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Abstract: As per World Health Organization (WHO), avoiding touching the face when people are in public or crowded places is an effective 

way to prevent respiratory viral infections. This recommendation has become more crucial with the current health crisis and the worldwide 

spread of COVID-19 pandemic. However, most face touches are done unconsciously, that is why it is difficult for people to monitor their 

hand moves and try to avoid touching the face all the time. Hand-worn wearable devices like smartwatches are equipped with multiple 

sensors that can be utilized to track hand moves automatically. This work proposes a smartwatch application that uses small, efficient, and 

end-to-end Convolutional Neural Networks (CNN) models to classify hand motion and identify Face-Touch moves. To train the models, 

a large dataset is collected for both left and right hands with over 28k training samples that represents multiple hand motion types, body 

positions, and hand orientations. The app provides real-time feedback and alerts the user with vibration and sound whenever attempting to 

touch the face. Achieved results show state of the art face-touch accuracy with average recall, precision, and F1-Score of 96.75%, 95.1%, 

95.85% respectively, with low False Positives Rate (FPR) as 0.04%. By using efficient configurations and small models, the app achieves 

high efficiency and can run for long hours without significant impact on battery which makes it applicable on most off-the-shelf 

smartwatches. 
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1. Introduction 

As per World Health Organization (WHO), the SARS-CoV-2 virus 

which causes the COVID-19 infection, can be transmitted between 

people in two major ways. The first one is through respiratory 

droplets when a person stays in close contact with an infected 

person. Or, when people touch a surface contaminated with the 

virus, then touch their faces specially their eyes, noses, or mouths. 

To help in lowering infection rates, many recommendations were 

issued by national health organizations for the people to avoid face 

touches as much as possible. Many studies show that people tend 

to touch their faces more than 20 times per hour on average [1], 

many of these touches are done unconsciously. This makes it 

difficult for people to monitor their hand moves all the time by 

themselves in order to avoid undesired face touches, which opens 

the need for automatic detection and alert solution. In recent years, 

smart wearable devices like smartwatches have become more 

popular and widely used by people to monitor their health and 

fitness. Most of these devices are equipped with Inertial 

Measurement Unit (IMU) motion sensors like Accelerometer and 

Gyroscope, in addition to other non-inertial sensors like 

Magnetometer, Barometer, etc. These sensors can be used to 

classify hand moves and activities which have many applications 

like Human Computer Interaction (HCI) [2, 3, 4], sign-language 

recognition [5, 6, 7], sport actions monitoring [8, 9, 10, 11], or for 

monitoring daily-life actions [12, 13].  

Smartwatches and wearable sensors were used previously in 

literature to classify hand gestures and actions. Authors in [14] 

tried to identify 7 different gestures done by the hand and 95.5% 

accuracy was achieved using 10-Fold cross-validation. Authors in 

[15] used wearable motion sensors and transferred their data to a 

connected server for processing, then used Support Vector 

Machines (SVM) and Artificial Neural Networks (ANN) for 

classifying 6 different hand gestures. Authors in [16] used wrist-

worn sensors plus a Respiratory Inductance Plethysmography 

(RIP) sensor to classify sensors data for detecting smoking 

episodes and puffs. For classification, they used Long-Short Term 

Memory (LSTM) layer on top of Convolutional Neural Networks 

(CNN) layers. The system in [17] takes sensors readings from a 

combination of smartwatch and smartphone and used Variational 

Auto Encoder (VAE) with a neural decision forest to detect 

smoking events. Authors in [18] used a combination of smartwatch 

and a magnetic toothbrush to monitor toothbrushing gestures and 

successfully reached 85.6% average precision. 

Face-Touch detection is a new domain and has received focus 

recently due to COVID-19 pandemic. Detecting face touch hand 

moves is more challenging because such moves are short with less 

distinctive features. In addition, they require differentiation 

between several normal daily-life hand moves like touching body 

parts, picking items, moving objects…etc. Using extra hardware 

besides wearable motion sensors can help to overcome some of the 

challenges [19, 20, 21]. Specifically, the authors in [19] used 

passive high-functional Radio Frequency Identification (RFID) 

tags attached to goggles or earrings, with magnetic ring worn on 
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the hand, then they used K-Nearest Neighbor (KNN) classifier to 

classify magnetic proximity readings. Authors in [20] used depth 

sensors on Kinect-like device or special depth cameras to monitor 

workers behavior and detect when they are moving their hands 

towards any of the face parts. Authors in [21] used a wrist-worn 

smartwatch along with a magnetic necklace worn on the neck. By 

reading the magnetic values, they were able to estimate the 

proximity between the hand and the face to detect face touch 

attempts. Using only a smartwatch without extra hardware is a 

more convenient and cheaper solution. In the study [22], only 

smartwatch sensors were used to extract features and feed them to 

a Random Forest (RF) classifier. Authors in [23] took data readings 

from a smartwatch and compared traditional classifiers like SVM 

and RF with CNN networks and found CNN outperformed other 

classifiers. 

