrics: class accuracy, precision,

recall50 and recall75, as shown in Table 4.

Table 4: Performance Measures

Metric Formula

Class

Accuracy
100 * Mean of Class Mask [Object Mask]

Precision
Sum of (ioua50 * Detected Mask) / (Sum of

Confidence Score + 1e-16)

Recall50
Sum of (iou50 * Detected Mask) / (Sum of Object

Mask + 1e-16)

Recall75

Sum of (iou75 * Detected Mask) / (Sum of Object

Mask + 1e-16)

 a. IoU = Intersection over Union

For this study, data is pre-processed and trained under one

command. The command for model training is as Figure 3.

Fig. 3. Training Command

Epoch count for training is set with “--epochs [number of epochs]”,

while to set the amount of training and testing data, the ImageSets

file named train.txt and valid.txt, as shown in Figure 4, is altered

manually.

Fig. 4. ImageSets File

The results for the parameter measures in the training phase is

taken from the output produced. Figure 5 shows the output for the

training phase.

Fig. 5. Training Output

4. Results And Discussion

This section presents the results based on the setup as mentioned

in Table 3. Table 5 shows the results of experiment A to find the

optimum ratio to split training and testing data for Complex-

YOLO. It is seen that a train/test split of 500/500 and 800/200 gave

better performance compared to the others. The mAP for 500/500

split is the highest at 56.4%, while the second highest is 800/200

at 51.6%.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 129–134 | 133

Table 5. Experiment (A) Results of Complex-YOLO

Training Data 800 500 700 600

Testing Data 200 500 300 400

Accuracy

(%)

Layer 1 89 100 100 100

Layer 2 100 100 100 100

Layer 3 100 100 100 100

Recall50

Layer 1 0.667 0.600 0.704 0.833

Layer 2 0.778 0.800 0.889 1.000

Layer 3 0.889 0.900 0.893 1.000

Recall75

Layer 1 0.111 0.200 0.259 0.250

Layer 2 0.556 0.300 0.482 0.833

Layer 3 0.556 0.600 0.607 0.917

Average

Precision

Car 0.871 0.864 0.866 0.855

Pedes

-trian
0.441 0.435 0.369 0.315

Cyclist 0.236 0.393 0.245 0.269

mAPa 0.516 0.564 0.493 0.480

a. mAP = Mean Average Precision

Experiment B is done to determine the optimum number of epochs.

Due to the limitation in Google Colaboratory, the optimum number

is limited to 50 epochs as complications occur if tested with higher

epochs for a more extensive set of data for both models. The

results, when tested on Complex-YOLO, is shown in Table 6.

Table 6. Experiment (B) Results Of Complex-YOLO

Training Data 800 500

Testing Data 200 500

Epochs 25 50 25 50

Accuracy

(%)

Layer 1 89 100 100 100

Layer 2 100 100 100 100

Layer 3 100 100 100 100

Recall50

Layer 1 0.667 0.625 0.750 0.600

Layer 2 0.778 1.000 0.750 0.800

Layer 3 0.889 1.000 0.750 0.900

Recall75

Layer 1 0.111 0.000 0.000 0.200

Layer 2 0.556 0.625 0.750 0.300

Layer 3 0.556 0.750 0.500 0.600

Average

Precision

Car 0.871 0.788 0.738 0.833

Pedes

-trian
0.441 0.345 0.183 0.254

Cyclist 0.236 0.171 0.063 0.324

mAPa 0.516 0.435 0.328 0.471

a. mAP = Mean Average Precision

It is seen that at 50 epochs for 800/200 splitting, the mAP for the

Complex-YOLO model gives a slightly poor score at 43.5%

compared to when trained with 25 epochs. However, the class

accuracy and recall at 50 epochs is better than the performance at

25 epochs. For the splitting of 500/500, the mAP recorded is

47.1%, and class accuracy is 100% at 50 epochs. At 25 epochs, the

mAP is 32.8%, and class accuracy achieved 100%. Thus, it shows

that more epochs give better performance for both best split ratios

in this study.

Experiment C compares the performance of Complex-YOLO and

Tiny-YOLO under the same parameters (epochs was set to 50).

