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Abstract: The year 2020 has been a tough year with the global pandemic situation, and the utmost priority is to live in a clean, green, and 

safe environment. One of the areas that the governments are emphasizing for the readiness of our ecosystem is autonomous and contactless 

environments in adapting to the new norm. Thus, Autonomous Vehicle (AV) is a promising technology to bring forward. One of the critical 

aspects of Autonomous Navigation is object detection. Most AV use multiple sensors to detect objects, such as cameras, radar and Light 

Detection and Ranging sensor (LiDAR). Nowadays, the LiDAR sensor is widely implemented due to the ability to detect objects in the 

form of pulsed lasers, benefiting in low-light object detection. However, even with advanced technology, poor programming can affect the 

performance of object detection system. Thus, the study explores the state-of-the-art of You Only Look Once (YOLO) algorithms namely 

Tiny-YOLO and Complex-YOLO for object detection on KITTI dataset.  Their performances were compared based on accuracy, precision, 

and recall metrics. The results showed that the Complex-YOLO has better performance as the mean average precision is higher than the 

Tiny-YOLO model when tested with equal parameters. 
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1. Introduction 

To date, Autonomous Vehicles (AV) is a fast-growing technology 

and has sought the attention of many global vehicle companies [1]. 

This technology enables the vehicle to be on autopilot and navigate 

itself with little or zero human input. Nevertheless, there are many 

challenges in implementing the technology, which is why there are 

not many AVs roaming freely on the roads, especially in Malaysia. 

On March 18, 2018, it was reported that a test vehicle from Uber 

Technologies, Inc., operating with a self-driving system, killed a 

pedestrian in Tempe, Arizona [2]. Uber claims that the car was 

working ideally. The probable cause for the crash is poor 

programming as they did not equip an alert system for possible 

collision, instead of depending solely on the attention of the safety 

driver [2]. Therefore, this proves that there are problems with AVs, 

and it is vital to improvise every aspect of Autonomous 

Navigation. 

One of the critical aspects of Autonomous Navigation is Object 

Detection. Effective detection is essential as they need to detect 

road elements and pedestrians before they can understand and 

respond to their surroundings. Some of the challenges of object 

detection in AVs are detecting objects in low-light conditions and 

slick surfaces. Other challenges would be poor resolution of data 

obtained by specific devices. For example, AVs use radar for 

object detection as it can handle low-light and adverse weather 

conditions. However, the problem with radar is that in some cases, 

they cannot distinguish pedestrians, especially children [3].  

These days auto manufacturers have implemented Light Detection 

and Ranging (LiDAR) sensor for AVs due to the advantage of 

detecting objects in low light conditions as camera-based systems 

offer dense light projection but lack distance information [4]. 

However, even with the best performing sensors, most systems 

associated with AVs lack accuracy for complete self-drive because 

of the limitation of algorithms. Highly claimed for its performance, 

You Only Look Once (YOLO) algorithm, is seen as promising [5], 

but there is a need to prove these claims. The limitation for AVs to 

detect objects precisely will probably endanger the safety of both 

vehicle occupants and surrounding pedestrians. Thus, this study 

aims to interpret 3D image data from the sensor-based technology 

to train LiDAR and image data for object detection and to compare 

the performance of YOLO models by varying the epochs and the 

amount of data. 

This paper is organized as follows: Section 2 presents information 

about sensor-based technology and object detection in past 

researches and ends with information about YOLO models. 

Section 3 describes the study's methodology, while Section 4 

discusses the results and discussion of this research. Lastly, section 

5 concludes the research. 

