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Abstract: Osteoporosis is a systemic skeletal disease characterized by low bone mass density and deterioration of the micro-architectural 

structure of the bone tissue, increasing bone fragility, and the probability of fracture. In this study, we propose a non-invasive method for 

osteoporosis classification using X-ray images (plain radiographs) of the ankle. Convolutional Neural Networks along with Data 

Augmentation techniques and Deep Transfer Learning Architectures are combined to classify X-ray images of healthy and osteoporotic 

patients. The proposed approach achieved an accuracy of 99% using ResNet50, and 100% with GoogleNet. 
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1. Introduction 

Osteoporosis is a disease in which the mineral density of bones is 

reduced, causing porosity and fragility of the bones, hence the risk 

of fracture is greatly increased [1-2]. The loss of bone occurs 

silently and progressively, thereby it is occasionally referred to as 

a silent disease. Often there are no symptoms until the first fracture 

occurs. The most common fractures associated with osteoporosis 

occur in the hip, spine, and wrist, and the likelihood of hip and 

spine fractures increases with age in women and men [1-2]. The 

disease in the preclinical period is characterized by low Bone 

Mineral Density (BMD) without fractures. Osteopenia refers to 

low bone density which is not lower enough to be considered as 

osteoporotic. People with low BMD may become osteoporotic in 

the future.  

It is estimated that there are more than 200 million people with 

osteoporosis in the World [3]. There is a risk of osteoporotic 

fractures in every 3 women and every 5 men [4]. The diagnosis of 

osteoporosis is based on the values obtained using Dual Energy X-

Ray Absorptiometry (DEXA) exam and the presence of a fracture. 

DEXA is the most widely used technique to measure Bone Mineral 

Density (BMD) and recommended by the National Osteoporosis 

Foundation (NOF) for the diagnosis of osteoporosis [5]. Using the 

T-Score, BMD values are evaluated (-1 ≤ T-score ≤ -2.5 means 

low BMD or osteopenia; T-score ≤ -2.5 indicates the presence of 

osteoporosis).  

Despite DEXA’s efficiency for evaluating BMD, it has some 

disadvantages as low availability, high-price, and over-size of the 

device. Also, osteophyte formations around the joints caused by 

the disease (especially the knee, hip, and vertebral column area), 

sometimes cause false-positive DEXA results. This results in 

patients who are osteoporotic while not receiving adequate 

treatment. On the other hand, bone X-ray images cannot show the 

symptoms since the bone microarchitecture changes due to 

osteoporosis are visible on X-rays only in case of severe 

osteoporosis. Thus, depriving the patient of preventive measures 

and treatments enabling to avoid the aggravation of the disease. 

Computed Tomography (CT), as well, does not show any symptom 

predicting the disease. In addition, there are physics-based models 

employing Finite Element Analysis (FEA), which have shown 

impressive performance to evaluate the bone microarchitecture 

stiffness non-invasively. However, these models have high 

computational cost, making them incommodious for clinical use. 

Several studies in the literature proposed different techniques to 

predict osteoporosis. Jennane et al. estimated the 3D similarity 

parameters from 2D trabecular bone images [6]. In [7], a 

classification of arthritic and osteoporotic bone samples was 

performed with an adaptive Neural Fuzzy Interference System 

(ANFIS), Support Vector Machines (SVM) and Genetic 

Algorithms (GA). Only 18 images were used in the study. In [8], 

authors used image processing and GA. The same 18 images were 

used in this study as well. In [9], Houam et al. performed trabecular 

bone tissue classification using Wavelet Coefficients and one-

dimensional local binary patterns in high-pass bands. The K-

Nearest Neighbor classifier was used and the value of the Area 

Under the Curve (AUC) was a maximum of 0.85. 

Another approach applied the Wavelet transform to extract 

features from CT images, while Artificial Neural Networks (ANN) 

and SVM were used for the classification task [10]. In [11], authors 

tested the effectiveness of a Multilayer Perceptron (MLP) in 

discriminating between osteoporotic and control cases. They used 

k-fold Cross-Validation (CV) to increase the model's accuracy and 

reliability. Here, 120 X-ray images of the calcaneus bone were 

used.  

In [12], the bone fragility was evaluated by combining BMD and 

texture analysis. Obtained results showed an AUC = 82% at most. 

The classification accuracy was around 70%. In [13], Jennane et 

al. characterized osteoporosis using fractal analysis on X-Ray 

images. The fractional Brownian motion (fBm) model was used to 
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extract features from 77 X-ray images of the calcaneus and the 

SVM was used as a classifier. In [14], Nasser et al. used a Stacked 

Sparse Autoencoder (SSAE) to extract features along with the 

SVM classifier to discriminate between two groups of osteoporotic 

and control patients. Ciusdel et al. trained a CNN model on a large 

database of synthetically generated cancellous bone anatomies 

[15]. The performance of the trained model was assessed by 

comparing the predictions against a FEA model computed on a 

separate test data set.  