Table 7 shows the summary of the comparison between Complex-

YOLO and Tiny-YOLO's performance. It is reported that

Complex-YOLO has a slightly better performance in terms of

precision compared to Tiny-YOLO. However, due to lighter

architecture, Tiny-YOLO is seen to withstand more epoch counts

in limited time set by Google Colaboratory on a larger amount of

data compared to Complex-YOLO.

Table 7. Experiment (C) Results of Complex-YOLO vs Tiny-YOLO

Training Data 800 500

Testing Data 200 500

Model
Complex-

YOLO

Tiny-

YOLO

Complex-

YOLO

Tiny-

YOLO

Average

Precision

Car 0.871 0.817 0.864 0.754

Pedestr-

ian
0.441 0.132 0.435 0.105

Cyclist 0.236 0.239 0.393 0.181

mAPa 0.516 0.396 0.564 0.347

a. mAP = Mean Average Precision

Figure 6 shows the detection results of data trained with Tiny-

YOLO and Complex-YOLO, respectively. Objects detected are

cars (yellow), pedestrians (red) and cyclists (blue).

Fig. 6. Detection Results

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 129–134 | 134

Based on the results shown in Figure 6, it is observed that the

number of bounding boxes by the Tiny-YOLO model appears less

than that of Complex-YOLO. This means that Complex-YOLO

can detect objects more precise compared to Tiny-YOLO. Both

models detected cars precisely, with Complex YOLO being

slightly better. This also applies to the detection of cyclists and

pedestrians. However, the lack of pedestrians and cyclists in the

images contributes to the inadequate results of detection. The

capabilities of Tiny-YOLO could be explored more if high-

performing hardware was used. Thus, this enables more epochs to

be executed.

5. Conclusion

This study has demonstrated the development of YOLO models

using LiDAR point cloud data for object detection. Based on the

results, the optimum ratio for train/test split is 1:1 (500/500) or 4:1

(800/200), and the optimum number of epochs is limited to 50 due

to Google Colaboratory restrictions. The results showed that

Complex YOLO has better performance as the mean Average

Precision is higher by 0.12 for (800/200) splitting and 0.217 for

(500/500) splitting than Tiny-YOLO. Future works that can be

done is implementing this study with high-performance hardware.

By doing so, more data can be trained with larger epoch counts,

hence, the capabilities of Tiny-YOLO can be explored further.

Additionally, comparing the results obtained with a 2-stage

detector algorithm such as Faster RCNN would further distinguish

the contrast between the performances.

Acknowledgment

The authors gratefully acknowledge the use of service and facilities

of the Faculty of Computer and Mathematical Sciences, Universiti

Teknologi MARA Shah Alam. This study receives funding from

the Ministry of High Education (MOHE), MALAYSIA, under the

Fundamental Research Grant Scheme 600-IRMI/FRGS 5/3

(461/2019) of Universiti Teknologi MARA (UiTM).

References

[1] Yahya, M. A., Abdul-Rahman, S., & Mutalib, S. (2020). Object

detection for autonomous vehicle with Lidar using deep learning.

2020 IEEE 10th International Conference on System Engineering

and Technology, ICSET 2020 - Proceedings, 207–212.

https://doi.org/10.1109/ICSET51301.2020.9265358

[2] NTSB. (2018). Preliminary Report HWY18MH010. 4.

https://www.ntsb.gov/investigations/AccidentReports/Reports/HW

Y18MH010-prelim.pdf

[3] Combs, T. S., Sandt, L. S., Clamann, M. P., & McDonald, N. C.

(2019). Automated Vehicles and Pedestrian Safety: Exploring the

Promise and Limits of Pedestrian Detection. American Journal of

Preventive Medicine, 56(1), 1–7.

https://doi.org/10.1016/j.amepre.2018.06.024

[4] Roth, M., Jargot, D., & Gavrila, D. M. (2019). Deep End-to-end 3D

Person Detection from Camera and Lidar. 2019 IEEE Intelligent

Transportation Systems Conference, ITSC 2019, 521–527.

https://doi.org/10.1109/ITSC.2019.8917366

[5] Srivastava, S., Divekar, A. V., Anilkumar, C., Naik, I., Kulkarni, V.,

& Pattabiraman, V. (2021). Comparative analysis of deep learning

image detection algorithms. Journal of Big Data, 8(1).

https://doi.org/10.1186/s40537-021-00434-w

[6] Mugunthan, N., Sb, B., Harini, C., Naresh, V. H., & V, P. V. (2020).