2. Literature Review 

This section provides the review of past research, discussing the 

advantages and disadvantages of both camera and LiDAR sensors, 

the role of object detection for the implementation of Autonomous 

Vehicles and ends by comparing Complex and Tiny-YOLO 

algorithms.  
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2.1. Sensor-based Technology 

Autonomous Vehicles or AV use a variety of sensors to detect their 

surroundings. Cameras are widely used for AV object detection 

due to their low price and low cost in processing the data [6]. One 

advantage of using cameras is that it utilizes the same method of 

human vision. They perceive the situation by interpreting colours, 

reading street signs as humans do [7]. However, cameras would 

also imply problems in object detection as they function poorly in 

low-light conditions [3]. Another paper also stated the camera's 

limitations in lighting condition change because it has the same 

problems as human vision; the data would not be as in-depth as 

LiDAR data [6].  

Therefore, LiDAR has been a promising sensor-based technology 

in auto manufacturing to overcome this issue. LiDAR uses lasers 

to calculate the time taken for each pulse to bounce back from the 

object to the sensor, producing a 3D map with a detailed shape. 

Using the time obtained, the distance can be calculated, and 

mapping is performed [8]. The compact measurement size of 

LiDAR enables online data transfer and processing; thus, it can 

record accurate and high framerate point cloud sequences from 

large environments [9]. 

Although there are many advantages to implementing LiDAR 

technology, there are also some downsides. It is said that LiDAR 

lacks in coverage and range compared to cameras. LiDAR are also 

known to have some issues in rainy conditions because it can cause 

glare and reflections [3][10]. Another disadvantage is that LiDAR 

is expensive compared to other sensors such as cameras and radars. 

However, these days the cost for LiDAR has shown to be cheaper 

than before, and the efficiency of the technology makes it worth 

investing on. 

2.2. Object Detection for Autonomous Vehicles 

Object detection is essential for AVs because, to drive safely, AVs 

need to detect their surroundings efficiently. At present, object 

detection is paired mainly with deep learning models to perform 

feature extractions, classifications, and localization (Jiao et al., 

2019). In 2019, research presented a deep learning-based method 

of 3D person detection using camera images and LiDAR point 

clouds. It is stated that LiDAR is proposed as camera-based 

systems tend to impose challenges caused by weather changes and 

illumination. The proposed architecture is inspired by Aggregate 

View Object Detection (AVOD). The results stated that on 

moderate difficulty, using KITTI 3D as the benchmark produced 

an average precision of 46.06% [4].  

Another interesting research that also implemented LiDAR to 

solve the camera's low-light problem uses deep learning 

algorithms. The algorithms used were You Only Look Once v2 and 

Single Shot Detection (SSD). It is shown that YOLOv2 is better at 

detecting objects in a single frame than SSD [1]. However, their 

study lacks in making the model being able to process video data. 

2.2.1. Datasets Used  

An abundant of research have collected their own data when 

studying LiDAR data which serves as an advantage since LiDAR 

data is quite hard to find online. It is undeniable that there are some 

LiDAR datasets are available online, although not all are 

accessible for free.  

One of the most popular used datasets for 3D object detection 

specifically for autonomous cars is the KITTI dataset. The KITTI 

dataset created with a 64-channel LiDAR, provides large scale data 

in front camera view and LiDAR point cloud data. It contains three 

classes which are Class Car, Pedestrian and Cyclist, however, it 

has been observed that there are more cars in the data compared to 

pedestrians and cyclists. This may lead to bias an inaccuracy in 

training of data.  

Other datasets are NuScenes and the H3D dataset by Honda, which 

are larger compared to KITTI. NuScenes contains one million 

bounding boxes while H3D contains 1.4 million, which is about 5 

times than KITTI. Like KITTI, H3D was created with 64-channel 

LiDAR while NuScenes are created with 32-channel LiDAR. The 

more the number of channels, the denser and more complete 3D 

maps produced. Thus, this means that it will likely be more 

difficult to detect far-away objects as the beam divergence is larger 

[11].  

2.2.2. YOLO Algorithms 

Object detection algorithms are categorised as either classification-

based (2-stage detectors) or regression-based (1-stage detectors). 