In [16], Tomita et al. developed a system for detecting osteoporotic 

vertebral fractures in which a deep CNN was used to extract 

radiological features from each slice of 1432 CT scans. A Long 

Short-Term Memory (LSTM) network processed the extracted 

features to make the final diagnosis for a full CT scan. The CNN-

LSTM model achieved an accuracy of 89.2%.  

In [17], Selaa and Pulunganb extracted trabecular area present on 

digital dental radiographic images to identify osteoporosis. The 

Multilayer Perceptron was used to predict the presence of 

osteoporosis using statistical texture analysis. 

In [18], authors introduced a classification decision strategy based 

on maximum a posteriori probability and an approach for adjusting 

the classification decision criteria to discriminate between two 

groups of osteoporotic and control patients. Su et al. [19] combined 

deep Convolutional Neural Network (CNN) and several hand-

crafted features to classify osteoporotic and control subjects. 

Transfer Learning (TL) was also applied to detect osteoporosis 

using X-ray images. In [20], the TL model VGG-16 was used to 

detect low bone density in Dental Panoramic Radiograph (DPR) 

images, it was shown that a fine-tuned pre-trained VGG-16 model 

can reach an accuracy of 0.84.  

In this study, using X-ray images of the calcaneus bone, our aim is 

to classify the patients of two populations composed of 

osteoporotic and control subject. The proposed approach combines 

both Artificial Intelligence (AI) and image processing techniques. 

Our proposed approach is based on the use of CNNs along with 

transfer learning methods. Different data augmentation methods 

are also used to increase the number of samples and to extract 

discriminatory features.  

We investigated the impact of sharpness, contrast, and brightness 

adjustments on deep networks' generalizability and their capability 

to improve osteoporotic-control data classification accuracy. 

Furthermore, we compared the performance of six different CNN 

based sequential and residual networks. The results suggest that 

our proposed transfer learning-data augmentation approach can 

play a fundamental role in the development of a novel and effective 

method to support early diagnosis of osteoporosis, which can aid 

earlier interventions and prevent further disease progression.  

 The rest of the paper is organized as follows. Section 2 is 

divided into 4 subsections. The first subsection presents the data. 

The second subsection describes the proposed methodology to 

augment the number of samples. The third subsection covers the 

transfer learning and the training process. Section 3 details the 

experimental results. Finally, a conclusion is presented in Section 

4. 

2. Material and Methods 

2.1. Data 

The database consists of X-ray images collected from 174 women 

aged between 40 and 92 years. The patients were hospitalized at 

Orleans Hospital between November 2004 and February 2006. 

Because age has an influence on bone density and on trabecular 

bone texture, the fracture cases were age-matched with the control 

cases. Also, all fracture cases were reviewed by experienced 

investigators who considered the diagnosis of fragility fracture if it 

occurred after the age of 40 years. The cases were described as 

either spontaneous fractures, fractures resulting from strenuous 

activity, fractures after falls from standing height or less (low 

trauma energy) and following radiologic data. The selected 

database contains images labelled as 87 osteoporotics (OP) and 87 

controls (CN). Among OP patients, there were 21 patients 

diagnosed with hip fractures, 23 patients with wrist fractures, and 

22 patients with vertebral fractures. The remaining 21 patients had 

different fractures [21]. 

X-ray acquisition of the heel enabled the selection of a similar 

Region Of Interest (ROI) for each subject by identifying 

anatomical landmarks as described in [21]. These anatomical 

landmarks were localized on each image by an experienced 

operator, allowing positioning of the ROI (1.6 × 1.6 cm2) 

performed by a software device (Fig. 1). The size of each image is 

400x400 pixels. 

The heel bone was selected because it is surrounded by limited soft 

tissues that may increase the instability of the model to be used. 

Figure 1 shows the calcaneus bone and the selected ROI. 

Fig. 1. The calcaneus bone and the selected ROI 

The bone microarchitecture of osteoporotic and healthy bone 

radiograph images is visually similar, making the classification 

task very challenging. An example of an OP and a CN image is 

shown in Figure 2.  

Fig 2.  Two representative images from the database. (a) OP image; (b) 

CN image 

Data-driven models that are trainable to learn relevant features 

from the raw input are becoming common, especially with the 

concept of feature learning, which is the very strength of Deep 

Learning (DL) [22].  

In the next sections, a comparison between different TL models is 

presented. As large dataset is crucial for the performance of DL 

models, the performance of the model can be improved by 

augmenting the available original images. This can also be done 

through pre-processing of the images. Figure 3 presents the block 

diagram of the proposed approach. 
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Fig 3. Block diagram of the proposed approach for the classification of OP and CN data 

 

2.2. Data Augmentation 

To properly train a DL model it needs to have high generalizability. 

Generalizability refers to the variety of training data and the ability 

of the model to correctly classify blind test data. To make the 

model more general, it needs to cover several data possibilities 

such as different orientations or color scales of the samples. 