This work provides a smartwatch application that takes 

Accelerometer and Gyroscope data and feeds them to small, 

efficient, end-to-end CNN models to classify hand motion and 

identify Face-Touch moves. It provides real-time feedback and 

alerts the user with vibration and sound when attempting to touch 

the face. The app runs completely on the watch without requiring 

server calls, or the paired phone to be nearby, and it does not 

require any extra hardware or calibration. The goal of the app is 

not just alerting the user when trying to touch the face, but to train 

user unconscious mind using haptic feedback similar to Habit 

Reversal Therapy (HRT) [24].  This will assist to develop a habit 

of avoiding unnecessary face touches even when the app is not 

running, which in turn will lead to fewer infection rates. 

 

The contributions of this work are: 

1. It provides complete and applied solution that runs 

completely on a smartwatch and uses only IMU motion 

sensors without requiring extra sensors, devices, or hardware 

components. It reports state of the art accuracy results on a 

Test Dataset that mimics real world usage, with recall and 

precision of 96.75%, 95.1% respectively, and False Positives 

Rate (FPR) of 0.04%. 

2. Instead of approaching the problem as binary classification 

(Touch/No-Touch), it proposes an alternate approach by 

dividing hand motion into 5 classes instead of two which was 

proved to have significant impact on improving precision 

and minimizing false positives.  

3. The use of controlled data collection sessions and automatic 

labeling algorithm based on peak-valley analysis which 

allowed to collect large training dataset with 14k samples for 

each hand, which to the best of our knowledge is the largest 

dataset for face-touch detection. 

4. This work is designed”” from the start to address and solve 

battery consumption limitations on a small device like 

smartwatch especially when running the app continuously 

for long hours. It used the lowest configurations compared 

with literature from small window size of 0.6s or 30 frames, 

to extremely compact CNN model with only 11.4k 

parameters. Testing results on real-world usage show that the 

app consumes less than 2% of the battery per hour even when 

running on an old watch. 

2. Material and Methods 

Two different datasets were collected for left and right hands with 

the exact methodology. Data are collected using 3 different 

volunteers with variable age and body characteristics while 

wearing different watch models with different capabilities. The 

methodology used for training dataset gathering and processing 

has a huge impact on achieving both high accuracy and high 

efficiency. 

2.1. Sensors and Configurations 

To reduce battery consumption, only Accelerometer and 

Gyroscope inertial sensors were used. The use of Magnetometer 

sensor was dropped because it is not supported on all smartwatch 

models, it has higher power consumption [25], and can be affected 

by watch metal frame or metal bands, thus, requiring manual 

calibration to be done by the user. All sensor readings are relative 

to a local moving reference frame pinned to the device screen as 

shown in Fig.1. Sliding-Window method is used with window-size 

set to a small number of 30 frames or 0.6 seconds in order to reduce 

the calculations required in each model call and save on power 

consumption. During runtime inference, 50% overlapping is 

applied which results in 3.33 model-calls per second. 

 

Fig. 1.  Local reference frame pinned to watch screen with X-axis goes 

from left to right, Y-axis top down, and Z-axis is virtual line penetrates 

the screen bottom up. 

Instead of reading raw sensors data, Sensor-Fusion between 

Accelerometer and Gyroscope was used at low sampling frequency 

of 50Hz. Sensor-Fusion achieves two main goals: the first one is 

correcting Gyroscope data by removing accumulated bias. The 

second is separating linear device acceleration from acceleration 

due to earth gravity. Input data contain 9 features represent real 

device linear acceleration, corrected rotation rate, and current 

gravity vector along 3 axes X, Y, Z. Rotation rate is measured in 

radians/second whereas both device acceleration and gravity are 

measured in g (g = 9.81/s2). Gravity can capture device tilt because 

data are relative to device’s reference frame, and current gravity 

vector is always vertical and aligned with earth gravity vector, 

which means gravity vector angles will change with the device or 

hand tilt (shown in Fig.2). 