Classification-based algorithms detects objects in two stages; the 

first stage marks a set of regions if interest where the probability 

of objects is high while the second stage finds objects in the 

marked area by implementing Convolution Neural Networks 

(CNN). In contrast, single stage detectors or regression-based 

algorithms like You Only Look Once (YOLO) detects objects in 

one go. They do not select region of interest, instead, they predict 

classes by bounding boxes, which makes detection faster. 

Therefore, YOLO has been a popular choice for fast and accurate 

object detection. 

First founded by Joseph Redmon et al. in 2015 [12], YOLO is a 

regression-based algorithm that is proven effective for end-to-end 

training and real-time detection, while maintaining high average 

precision. Ever since it launched, it is cited more than 16 thousand 

times and researchers have been implementing this algorithm in 

multiple use cases, even in detecting objects for Autonomous 

Vehicles and in intelligent video analytics.  

YOLO divides images into grids, which contains equal 

dimensional region of S x S. The grid cell where the centre of an 

object is located, will be the cell assigned for detection. In each 

grid cell, B bounding boxes, the coordinate (x,y), height (h) and 

width (w) of the centre point and confidence scores (cs) are the 

predictive elements. Also, each cell has conditional class 

probabilities (C) used to predict to which class the object detected 

belongs to. Confidence scores (cs) reflect the model’s confidence 

whether the box contains an object. If there are no objects in a 

particular cell, then the confidence score should be zero. Or else, 

the confidence score would be equals to the intersection over union 

(IOU) between the predicted box and the ground truth. The IOU is 

the calculation of area overlapped divided by the area of union, 

which provides a good estimate on how close the bounding box is 

to the original prediction. Figure 1 shows the basic structure of 

YOLOv3. 

Fig. 1.  Basic Structure of YOLOv3 algorithm [1] 

Complex-YOLO is a state-of-the-art 3D object detection that 

works best in delivering point clouds of any surrounding 

environment in real-time. The algorithm is a 3D version of 

YOLOv2 that calculates the distance for any enclosed objects 

instantaneously. As point cloud processing is immensely 

significant for autonomous driving, Complex-YOLO has come 
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with an algorithm that gives approximate values of position and 

directions of different objects precisely in 3D [13].  

Complex-YOLO has been proposed and tested to meet the needs 

of autonomous vehicles adequately. Its feasibility in object 

detection holds the potential solutions for problems that might 

occur in the said field as it can detect multiple objects just by a 

single inference [14]. On top of that, the multi-stage detector also 

complements any lower accuracy detector as it consists of 

convolution layers composed of a deep network. For point cloud-

based 3D object detection, its complexity predominantly shows the 

irregularity of the point clouds from LiDAR sensors. As LiDAR is 

one of the common 3D sensors in autonomous driving, it is crucial 

to have a precise solution [15]. Another property of Complex-

YOLO is its 3D detection methods that support a 2D detection 

framework in projecting point clouds from different types of 

views.  

With a backbone network like the Darknet-53 network, Complex-

YOLO works efficiently to present accurate detections but known 

to acquire complexity which requires exceedingly high 

computational power for hardware. For that reason, detection 

speed is highly affected. Thus, another simplified algorithm was 

introduced to overcome the issue. Tiny-YOLOv3 is technically a 

simplified algorithm of YOLOv3 that enhances the speed of object 

detection while maintaining its accuracy [16][17]. It is a real-time 

detector designed for low performance of data processing in a 

device. With a backbone network consisting of seven 

convolutional layers and six pooling layers, it improves the 

detection speed. In cases where it might lose detection accuracy, it 

is undeniably a good substitute for a costly algorithm [18]. 

Experiments like forming a three-scale detection from a two-scale 

and replacing traditional convolution with a deep separable 

convolution are still ongoing to counter Tiny-YOLOv3 limitations 

[19][20].  

3. Methodology 

This section describes the methodology of the study, which 

comprises two main phases: Data Collection & Preparation and 

Model Architecture & Training, which is done in Python language 

using Google Colaboratory with GPU. 