Sometimes, a DL model would misclassify an image because of a 

different version of the image when it has a different color range, 

orientation or position, which the training data didn't include such 

a version. Also, models with poor generalizability are often 

overfitting the training data. Which means that they reach high 

training accuracy while the validation accuracy is low. To  

create an efficient DL model, the validation accuracy needs to  

continue increasing with the training accuracy, and the validation 

error must continue decreasing with the training error. Data 

augmentation [23] helps building a more general model that covers 

as many possibilities as it can, and it is one of the most useful 

techniques that prevents the model from overfitting. 

In this study different conventional techniques were used to 

augment the original dataset (174 images). Data augmentation 

procedures were applied through three steps to obtain three 

different data versions to be used. The aim is to check the impact 

of data augmentation and the relation between the size of the input 

images and the resulting classification accuracy. Figure 4 details 

the different steps of the data augmentation procedure. 

 

Fig 4.  Blockdiagrm of the data augmentation procedure 

Fig 5. A CN image and it’s adjusted versions with the histogram of each image.  Original CN image (a1, a2); 30% contrast increase applied (b1, b2); 30% 

brightness decrease applied (c1, c2); 50% sharpness increase applied (d1, d2) 
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Fig 6. Procedure of using a pre-trained model (Transfer Learning) 

 

At the first step, the N original images were rotated once 90 

degrees and another time 270 degrees. The rotation was used both 

to increase the data size and the generalizability of the model. At 

the same step, the contrast of each image was increased by a ratio 

of 30% while the brightness was decreased with a ratio of 30%. 

Also, 20% brightness increasing, and 20 % contrast decreasing 

were performed on each image to fill the gap with the opposite 

situation with more brightness and less contrast. At this step, the 

dataset, A, counted 696 images. Contrast and brightness increase 

and decrease were applied to extract more discriminatory 

information from the original images. Contrast adjustment remaps 

image intensity values to help extracting more information. An 

image with a good contrast has sharp differences between black 

and white. Contrast adjustment was executed using histogram 

equalization technique. Such pixel-domain enhancement 

techniques are preferable due to their low computational cost and 

simple parameter setting comparing to transform-domain contrast 

enhancement techniques [24].  

At the second step, all the 696 images were sharpened by a ratio of 

50%, providing a new 696 images, and a database B composed of 

1392 images. Sharpening was implemented with a radius of 3. The 

goal of using such technique is to highlight the trabeculae and the 

features in the bone structure. Sharpening images increases the 

contrast along the edges where different colors meet [25]. Figure 5 

presents a CN image and its adjusted versions with the histogram 

of each image. Histograms in Figure 5 are only added to show the 

differences between the image versions. 

Finally, the original data, N (174), were added to the resulting data, 

B (1392), which provided a database C containing 1566 images. 

2.3. Deep Transfer Learning 

Transfer Learning (TL) is a popular machine learning method, 

which enables building a model from a previously pre-trained 

model [26]. It is a popular approach in deep learning where pre-

trained models are used as the starting point. A pre-trained model 

is a model trained on a large dataset (e.g., ImageNet) to solve a 

specific problem.  

 At each layer of the Deep Neural Network (DNN), data related 

features are learned, each layer is connected to a deeper layer via a 

set of trainable weights, thus the previously learned features 

represent input data for the next deeper layer. Input data and 

learned weights are convolved to calculate a new feature map, and 

the results are forwarded to an activation function (see section 

2.2.3) [26]. 

These DNN usually include convolutional and pooling layers. 

Convolutional layers are the responsible of the previously 

mentioned feature extraction task. In general, convolution is the 

implementation of a sliding window function on an image's matrix. 

The window function here is often referred to as a kernel or filter. 

Meanwhile, pooling layers comes after convolutional layers and 

they are responsible for performing sub-sampling on the given 

input matrix, summarizing it by applying different filters. Max 

Pooling takes the maximum value of the filter, Min Pooling takes 

the minimum value of the filter and Average Pooling computes the 

average value of the filter. Thus, reducing the spatial resolution of 

the feature maps. Also, pooling layers play an important role in 

reducing model overfitting. 

Convolutional and pooling layers are followed by fully connected 

layers, which are responsible for the classification task. In the 

classification task, fully connected layers use the Softmax function 

as a default, while sometimes it’s replaced with a Support Vector 

Machine (SVM). In this study, the Softmax function is used for the 

classification of the data. The Softmax function produces an output 

value between 0 and 1. Every value represents the probability of 

belonging to one class and the sum of all the probabilities is equal 

to 1 [27]. 

2.3.1. Tuning the Pre-Trained Models 

To use a pre-trained model in any classification problem, tuning 

according to the problem is needed. There are different steps to do 

so, but all of them includes two important steps. The first one is 

changing the classifier used in the original model if it is not suitable 

for the given problem, and even if the same classifier must be used, 

one must adjust the number of classes according to the 

classification problem to be solved. The second step consists in 

resizing the input data to meet the requirements of the pre-trained 

model. Figure 6 illustrates the process of using a pre-trained model 

in a classification task. In this study different TL models were used 

to classify the various augmented versions of the data. 