Fig. 2.  Shows Gravity vector (G) relative to current device’s reference 

frame represented in 3 axes (X, Y, Z). 

Whereas most hand moves start with similar motion patterns, the 

face-touch move specifically contains some unique hand-tilt 

patterns depending on which hand-part is touching the face and 

which face-part is being touched. These tilting patterns provide 

distinctive features that help the classifier recognize the face-touch 

move. That is why adding gravity features significantly improved 

face-touch detection rate or recall as shown in Fig.10. 
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2.2. Improving Precision by Dividing Hand Motion into 

Multiple Classes 

Hand motion in 3D space is chaotic and some hand moves share 

many similar acceleration and rotation patterns with the face-touch 

move. In such binary classification problem (touch/no touch), we 

were still able to achieve high recall, but precision was relatively 

low due to many false positives. By closely examining false 

positives, it was found that they were mostly caused by specific 

types of hand moves that are elbow-based. This happens when the 

forearm moves around the elbow making a sharp angle with the 

upper arm as in Fig.3 (a). This is in contrast to moving the whole 

arm together or when the angle between the forearm and upper arm 

is large as shown in Fig.3 (b). 

 

Fig. 3.  a) When the forearm moves around the elbow it forms a sharp 

angle with the upper arm causing spike in rotation values. b) the angle 

between forearm and upper arm is large. 

To minimize false positives, besides “Face-Touch” class, 

additional two elbow-based motion classes were added. “Up” class 

represents when the hand moves up with close level to the head, 

and “Abdominal” class which represents all hand moves towards 

the abdominal area like stomach and chest. Also, another two 

classes were added, “Stationary” class for when the hand is 

stationary or slightly moving, and a final “Normal” class for all 

other hand moves which brings the total of hand motion classes to 

five. 

Moreover, to achieve fine-grained division and make the 

classifiers more robust, for each of those classes, data are collected 

in 5 scenarios: standing, walking, and 3 sitting positions: sitting 

while hand in a neutral or lower position, or in a medium position 

like resting on the legs or couch, or in a high position like resting 

on a table as shown in Fig. 4 (a). The three sitting positions serve 

another purpose which is recognizing face touch move even if it 

was initiated from different locations rather than just the neutral 

position even in standing or walking scenarios as in Fig.4 (b). 

Fig. 4. a) 5 different body positions: standing, walking, sitting with 

neutral hand position, sitting with hand on legs or couch, sitting and hand 

is on a table. b) initiating hand move from 3 different heights. 

Additionally, since local moving reference-frame is used instead 

of external fixed one, any change in hand orientation or any small 

shift in watch position around the wrist caused by loose bands will 

give different data patterns. To overcome this problem, for each of 

the above 5 scenarios, data are collected with multiple hand 

orientations. We define 2 hand orientations at the move start, and 

3 at the move end that represents 3 different ways for touching the 

face either with hand palm, back, or side. which makes the total 6 

combinations of hand orientations as shown in Fig. 5. Those hand 

orientations are not rigid, a range of hand rotation in either 

direction is allowed during samples collection to mimic real-life 

cases especially with loose bands where the watch can move 

around the wrist.  

Fig. 5.  Two hand orientations at the motion start and three for motion 

end when touching the face for a total of 6 combinations. 

Any change in hand orientation at the start may cause different 

motion patterns like acceleration or rotation on a different axis. 

Similarly, touching the face with different orientation or different 

hand-part will cause different rotational patterns. Figure 6 shows 

different acceleration and rotation patterns for the same hand move 

in the same standing position, but in 6 different hand orientation 

combinations. 

Fig. 6.  Sample motion patterns for 6 hand orientations combinations of 

“Touch” move in standing position. First column represents acceleration 

values on 3 axes (accx, accy, accz), whereas second column is for rotation 

rate values (gyrx, gyry, gyrz). 

By applying the 3-level division of hand motion: using 5 motion 

classes, and for each class, collecting data in 5 scenarios, and 

finally, for each scenario, applying 6 different hand orientations, 

we allow the models to train on a wide range of motion patterns in 

real-life situations which improved detection accuracy and helped 

to minimize false positives. 

2.3. Automatic Sample Extraction and Labelling 

Training data are collected in controlled sessions where each 

session is performed by one person for a specific motion class, and 

only for one scenario, and hand orientation. That means up to 30 

different sessions for each motion class. In each session, the 

volunteer will do repetitive hand moves with around 1 second rest 

in between. Each session contains between 40 and 150 samples and 

data are recorded using a special app, where the user will press 
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start-button to start the session and only presses the stop-button 

when the whole session is finished. 