3.1. Data Collection & Preparation 

For this study, the KITTI dataset is used. KITTI dataset is captured 

around Karlsruhe, within rural areas and highways with up to 15 

cars and 30 pedestrians are visible per image [21]. Using an eight-

core i7 computer equipped with a RAID system running Ubuntu 

Linux and a real-time database, Geiger et al. recorded the data 

using multiple sensors attached to a vehicle. The sensors used 

include one Inertial Navigation System (GPS/IMU), one 

Laserscanner, four Varifocal lenses, two Grayscale cameras and 

two Colour cameras with 1.4 megapixels. Firstly, KITTI data was 

transferred to Google Drive to be mounted in Google 

Colaboratory. To prepare the data, the directory structure was set 

as shown in Figure 2.  

3.2. Model Architecture and Training 

Point cloud data is converted to BEV image using python NumPy 

functions. BEV image is passed through the YOLOv3 network. 

Then, YOLO output is decoded, and results are drawn [22][13]. 

The model for both Complex-YOLO and Tiny-YOLO is made 

from many types of layers with its functionalities. In the 

configuration file of both models, there are layers described as 

convolutional, shortcut, route, upsample and YOLO. The 

architecture of YOLO models are shown in Table 1 and 2.  

Fig. 2.  Data Directory 

Table 1. Complex-YOLO Architecture 

Layer Filters Size  

YOLO Layer 
1 

conv 32 3x3/1 x2 

conv 64 3x3/2 

shortcut from -3 activation=linear  

conv 128 3x3/2  

conv 64 1x1/1  

conv 128 3x3/1  

shortcut from -3 activation=linear  

conv 64 1x1/1  

conv 128 3x3/1  

shortcut from -3 activation=linear  

conv 256 3x3/2  

conv 128 1x1/1  

conv 256 3x3/1  

shortcut from -3 activation=linear  

conv 128 1x1/1 x7 

conv 256 3x3/1 

shortcut from -3 activation=linear  

conv 512 3x3/2  

conv 256 1x1/1  

conv 512 3x3/1  

shortcut from -3 activation=linear  

conv 256 1x1/1 x7 

conv 512 3x3/1 

shortcut from -3 activation=linear  

conv 1024 3x3/2  

conv 512 1x1/1  

conv 1024 3x3/1  

shortcut from -3 activation=linear  

conv 512 1x1/1 x4 

conv 1024 3x3/1 

shortcut from -3 activation=linear  

conv 512 1x1/1 x3 

conv 1024 3x3/1 

conv 30 1x1/1  

YOLO Layer 
2 

conv 256 1x1/1  

upsample stride=2 

route layers= -1,61 

conv 256 1x1/1 x3 

conv 512 3x3/1 

conv 30 1x1/1  

YOLO Layer 
3 

route layers= -4 

conv 128 1x1/1  

upsample stride=2 

route layers= -1,36 

conv 128 1x1/1 x3 

conv 256 3x3/1 

conv 30 1x1/1  

 

The layers in Tiny-YOLO are quite similar to that of Complex-

YOLO, but there is a type of layer called Max pool. Maximum 

pooling calculates the most significant value in each patch of each 

feature map. Then, the output is pooled so that it highlights the 

most present feature in the patch. The architecture of Tiny-YOLO 

model is shown in Table 2. 
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Table 2. Tiny-YOLO Architecture 

Layer Filter Size 

YOLO Layer 

1 
conv 16 3x3/1 

maxpool 2x2  

conv 32 3x3/1 

maxpool 2x2  

conv 64 3x3/1 

maxpool 2x2  

conv 128 3x3/1 

maxpool 2x2  

conv 256 3x3/1 

maxpool 2x2  

conv 512 3x3/1 

maxpool 2x1  

conv 1024 3x3/1 

conv 256 1x1/1 

conv 512 3x3/1 

conv 30 1x1/1 

YOLO Layer 

2 
route layers=-4  

conv 128 1x1/1 

upsample stride=2  

route layers= -1  

conv 256 3x3/1 

conv 30 1x1/1 

 

We trained and tested the data in three experiments to study the 

Complex-YOLO and Tiny-YOLO models' performance. We have 

set the parameters according to the limitation in Google 

Colaboratory, limiting the number of data used and runtime using 

GPU. The parameters for each experiment are shown in Table 3. 