2.3.2. Using a Pre-Trained Model  

Various pretrained models such as VGG [28], InceptionV3 [29], 

ResNet [30], AlexNet [31], GoogleNet [32], MobileNetV2 [33], 

DenseNet [34], etc. show great performance for classification 

tasks. In this study, five pretrained models (AlexNet, GoogleNet, 

ResNet50, MobileNetV2 and InceptionV3) were selected to 

classify OP and CN images. Each model has a different depth, 

number of parameters, and input size. But they are all trained on 

ImageNet (a large image database consisting of more than 14 

million images) [35]. Fully connected layers in each architecture 

were modified for the binary classification of the two classes (OP 

and CN). The architectures were used for End-2-End training and 

no layers were frozen. ImageNet weights were also utilized for the 

previously mentioned architectures, so they were not trained from 

scratch. Also, when required, the size of the input images was 

resized to match the default size of each model. Table 1 presents 

the input size, depth, number of parameters for the models used in 

this study. 
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Table 1. Input size, depth, number of parameters for the pretrained models. 

Model 
Data Trained 

On 
Input Size 

Number 

of Layers 

Number 

of Parameters 

AlexNet ImageNet 227x227 8 60,000,000 
GoogleNet ImageNet 224x224 22 6,797,700 

Resnet50 ImageNet 224x224 50 25,636,712 

MobileNetV2 ImageNet 224x224 53 3,538,984 
InceptionV3 ImageNet 299x299 48 23,851,784 

2.3.3. Training Transfer Learning Models  

The training of the models was fulfilled in several experiments. In 

the first experiment 1 (E1), only the original dataset was used to 

train the models, while in the following experiments, E2, E3, E4 

the training was achieved using datasets A, B, and C, respectively. 

The aim is to evaluate the influence of the carried-out data 

augmentation techniques on the model's accuracy. As for data 

partitioning, 80% of the datasets were partitioned as training data 

 at each experiment. Images were shuffled and the mini-batch size 

value was set to 5. The number of epochs was held to 20 throughout 

the process. Hence, the number of iterations can be counted by the 

following equation: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =  (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐼𝑚𝑎𝑔𝑒𝑠 ÷
 𝑀𝑖𝑛𝑖 𝐵𝑎𝑐ℎ 𝑆𝑖𝑧𝑒)  ×  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑝𝑜𝑐ℎ𝑠                                             (1) 

ReLU (Rectified Linear Unit) Activation Function, also known as 

the Ramp Function, was used to determine the output of the 

models. An activation function is a switch that decides whether a 

neuron should take a value of zero or one. ReLU activation 

function outputs the input directly if it is positive, and outputs zero 

if it is not.  

It is common to use the Tanh (hyperbolic tangent) or the sigmoid 

functions as activation functions to train a learning model. But they 

are not as efficient as ReLU when used in deep networks, due to 

the vanishing gradient problem. Meanwhile, ReLU has been 

accomplishing much better performance, especially for image 

classification tasks, thanks to its ability to overcome the vanishing 

gradient problem by forcing the negative values to zero. Thus, 

enabling the models to learn faster. Another reason for the ReLU 

being faster than it’s equivalent sigmoid or Tanh functions is the 

absence of exponentials, therefore less computational power is 

needed [27]. Figure 7 illustrates the three activation functions 

(Sigmoid, Tanh, and ReLU). 

 
 

Fig 7. Sigmoid, Tanh, and ReLU activation functions 

Krizhevsky et al. [31] showed that a deep neural network could be 

trained much faster using the ReLU function compared to when it 

is trained using the saturating activation functions like Tanh or 

sigmoid. Using ReLU, AlexNet achieves 25% training error rate 

six times faster than it’s reached rate using Tanh. These findings 

encouraged us to use the ReLU function for our classification task.   

As shown in table 2, Stochastic Gradient Descent with Momentum 

(SGDM) is the optimizer retained in this work. An optimizer is 

responsible for reducing the losses of a learning model. To improve 

the performance of classification, the optimizer continuously 

updates the model according to the calculated loss function [36]. 

SGDM is an improved version of the classical optimization 

algorithm SGD (Stochastic Gradient Descent) in which 

momentum is added to accelerate gradients vectors in the optimal 

direction and avoid being stuck in a false local minimum point, 

making it notably more efficient than the classical SGD optimizer 

[37-38].  

Other training options are shown in Table 2. All the options were 

held the same throughout the study. 