A special algorithm was developed to extract training samples 

automatically which helped the collection of large number of 

samples in less time. Visualizing the 3 elbow-based hand moves 

(Face-Touch, Up, Abdominal), it was observed that they cause a 

spike in rotation rate around Z or Y axes resulted from moving the 

forearm around the elbow. Using this prominent feature besides 

the fact that there is only one targeted move type in each session, 

an algorithm that uses peak-valley analysis was developed to 

extract the samples automatically. Each move starts with an 

acceleration phase until it peaks at the middle, then a deceleration 

phase until the hand stops. Sample is extracted by taking the peak 

value as the middle point (shown in Fig.7). 

A small window size of 0.6 seconds was chosen to minimize 

required calculations and save on power consumption and allow 

early touch detection. But this is mostly smaller than the actual 

touch move duration as observed in the dataset which mostly falls 

in the range of [0.55, 0.8] seconds. Random shift of the middle 

point was applied with up to 2 frames to the left, and up to 5 frames 

to the right, with more emphasis on right-shift because the end of 

touch move contains more distinctive features compared with the 

move-start. The formula for the extracted-sample-range at detected 

peak at moment (t) is given in (1) where r is a random number in 

range of [-2, +5]: 

𝑺𝒂𝒎𝒑𝒍𝒆𝑹𝒂𝒏𝒈𝒆 = [𝒕 − (
𝒘𝒊𝒏𝒅𝒐𝒘𝒔𝒊𝒛𝒆

𝟐
) + 𝒓, 𝒕 + (

𝒘𝒊𝒏𝒅𝒐𝒘𝒔𝒊𝒛𝒆

𝟐
) + 𝒓]           (1) 

Fig. 7.  Example of samples automatically detected by the algorithm. The 

blue line represents the negative peak value of rotation rate on Z-axis 

(gyrz) and green lines are the sample start/end boundaries.   

Automatic sample extraction algorithm achieves 99% accuracy 

which means for each 100 samples it correctly extracts 99 samples. 

Using controlled setup where each volunteer made 80+ separate 

data collection sessions for each dataset and using automatic 

sample extraction, we collected a large dataset with around 2800 

training samples per class per dataset for a total of 28,000 samples 

for both left and right hands. 

2.4. CNN Architecture 

The proposed architecture uses end-to-end models based on CNN 

networks without any hand-crafted or computed features. Instead 

of 2D Convolutions, 1D convolutions were used to convolve data 

along time axis with features set as depth channels. Average 

pooling layers were used for down sampling. CNN blocks 

automatically extract 160 features before finally feeding them to 

dense layers for classification. 

Model efficiency is critical, it must have faster execution time and 

minimum power and CPU usage. By optimizing CNN layers, the 

final model was reduced to a compact size with only 11.4k 

parameters. All this was done by reducing the number of 

convolution layers to 3, reducing filters count in each layer to 32, 

and having small size of 40 for the first dense layer as shown in 

Table 1.  

Table 1. CNN network structure. 

Layer  Parameters 

Input Shape = (30 x 9) 
1D Convolution No. of Filters = 32, Filter Size = 2 

Average Pooling Size = 2 

1D Convolution No. of Filters = 32, Filter Size = 2 
Average Pooling Size = 2 

1D Convolution No. of Filters = 32, Filter Size = 2 

Dropout Dropout Rate = 0.5 
Fully Connected Size = 40 

Dropout Dropout Rate = 0.2 

Fully Connected Size = 5, with Softmax activation 

The model consists of 3 convolutional blocks, 2 pooling layers, and 

2 dense layers as shown in Fig.8.  

Fig. 8. CNN network input shape and layers. 

To find the best hyperparameters, a grid-search of 243 iterations 

where was run. In each iteration a separate model was trained using 

one combination of hyperparameters such as filters count, dropout 

rates, optimizer method, batch size, and epochs count as shown in 

Table 2. 

Table 2. Hyperparameters and their tested values where C1, C2, C3 

represent convolution layers 1, 2, and 3 respectively. D1, and D2 

represent first and second dropout layers respectively. 

Hyperparameter Values 

Filters Count [C1:32, C2:32, C3:32], [C1:64, C2:64, C3:64], 
[C1:32, C2:64, C3:128] 

Dropout Rates [D1:0.8, D2:0.8], [D1:0.8, D2:0.2], [D1:0.5, 

D2:0.2] 
Optimizer Adam, RMSProp, SGD 

Batch Size 32, 64, 128 

Epoch Count 15, 25, 40 

Figure 9. shows the training/validation loss and accuracy over 

multiple training epochs. In addition, it shows that training and 

validation loss are close which indicates no overfitting on training 

data is present.  