Table 3. Experimental Setup 

Experiment 
Constant 

Variable 
Independent Variable 

A 
Total Data: 

1000 

Training Data 

size 

Testing Data 

size 

800 200 

500 500 

700 300 

600 400 

B 

Train/Test: 

800/200 

500/500 

Epochs 

25, 50 

C 

(Compared 

Complex-

YOLO with 

Tiny-YOLO) 

Epochs: 50 

Training Data 

size 

Testing Data 

size 

800 200 

500 500 

 

Based on the above parameters, this study evaluates the model's 

performance according to four metrics: class accuracy, precision, 

recall50 and recall75, as shown in Table 4. 

Table 4: Performance Measures 

Metric Formula 

Class 

Accuracy 
100 * Mean of Class Mask [Object Mask] 

Precision 
Sum of (ioua50 * Detected Mask) / (Sum of 

Confidence Score + 1e-16) 

Recall50 
Sum of (iou50 * Detected Mask) / (Sum of Object 

Mask + 1e-16) 

Recall75 

Sum of (iou75 * Detected Mask) / (Sum of Object 

Mask + 1e-16) 

 

                       a. IoU = Intersection over Union 

 

For this study, data is pre-processed and trained under one 

command. The command for model training is as Figure 3.  

Fig. 3.  Training Command 

 

Epoch count for training is set with “--epochs [number of epochs]”, 

while to set the amount of training and testing data, the ImageSets 

file named train.txt and valid.txt, as shown in Figure 4, is altered 

manually. 

Fig. 4.  ImageSets File 

The results for the parameter measures in the training phase is 

taken from the output produced. Figure 5 shows the output for the 

training phase. 

Fig. 5.  Training Output  

4. Results And Discussion 

This section presents the results based on the setup as mentioned 

in Table 3. Table 5 shows the results of experiment A to find the 

optimum ratio to split training and testing data for Complex-

YOLO. It is seen that a train/test split of 500/500 and 800/200 gave 

better performance compared to the others. The mAP for 500/500 

split is the highest at 56.4%, while the second highest is 800/200 

at 51.6%. 
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Table 5. Experiment (A) Results of Complex-YOLO 

Training Data 800 500 700 600 

Testing Data 200 500 300 400 

Accuracy 

(%) 

Layer 1 89 100 100 100 

Layer 2 100 100 100 100 

Layer 3 100 100 100 100 

Recall50 

Layer 1 0.667 0.600 0.704 0.833 

Layer 2 0.778 0.800 0.889 1.000 

Layer 3 0.889 0.900 0.893 1.000 

Recall75 

Layer 1 0.111 0.200 0.259 0.250 

Layer 2 0.556 0.300 0.482 0.833 

Layer 3 0.556 0.600 0.607 0.917 

Average 

Precision 

Car 0.871 0.864 0.866 0.855 

Pedes 

-trian 
0.441 0.435 0.369 0.315 

Cyclist 0.236 0.393 0.245 0.269 

mAPa 0.516 0.564 0.493 0.480 

a. mAP = Mean Average Precision 

 

Experiment B is done to determine the optimum number of epochs. 

Due to the limitation in Google Colaboratory, the optimum number 

is limited to 50 epochs as complications occur if tested with higher 

epochs for a more extensive set of data for both models. The 

results, when tested on Complex-YOLO, is shown in Table 6. 