Table 2. Training options throughout the study 

Training Data 80%, 3-Fold Cross-Validation 

Learning Rate 0.0001 

Activation Function ReLU 
Optimizer SGDM 

Number of Epochs 20 

Mini Bach Size 5 

2.3.4. Performance Evaluation 

The confusion matrix is used to summarize the performance of a 

classifier. Classification accuracy alone can be misleading if there 

is an unbalanced number of observations in each class or in case of 

more than two classes in the dataset. The confusion matrix gives a 

better idea about the classification of the model, emphasizing 

better the misclassified subjects in the correct class. The following 

metrics are used to compute the confusion matrix: True Positive 

(TP), which is the number of OP patients correctly identified, False 

Positive (FP), which is the number of CN subjects incorrectly 

identified, True Negative (TN), which is the number of CN 

subjects correctly identified, False Negative (FN), which is the 

number of OP patients incorrectly identified, Sensitivity (Sn), 

which tests the ability of the classifier to identify positive results 

and Specificity (Sp), which test the ability of the classifier to 

identify negative results. The Accuracy (Acc) of classification of 

the subjects is defined as: 

Acc =  (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)⁄        (2) 

Sn also called True Positive Rate (TPR) is given by: 

𝑆𝑛 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄          (3) 

Sp also called True Negative Ratio (TNR) is given by: 

𝑆𝑝 =  𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄          (4) 

2.3.5. K-Fold Cross-Validation  

As there is a need of lot of data to train a neural network, removing 

a part of it for validation poses a problem of underfitting. By 

reducing the training data, we risk losing important details from 

the images, which in turn increases error induced by bias. To 

double-check on the efficiency of the proposed approach and avoid 

the risk of losing discriminatory details, all the models were trained 

several times using the K-fold cross-validation.  

K-fold cross-validation consists in dividing the set of data into K 

subsets, and the model is trained K times. Each time, one of the K 

subsets is used as a test set and the other K-1 subsets are used 

together to form a training set. Then the average error across all K 

trials is computed. The advantage of this method is that each 

sample is given the opportunity to be used in a test set once, and in 

a training set K-1 times. In this study, K-fold cross-validation was 

implemented only on Experiment 7 (section 3.7.) in which the 

dataset C was used. To obtain subsets of size integer, K value must 

be a factor of the number of data samples (in this case 1566). In 

this study, K was set to 3 and the dataset C was divided into 3 

subsets. 
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3. Results & Discussion 

As explained in Section 2, different datasets were used, which 

included ROIs extracted from X-ray images of the calcaneus bone 

taken from OP and CN subjects. Since there is a positive 

correlation between the number of samples and the accuracy of the 

model, data augmentation was used to enhance the learning of the 

model. Contrast, brightness, and sharpness modification were 

implemented with the ambition of enhancing X-ray scans and 

extracting unseen information that plays a role in the classification 

task. AlexNet, MobileNetV2, GoogleNet, InceptionV3, and 

Resnet50 architectures were used to classify the four datasets 

(original, A, B and C). The obtained results of the different 

experiments are shown in the next Sections. Effects of data 

augmentation to improve the accuracy of classification were 

evaluated through seven experiments described in the following 

subsections. 

3.1. Experiment 1: Classification of the Original Data 

This experiment aims to compare the classification result obtained 

using the N original data to those obtained through data 

augmentation procedure. The test data consisted in 34 images (17 

images labelled as CN and 17 images labelled as OP), which 

represents a percentage of 20% of the whole original dataset. 

Obtained classification rates (Acc, Sn, Sp) using the different 

pretrained models (AlexNet, GoogleNet, ResNet50, MobileNetV2 

and InceptionV3) are shown in Table 3. As can be seen, Acc values 

varied from 47% with InceptionV3 to 58.8% with ResNet50. As 

expected, all of the models couldn’t accomplish promising results 

due to the lack of data samples. The number of both accurately 

classified and misclassified subjects (TP, TN, FP, FN) are given in 

Table 4. Looking to ResNet50’s results (best performer of this 

experiment), 6 out of 17 CN labelled images were misclassified 

(FP), and 8 out of 17 OP labelled images were classified as CN 

(FN). 

3.2. Experiment 2: Classification of Dataset A 

Dataset A was realized by applying both 90 and 270 degrees 

rotation, followed by two other steps where images contrast and 

brightness were adjusted by different rates (Section 2.1). Dataset 

A contains 696 images half of which are OP, while the rest are CN. 

At this experiment, the test data included 140 images divided into 

70 CN and 70 OP. Tables 3 and 4 present the evaluation metrics. 

As can be seen, the accuracy values obtained using the five models 

(AlexNet, GoogleNet, ResNet50, MobileNetV2 and InceptionV3) 

dramatically improved to vary from 77.8% with MobileNetV2 to 

82.1% with InceptionV3. ResNet50 and GoogleNet reached the 

same Acc value of 80%, while AlexNet performed better with an 

Acc of 81.4%. As can be seen in Table 4, TN rates at all models 

are greater than their corresponding TP rates. Hence in this 

experiment all the models are more specific (Sp) than sensitive 

(Sn). 