Fig. 9. Training/validation loss and accuracy curves during model 

training. 
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Hybrid structure where LSTM layer is added after convolutional 

layers was tried by some studies [16, 26, 27]. After trying this 

structure, the model size increased to 32.4k parameters which 

means more calculations and time are required during inference. 

Table 3 shows 20.3% increase in inference time on the test dataset 

when using both LSTM and CNN in hybrid structure. Because 

model efficiency on a smartwatch is critical, the final model used 

CNN only model. 

Table 3. Comparing CNN only model and CNN+LSTM hybrid model. 

 Model Size Inference Time on Test Dataset 

CNN only  11.4k 0.59s 

CNN + LSTM 32.4k 0.71s 

3. Results and Discussion 

3.1. Cross-Validation 

Two types of cross-validation were done using the collected left 

and right training datasets. First, 10-fold cross-validation by 

splitting training dataset to 10 equal parts with one portion is set as 

test dataset. Test results show overall accuracy for 5-class 

classification between 95% and 97% across all 10 folds. The 

second type of cross-validation is Leave-One-Subject-Out (LOSO) 

where one subject data is used as test dataset and the rest as training 

set. Results for all 3 volunteers are close with F1-score between 

95% and 96%. 

3.2. Separate Test Dataset 

To better test the trained models, a special Test-Dataset was 

collected separately from 3 different volunteers doing real-life 

activities including face-touches while wearing two different 

watches. Each person did 50-100 face-touches in the 5 scenarios 

while doing normal activities for a total of 250 touch samples for 

each of the left and right hands. Each session is recorded in video 

and then the dataset is labelled manually by cross-checking all 

recorded videos. In order to make the test dataset more 

representative of real-world usage, additional moves that may 

cause false positives were added, like moving hand up near the face 

or touching the chest. Those moves are added with 1 to 1 ratio 

compared with the face-touch move (also around 250 moves per 

dataset). Additionally, a wide range of normal daily-life activity 

moves were added like household activities and office activities 

that mimic the work environment. In total, each dataset contains 

250 positive face-touch samples and over 5700 non-touch samples 

where the hand is doing other motion types, all done over 90 

minutes period. Finally, 50% overlapping was applied to match 

runtime conditions on the app. Test results show state of the art 

accuracy results with high recall (sensitivity) and precision results 

with average F1-score of 95.85% (shown in Table 4).  

Table 4. Face-Touch accuracy results on the two separate Test Datasets 

for left and right wrist locations. 

 Left Hand Right Hand Average 

Recall 96.5% 97.0% 96.75% 

Precision 93.7% 96.5% 95.10% 

F1 Score 95.0% 96.7% 95.85% 

As described in section 3.2, adding gravity features increased 

Recall significantly.  By using only linear acceleration and rotation 

rate features, the best recall score was 88.5% for F1-score of 86.7% 

(for left hand). But when 3 gravity features were added, the recall 

jumped to 96.5% for F1-score of 95% as shown in Fig.10. 

 

Fig. 10.  Recall/Precision results for two models with the best F1-score: 

first one without gravity features and the second one with gravity 

included. 

Even when testing against over 200 different models trained with 

different hyperparameters during grid-search. Models with gravity 

consistently scored higher as shown in Fig.11. 

 

Fig. 11.  Recall values with/without gravity for multiple trained models in 

hundreds of grid-search iterations. 

Also, using 5 classes instead of only binary classification had a big 

effect on minimizing false positives and improving precision. 

Figure 12 shows large precision improvement for 5-class models 

with a precision score of 93.7% compared with the best precision 

of only 75.8% for 2-class models (for models with the best F1-

score in both situations). 

 

Fig. 12.  Recall/Precision scores for two models with the best F1-socre: 

first one is binary classifier (touch/no touch), and second one classifies 5 

different hand motion types. 

Again, when testing against multiple models resulted from grid-

search iterations, 5-class models consistently scored higher 
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precision values compared with 2-class models with a big margin 

as shown in Fig.13. The precision score was mostly in range of 0.5 

and 0.7 which is considered very low and not practical for real-

world usage on the app even if the recall score is high. 