Comparison Review on LiDAR vs Camera in Autonomous Vehicle.

IRJET, 07(08), 4242–4246.

[7] Review, A. (2019). Lidar vs. Cameras for Self Driving Cars –

What’s Best? 1–7. https://www.autopilotreview.com/lidar-vs-

cameras-self-driving-cars/

[8] Royo, S., & Ballesta-Garcia, M. (2019). An overview of lidar

imaging systems for autonomous vehicles. Applied Sciences

(Switzerland), 9(19). https://doi.org/10.3390/app9194093

[9] Borcs, A., Nagy, B., & Benedek, C. (2017). Instant Object Detection

in Lidar Point Clouds. IEEE Geoscience and Remote Sensing

Letters, 14(7), 992–996. https://doi.org/10.1109/lgrs.2017.2674799

[10] Bagloee, S. A., Tavana, M., Asadi, M., & Oliver, T. (2016).

Autonomous vehicles: challenges, opportunities, and future

implications for transportation policies. Journal of Modern

Transportation, 24(4), 284–303. https://doi.org/10.1007/s40534-

016-0117-3

[11] Engels, G., Aranjuelo, N., Arganda-Carreras, I., Nieto, M., &

Otaegui, O. (2020). 3D object detection from LiDAR data using

distance dependent feature extraction. VEHITS 2020 - Proceedings

of the 6th International Conference on Vehicle Technology and

Intelligent Transport Systems, March, 289–300.

https://doi.org/10.5220/0009330402890300

[12] Bandyopadhyay, H. (n.d.). YOLO: Real-Time Object Detection

Explained. Retrieved August 9, 2021, from

https://www.v7labs.com/blog/yolo-object-detection#two-stage-

detectors

[13] Simon, M., Milz, S., Amende, K., & Gross, H.-M. (2018). Complex-

YOLO: Real-time 3D Object Detection on Point Clouds. 1–14.

http://arxiv.org/abs/1803.06199

[14] Choi, J., Chun, D., Kim, H., & Lee, H. J. (2019). Gaussian YOLOv3:

An accurate and fast object detector using localization uncertainty

for autonomous driving. Proceedings of the IEEE International

Conference on Computer Vision, 2019-October, 502–511.

https://doi.org/10.1109/ICCV.2019.00059

[15] Yin, X., Sasaki, Y., Wang, W., & Shimizu, K. (2020). 3D Object

Detection Method Based on YOLO and K-Means for Image and

Point Clouds. ArXiv. http://arxiv.org/abs/2005.02132

[16] Adarsh, Pranav & Rathi, Pratibha & Kumar, Manoj. (2020). YOLO

v3-Tiny: Object Detection and Recognition using one stage

improved model. 687-694. 10.1109/ICACCS48705.2020.9074315.

[17] Benjdira, B., Khursheed, T., Koubaa, A., Ammar, A., & Ouni, K.

(2018). Car Detection using Unmanned Aerial Vehicles:

Comparison between Faster R-CNN and YOLOv3. arXiv.

https://arxiv.org/abs/1812.10968

[18] Yi, Z., Yongliang, S., & Jun, Z. (2019). An improved tiny-yolov3

pedestrian detection algorithm. Optik, 183, 17–23.

https://doi.org/10.1016/j.ijleo.2019.02.038

[19] Gong, X., Ma, L., & Ouyang, H. (2020). An improved method of

Tiny YOLOV3. IOP Conference Series: Earth and Environmental

Science, 440(5), 052025. https://doi.org/10.1088/1755-

1315/440/5/052025

[20] Fang, W., Wang, L., Ren, P., 2020. Tinier-YOLO: A Real-Time

Object Detection Method for Constrained Environments. IEEE

Access 8, 1935–1944.. doi:10.1109/access.2019.2961959

[21] Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets

robotics: The KITTI dataset. The International Journal of Robotics

Research. The International Journal of Robotics Research, October,

1–6.

[22] Deepak Ghimire. (2019, December 11). Complex-YOLOv3:

PyTorch implementation of Complex-YOLO paper with YoloV3.

https://github.com/ghimiredhikura/Complex-YOLOv3