3.3. Experiment 3: Classification of Dataset B   

The trabeculae of the bone structure in the X-ray images are blurry 

and quite pale. Therefore, the sharpness of images dataset A was 

intensified by 50%, making the images much more 

comprehensible. Adding the new sharp images to dataset A, a new 

dataset of 1392 images, B, was obtained. As can be seen in Table 

3, Acc, Sp, and Sn values were impressively boosted to reach an 

Acc of 98.5% with GoogleNet and 97.4% with InceptionV3. 

AlexNet, ResNet50 and MobileNetV2 models reached Acc values 

of 95.3%, 96%, and 94.9, respectively. Table 4 shows the decrease 

of FN and FP rates. Note that GoogleNet succeeded to accurately 

classify all the CN labelled 139 test images. 

 

Table 3. Obtained Acc, Sn, Sp values for each model with each dataset 

Trial Metric AlexNet GoogleNet ResNet50 MobileNetV2 InceptionV3 

Experiment 1 

174 images 

N 

Acc 

Sp 

Sn 

50% 

35.2% 

64.7% 

52.9% 

58.8% 

47% 

58.8% 

52.9% 

64.7% 

58.6% 

64.7% 

52.9% 

47% 

64.7% 

29.4% 

Experiment 2 

A, 696 images 

 

Acc 

Sp 

Sn 

81.4% 

88.5% 

74.2% 

80% 

81.4% 

78.5% 

80% 

80% 

80% 

77.8% 

84.2% 

71.4% 

82.1% 

82.8% 

81.4% 

Experiment 3 
B, 1392 images 

 

Acc 
Sp 

Sn 

95.3% 
93.5% 

97.1% 

98.5% 
100% 

97.1% 

96% 
96.4% 

95.6% 

94.9% 
92.1% 

97.8% 

97.4% 
99.2% 

95.6% 

Experiment 4 
C, 1566 images 

 

Acc 
Sp 

Sn 

98.4% 
100% 

96.8% 

97.1% 
96.1% 

98% 

99.02% 
98% 

100% 

98% 
97.4% 

98.7% 

98.4% 
96.8% 

100% 

Table 4. Obtained TP, TN, FP and FN values for each model with each dataset 

Trial Metric AlexNet GoogleNet ResNet50 MobileNetV2 InceptionV3 

 

Experiment 1 

 N, 174 images 

TP 

TN 

FP 
FN 

11 

6 

6 
11 

8 

10 

9 
7 

11 

9 

6 
8 

9 

11 

8 
6 

5 

11 

12 
6  

 

Experiment 2  

A, 696 images 

TP 

TN 

FP 

52 

62 

18 
8 

55 

57 

15 
13 

56 

56 

14 
14 

50 

59 

20 
11 

57 

58 

13 
12  FN 

 

Experiment 3  
B, 1392 images 

TP 

TN 
FP 

FN 

135 

130 
4 

9 

135 

139 
4 

0 

133 

134 
6 

5 

136 

128 
3 

11 

133 

138 
6 

1  

 

Experiment 4  
C, 1566 images  

TP 

TN 
FP 

FN 

152 

157 
5 

0 

154 

151 
3 

6 

157 

154 
0 

3 

155 

153 
2 

4 

157 

152 
0 

5 
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Fig 8. Influence of number of samples on the performance of the TL models for experiments 1, 2, 3 and 4. ResNet50 achieved the highest accuracy with 

%99.02 in experiment 4. 

Fig 9. The CNN model used to classify dataset C. CL and FCL stands for Convolutional Layer and Fully Connected Layer, respectively 

 

3.4. Experiment 4: Classification of Dataset C  

In the previous experiments, the datasets did not include the 

original images. Here, the N original images were added to dataset 

B, providing a total of 1566 images. Tables 3 and 4 regroup the 

achieved results. Accuracy values continued to increase, except for 

GoogleNet, which was the only model with a less accuracy value 

compared to experience 3 (dataset B). Meanwhile, ResNet50 

achieved an accuracy of 99.02%, followed by AlexNet and 

InceptionV3 with an accuracy of 98.4%. As shown in Table 4, 

AlexNet correctly classified all the CN samples (FN = 0), while 

ResNet50 and InceptionV3 correctly classified all the OP samples 

(FP = 0). As an overall statement, ResNet50 and InceptionV3 

achieved the best classification scores, followed by GoogleNet that 

showed an impressive performance at the third experiment. Figure 

8 illustrates a comparison between the different TL models 

performances. It also shows the influence of data augmentation on 

the classification task.  

3.5. Experiment 5: Training a simple CNN model from Scratch 

In addition to classifying C dataset (1566 images) with AlexNet, 

MobileNetV2, GoogleNet, InceptionV3, and Resnet50, we also 

implemented a simple CNN model to see how it would perform. 