Table 6. Experiment (B) Results Of Complex-YOLO 

Training Data 800 500 

Testing Data 200 500 

Epochs 25 50 25 50 

Accuracy 

(%) 

Layer 1 89 100 100 100 

Layer 2 100 100 100 100 

Layer 3 100 100 100 100 

Recall50 

Layer 1 0.667 0.625 0.750 0.600 

Layer 2 0.778 1.000 0.750 0.800 

Layer 3 0.889 1.000 0.750 0.900 

Recall75 

Layer 1 0.111 0.000 0.000 0.200 

Layer 2 0.556 0.625 0.750 0.300 

Layer 3 0.556 0.750 0.500 0.600 

Average 

Precision 

Car 0.871 0.788 0.738 0.833 

Pedes 

-trian 
0.441 0.345 0.183 0.254 

Cyclist 0.236 0.171 0.063 0.324 

mAPa 0.516 0.435 0.328 0.471 

a. mAP = Mean Average Precision 

 

It is seen that at 50 epochs for 800/200 splitting, the mAP for the 

Complex-YOLO model gives a slightly poor score at 43.5% 

compared to when trained with 25 epochs. However, the class 

accuracy and recall at 50 epochs is better than the performance at 

25 epochs. For the splitting of 500/500, the mAP recorded is 

47.1%, and class accuracy is 100% at 50 epochs. At 25 epochs, the 

mAP is 32.8%, and class accuracy achieved 100%. Thus, it shows 

that more epochs give better performance for both best split ratios 

in this study. 

Experiment C compares the performance of Complex-YOLO and 

Tiny-YOLO under the same parameters (epochs was set to 50). 

Table 7 shows the summary of the comparison between Complex-

YOLO and Tiny-YOLO's performance. It is reported that 

Complex-YOLO has a slightly better performance in terms of 

precision compared to Tiny-YOLO. However, due to lighter 

architecture, Tiny-YOLO is seen to withstand more epoch counts 

in limited time set by Google Colaboratory on a larger amount of 

data compared to Complex-YOLO. 

Table 7. Experiment (C) Results of Complex-YOLO vs Tiny-YOLO 

Training Data 800 500 

Testing Data 200 500 

Model 
Complex-

YOLO 

Tiny-

YOLO 

Complex-

YOLO 

Tiny-

YOLO 

Average 

Precision 

Car 0.871 0.817 0.864 0.754 

Pedestr-

ian 
0.441 0.132 0.435 0.105 

Cyclist 0.236 0.239 0.393 0.181 

mAPa 0.516 0.396 0.564 0.347 

a. mAP = Mean Average Precision 

 

Figure 6 shows the detection results of data trained with Tiny-

YOLO and Complex-YOLO, respectively. Objects detected are 

cars (yellow), pedestrians (red) and cyclists (blue).  

Fig. 6.  Detection Results 
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Based on the results shown in Figure 6, it is observed that the 

number of bounding boxes by the Tiny-YOLO model appears less 

than that of Complex-YOLO. This means that Complex-YOLO 

can detect objects more precise compared to Tiny-YOLO. Both 

models detected cars precisely, with Complex YOLO being 

slightly better. This also applies to the detection of cyclists and 

pedestrians. However, the lack of pedestrians and cyclists in the 

images contributes to the inadequate results of detection. The 

capabilities of Tiny-YOLO could be explored more if high-

performing hardware was used. Thus, this enables more epochs to 

be executed. 

5. Conclusion 

This study has demonstrated the development of YOLO models 

using LiDAR point cloud data for object detection. Based on the 

results, the optimum ratio for train/test split is 1:1 (500/500) or 4:1 

(800/200), and the optimum number of epochs is limited to 50 due 

to Google Colaboratory restrictions. The results showed that 

Complex YOLO has better performance as the mean Average 

Precision is higher by 0.12 for (800/200) splitting and 0.217 for 

(500/500) splitting than Tiny-YOLO. Future works that can be 

done is implementing this study with high-performance hardware. 

By doing so, more data can be trained with larger epoch counts, 

hence, the capabilities of Tiny-YOLO can be explored further. 

Additionally, comparing the results obtained with a 2-stage 

detector algorithm such as Faster RCNN would further distinguish 

the contrast between the performances.  
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