 
Fig. 13.  Shows huge margin in Precision for two classifiers (2-classes 

and 5-classes) for multiple trained models over hundreds of grid-search 

iterations. 

3.3. Real Tests on the App 

To check real-world performance, the final trained models were 

deployed on the developed application which in turn was deployed 

on 2 different watches. The app was able to give real-time alert and 

haptic feedback and show the current count of face touches. 5 

persons were asked to use the app extensively and do face touch 

attempts repeatedly in all 5 scenarios for each hand. The average 

detection accuracy was 97% for both hands. Additionally, to test 

false positives rate over long period, each volunteer was asked to 

use the app for 5 hours period while doing normal daily-life 

activities and then just report total number of false positives (when 

the watch alerts the user of a face touch attempt when doing 

another move). FPR is given in (2) as total False Positives (FP) 

over the sum of (FP) and all True Negatives (TN): 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                 (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 = 1 − 𝐹𝑃𝑅     (3) 

for each volunteer data which contain around 30k hand motion 

samples, the average false positives rate was 0.04% or 1 false 

positive every 2500 samples which in our setup translates to 2.4 

FPs/hour in normal daily life usage. Also, Specificity which is 

given in (3) has high value of 99.6%. Such very low FPR and high 

Specificity means the app is alerting the user only when there is 

very high confidence of potential face-touch move. This makes the 

app suitable for long hours use without much disturbance for the 

user that can be caused by too many false alarms. 

In terms of battery consumption, the app was power-efficient and 

battery drain was minimal. Testing results show that running the 

app continuously in the background added less than 2% battery 

drain per hour as shown in Table 5. That means even running the 

app for 10 hours continuously consumes only 20% extra battery. 

That makes the solution easily applicable in real world where the 

user can start the app when leaving home and keep it running in 

the background most of the day without being concerned about 

battery usage. 

Table 5. Battery Usage percentage with and without running the app 

tested on Apple Watch 3 and SE. 

 Battery Level After 5 Hours 

 App is Not 

Running 

App is 

Running 

Consumption 

by the App 

Apple Watch 3 93% 86% 7% 

Apple Watch SE 91% 81% 10% 

3.4. Results Comparison 

The proposed solution achieved high overall accuracy of 99.7% on 

the Test Dataset for classifying Touch/No-Touch hand moves 

while keeping the models power efficient. In Comparison, studies 

in [19][20] reported accuracy results for touching different face-

parts. In [19], authors used RFID tags mounted on plastic goggles 

in addition to magnetic rings and measured touch detection 

accuracy for different face locations. Similarly authors in [20] used 

depth cameras to detect face touches and measure workers 

compliance with health practices and reported accuracy for 

touching multiple face parts. All reported accuracy results are 

shown in Table 6.  

Table 6. Comparing accuracy measure of proposed method with other 

approaches that uses different hardware other than smartwatch. 

Study Accuracy 

Takayama et al. (2020) [19] 83% 

Manghisi et al. (2020) [20] 90.7% 

The proposed method 99.7% 

 
The trained models also have a better recall and precision and 

lower FPR compared with [23] who used feature extraction and 

CNN networks, and [22] who used hand-crafted features and 

Random-Forest classifier, and [21] who used magnets to measure 

the proximity between the hand and the face as shown in Table 7. 

Table 7. Comparison for Recall, Precision, and False Positives Rate. 

Study Recall Precision FP Rate 

Aurizio et al. (2020) [21] 86% 90% -- 

Xiang Chen (2020) [22] 89% --  0.56% 

Sudharsan et al. (2020) [23] 91% --  3.8% 

The proposed method 96.75% 95.1% 0.04% 

4. Conclusion 

In this work, we presented a complete solution for classifying hand 

moves to detect face touches using only smartwatch IMU motion 

sensors and CNN networks without using any extra hardware 

equipment. The goal is to alert users and prevents unwanted face 

touches which can be one of the main causes for transmitting viral 

infections. The proposed solution utilizes smart data processing for 

automatic sample extraction to gather large training dataset with 

around 28k samples for both left and right datasets. Using sensor 

fusion helped to eliminate bias and accumulated error and adding 

gravity features was effective in improving touch detection 

accuracy. Also, dividing hand motion into multiple classes and 

collecting data in multiple real-world scenarios and hand 

orientations led to minimized false positives. This work used small 

configuration settings compared with literature [28], from small 

window size to reduced layer count and size. These efficient 

configurations allowed the models to run directly on the watch 

with real-time performance while preserving battery at the same 

time with F1-score of 95.85%.  
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