The model consisted of 5 layers; 4 convolutional layers and one 

fully connected layer. The first 3 convolutional layers were 

followed by a max pooling layer, and the fully connected layer was 

followed by a soft max function to normalize the fully connected 

layer’s output. The proposed CNN can be seen in figure 9. The 

training options in table 2 were held the same in this experiment as 

well. The obtained results are shown in table 5. As can be seen, 

with an Acc of 96.1%, results were surprisingly close to these 

obtained using Transfer Learning models, this demonstrates the 

efficiency of the implemented data augmentation procedure. 

Table 5. Obtained Acc, Sp and Sn rates using a simple CNN model and 

dataset C. 

Acc Sp Sn 

96.1% 95.5% 96.8% 

3.6. Experiment 6: Max (Majority) Voting Approach 

Max-Voting is an ensemble learning method that is used to 

minimize false classified data samples and eventually increase the 

accuracy of the model. In machine learning, ensemble learning 

methods are used to combine multiple classifiers to make a 

decision [39-40]. Here, decisions from pre-trained models and the 

5-layer CNN model from the previous experiment were combined 

and only samples that were classified correctly by the majority of 

the models (in this case the majority is 4) are considered as 

correctly classified. Samples that were misclassified by more than 

2 models were not considered. In this experiment, dataset C was 

used. The number of test samples was 157 images per class (314 

in total). Using this approach, an accuracy of 99.02% was 

achieved, which is the same results achieved by ResNet50 in 

Experiment 4. The reason is that the three OP images that were 

misclassified by ResNet50 were also misclassified by the other 5 

models (4 pre-trained models and one simple CNN model). Three 

of the OP images were voted as CN, while all the CN images were 

voted as CN. Figure 10 illustrates the majority voting method for 

making a final decision. 
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Fig 10. Max-Voting approach for making a final decision. 

3.7. Experiment 7: 3-Fold Cross Validation 

To validate the reached results and avoid overfitting issues, a K-

fold Cross Validation (CV) approach was carried out as a final 

validation experiment. C dataset (1566 images) was subdivided 

into 3 subsets (see section 2.2.5) of 522 samples each.  With 3-fold 

Cross Validation, each model was trained 3 times, and at the end 

of the training process, the mean of the obtained accuracies was 

computed. Table 6 presents the obtained mean accuracy for each 

model. As can be seen, GoogleNet managed to correctly classify 

all the test images at every training process, achieving an Acc of 

100%. AlexNet followed with an Acc of 99.4%, which is the 

highest Acc that AlexNet achieved in all the experiments. 

Meanwhile, ResNet50, InceptionV3, MobileNetV2 and the simple 

CNN models performances diminished compared to those 

obtained using the same dataset in experiment 4 and 5. 

3.8. Comparison to State-of-the-Art Studies 

The proposed approach was also compared to some existing 

methods in the literature. Comparisons are reported in Table 7. A 

brief description of each method can be found in the Introduction. 

As can be seen, Transfer Learning was used in a different study 

where the accuracy value 84% was achieved. In this study, an 

accuracy of 99% was reached using ResNet50 thanks to data 

augmentation approach. Also, 100% accuracy was achieved with 

GoogleNet when the 3-fold cross validation was implemented. 

 

Table 6. Obtained mean accuracies for each model with 3-fold cross validation and dataset C. 

3-Fold CV AlexNet GoogleNet ResNet50 MobileNetV2 InceptionV3 CNN from 

Scratch 

1566 images 99.4% 100% 97.6% 91.8% 94.4% 91.7% 

Table 7. Comparison to state-of-the-art studies for osteoporosis classification 

Title of the study Year Data Method Acc Value 

3D image analysis and artificial intelligence for 

bone disease classification [7] 
2010 18 trabecular bone samples Genetic Algorithm 100% 

Texture Analysis and Genetic Algorithms for 
Osteoporosis Diagnosis [8] 

2010 18 trabecular bone samples Genetic Algorithm 100% 

One Dimensional Local Binary Pattern for Bone 

Texture Characterization [9] 
2011 

80 X-Ray ROIs from 

calcaneus bone images 

1D Local Binary Pattern 

1DLBP 

85% 

AUC 

Early Diagnosis Of Osteoporosis Using Artificial 
Neural Networks And Support Vector Machines 

[10] 

2012 
80 computed tomography 

(CT) images 
Support Vector Machine 86% 

Osteoporosis Assessment Using Multilayer 

Perceptron Neural Networks [11] 
2012 

120 X-Ray ROIs calcaneus 

bone images 
Multilayer Perceptron 97% 

Evaluation of fractional Brownian motion synthesis 

methods using the SVM classifier [13] 
2014 

77 X-Ray ROIs from 

calcaneus bone images 
Support Vector Machine 95% 

Diagnosis of osteoporosis disease from bone X-ray 

images with Stacked Sparse Auto-encoder and 
SVM classifier [14] 

2017 
174 X-Ray ROIs from 

calcaneus bone images 
Support Vector Machine 95.5% 

Towards Deep Learning Based Estimation of 

Fracture Risk in Osteoporosis Patients [15] 
2017 

Synthetic data 25000 

trabecular bone 

Convolutional Neural 

Network 
93.8% 

Deep neural networks for automatic detection of 
osteoporotic vertebral fractures on CT scans [16] 

2018 1432 CT scans 
CNN + Long Short Term 

Memory 
89.2% 

Osteoporosis identification based on the validated 

trabecular area on digital dental radiographic 
images [17] 

2019 
84 ROIs from 42 digital 

dental radiographic images 
Multilayer Perceptron 87.87% 

Integrative Blockwise Sparse Analysis for Tissue 
Characterization and Classification [18] 

2020 
174 X-Ray ROIs from 
calcaneus bone images 

maximum a posteriori 

probability (BBMAP) and 
log likelihood function 

(BBLL) 

100% 
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Fusing convolutional neural network features with 

hand-crafted features for osteoporosis diagnoses 
[19] 

2020 
174 X-Ray ROIs from 

calcaneus bone images 

Fusing CNN features with 

hand-crafted features 
77.5% 

Evaluation of Transfer Learning with Deep 

Convolutional Neural Networks for Screening 
Osteoporosis in Dental Panoramic Radiographs 

[20] 

2020 680 patients TL - VGG16 84% 

Detection and Segmentation of Osteoporosis in 

Human Body using Recurrent Neural Network [41] 
2020 Hand X-rays LeNet based CNN 93.9% 

Detection of Osteoporosis in Defected Bones Using 

Radtorch and Deep Learning Techniques [42] 
2021 1000 bone X-rays TL – ResNet50 98% 

Application of deep learning neural network in 
predicting bone mineral density from plain X‑ray 

radiography [43] 

2021 Pelvic X-rays TL - ResNet18 88% 

Automated bone mineral density prediction and 

fracture risk assessment using plain radiographs 

via deep learning [44] 

2021 
Pelvis and Lumbar spine X-
rays 

TL - VGG16 

91.7% for hip 

osteoporosis 
86.2% for spine 

osteoporosis 

This Study 
2021 

 

 

Augmented data 1566 X-
Ray ROIs from calcaneus 

bone images 

TL - GoogleNet + 

3-Fold Cross Validation 
100% 

This Study 2021 

Augmented 1566 X-Ray 

ROIs from calcaneus bone 
images 

TL - ResNet50 - 80% 

training, 20% test 
99.02% 

 

4. Conclusion 

Due to the high similarity between healthy and osteoporotic 

patients bone microarchitecture in X-ray images, osteoporosis 

classification using deep learning models is a very challenging 

task. Despite that, using an adequate data augmentation strategy 

and deep transfer learning architectures can be a new opportunity 

to improve the diagnosis of osteoporosis. Achieved outstanding 

results indicate that the applied contrast, brightness, and sharpness 

manipulation provided the retained models with discriminatory 

information that is important for the classification of the two 

populations of healthy and osteoporotic patients.  

First, both 90 and 270 degrees rotation were implemented on the 

original data to provide more training data and increase the 

generalizability of the model. Contrast, brightness, and sharpness 

adjustments reduced the similarity between control and 

osteoporotic images and brought to light more discriminatory 

information by disclosing the details of the bone microarchitecture.  

The impact of data augmentation can intelligibly be seen 

throughout the classification experiments in section 3. Firstly, the 

set of original data (174 images) was classified, and accuracy 

values varied between 47% and 58.8% using the retained learning 

models. Secondly, using the dataset A with 696 images, accuracy 

values were increased to vary from 77.8% to 82.1%. Thirdly, the 

dataset B with 1392 images was classified and the model’s 

accuracy was boosted to 94.9% with MobileNetV2 and 98.5% with 

GoogleNet. The best classification results were obtained using the 

dataset C, which consisted of 1566 images. In this case an accuracy 

of 99.02% was accomplished with the ResNet50 model. 

Examining the obtained results using ResNet50, the accuracy of 

58.8% reached using the original dataset (174 images) was 

improved to 80% with dataset A (696 images). Then to 96% using 

dataset B (1392 images). To finally reach an accuracy of 99.02% 

with dataset C (1566 images). This classification accuracy 

improvement demonstrates the positive influence of the proposed 

data augmentation approach on the performance of the models. 

Furthermore, all the test images were correctly classified when a 

3-fold cross-validation was used, leading to an accuracy of 100% 

using GoogleNet model.  

To put the used data augmentation procedure in a more serious test, 

dataset C was classified with a simple CNN model trained from 

scratch. The model accomplished a promising Acc of 96.1%, 

showing the contribution of the proposed data augmentation 

approach. Examining similar works in the literature shows that 

leading results in the task of osteoporosis classification using 

CNNs [13, 14, 17] or Transfer Learning [18] are reached in this 

study (100% with GoogleNet). As a conclusion, we believe that an 

approach with such data augmentation methodology and model 

training options can make a remarkable contribution to the early 

diagnosis of osteoporosis.   
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