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Abstract: Drowsiness is one of the major reasons that causes traffic accidents. Thus, its early detection can help preventing accidents by 

warning the drivers before the unfortunate events. This study focuses on the detection of drowsiness using classification of alpha waves 

from EEG signals with 25 different machine learning algorithms. The results were evaluated in terms of classification accuracy and 

classification time. Accordingly, the Bagged Trees and Subspace k-Nearest Neighbor models gave better results in terms of classification 

accuracy compared to the Tree algorithm methodology, although the classification times are relatively high. Tree Algorithms approach 

displays optimal features as it serves as both a considerably satisfactory classification accuracy in much shorter times. The requirements in 

terms of accuracy and time for the recognition of drowsiness should determine the method to be applied. 
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1. Introduction 

The widespread application of artificial intelligence have brought 

radical changes and innovations in the automotive industry. 

Among the recent technologies employed, studies on ensuring 

safe-drive quality have been a focus of interest. Drowsiness, which 

can be described as feeling abnormally sleepy during the day is 

undoubtedly one of the most important factors that causes traffic 

accidents [1]. Several reasons can yield to drowsiness including 

fatigue, sleep disorders, long-term concentration, and monotonous 

work. Therefore, recognition of the drowsiness of drivers using 

sensors and information technology is an important topic for 

advanced driver-assistance systems [2]. Detection and prevention 

of drowsiness using wearable sensors, signal and image processing 

technologies emerge as a handy tool to reduce risks of traffic 

accidents.  

The emergence of intelligent systems and the rapid development 

of internet of things and wearable sensor technology provide 

opportunities for detecting driver drowsiness. Numerous methods 

in this regard have been proposed in recent years [3–7]. One 

approach considers the collection of vehicles driving parameters, 

such as speed, acceleration, lane tracking errors and turning 

indicator usage by sensors and their evaluation [8,10]. However, 

external factors such as the effects of other drivers, vehicle 

dynamics and weather conditions also have a significant impact on 

determination of driver drowsiness. Another method focuses on 

measuring driver behaviour characteristics, such as blink rates, 

yawning frequency and facial expressions, using cameras and 

image processing techniques [11, 12]. In this method, low accuracy 

values can be encountered depending on the driver's personal 

characteristics and the amount of light in the environment. 

Therefore, drowsiness detection systems, in which physiological 

parameters such as electrocardiogram (ECG), electrooculogram 

(EOG), electromyogram (EMG), electroencephalogram (EEG) 

and photoplethysmogram (PPG) are evaluated, give more 

objective and accurate results [13,14]. Among them, EEG, which 

analyses the electrical activity of the brain, is the most common 

strategy as it is demonstrated to due to its high efficiency in 

identification of driver drowsiness [15-19]. 

There are many studies in the literature using EEG signals and 

artificial intelligence methods for drowsiness detection. Chaabene 

et al. [20] developed a new EEG-based drowsiness detection 

system based on a convolutional neural networks (CNN) model. 

The average classification accuracy of the system using 14 

channels of EEG signals received on the Emotiv EPOC+ was 

found to be 90.14%. Ren et al. [21] established a two-level learning 

hierarchy radial basis function neural network for EEG-based 

driving fatigue detection to optimize the classification 

performance. The average accuracy value of the system in which 

the fatigue and alert states are determined as 92.71%. Rundo et al. 

[22] proposed a CNN-based drowsiness detection system, which is 

consisted of seven layers and was trained on EEG spectrogram 

images. Results with 62 volunteers showed that the system reached 

100% accuracy in drowsy/wakeful discrimination. 

The contribution of this study to the literature is the comparison of 

the most widely used machine learning algorithms to determine 

whether a vehicle driver is in a state of drowsiness or not with EEG 

signals. By using the 16 channel EEG signals in the EEG dataset 

published by Cattan et al. [23], the classification of drowsiness 

state was made with 26 different types of 8 different machine 

learning algorithms. These algorithms are Decision Trees, 

Discriminant, Regression, Naïve Bayes, Support Vector Machines 

(SVM), k-Nearest Neighbor (KNN), AI-based classification and 
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community classification. The performance evaluation of these 

methods and their comparison were made based on classification 

accuracy and training time. 

2. Material and Method 

2.1. EEG Signal Analysis 

EEG signals have five different frequency bands: alpha, beta, 

gamma, theta, and delta. These frequencies and stages are shown 

in Table 1. The onset of drowsiness and relaxed wakefulness are 

determined by alpha waves. Attenuation of alpha waves has been 

reported as the most valid electro-physiological marker of sleep 

onset period (SOP) in many sleep studies [24-26]. 

Table 1. EEG frequency bands and stages 

Band Frequency (Hz) Stage 

Delta 0.5 - 4 Deep sleep 

Theta 4 - 8 Light sleep 

Alpha 8 - 12 Eyes closed, quiet wakefulness 

Beta 12 - 30 Wakeful, active 

 

In this study, the EEG Alpha Waves dataset published by Cattan et 

al. [23] was used. The dataset contains EEG recordings of 20 

subjects (7 female, 13 male) with a mean age of 25,8 in a simple 

resting-state eyes open/closed experimental protocol. EEG signals 

were acquired using a research grade amplifier (g.USBamp) and 

the EC20 cap equipped with 16 wet electrodes (EasyCap), placed 

according to the 10-20 international system. The locations of the 

electrodes were FP1, FP2, FC5, FC6, FZ, T7, CZ, T8, P7, P3, PZ, 

P4, P8, O1, Oz, and O2. Figure 1 shows the locations of the 

electrodes on the head. The reference electrode was placed on the 

right earlobe and the ground at the AFZ scalp location. Data 

collected via OpenVibe [27-29] software. No digital filter was used 

during data collection and sampling frequency was 512 Hz. The 

processing of the EEG signals is carried out in three stages: 

preprocessing, feature extraction/dimensionality reduction and 

feature classification. Preprocessing is done to prepare the raw data 

before classification. There are many preprocessing techniques, 

but the commonly used methods are Common Spatial Patterns 

(CSP) and Independent Component Analysis (ICA). Feature 

extraction is used to reduce the data count of a large dataset. It is 

the process of identifying a set of features or image characteristics 

that will most efficiently and most meaningfully represent 

information important for analysis and classification [30]. In 

Figure 3, the preparatory steps of the raw EEG data taken before 

the classification is shown. The raw EEG signal is preprocessed in 

the time domain (TD), frequency domain (FD) and time-frequency 

domains (TFD) using Butterworth filter, Fourier Transform and 

wavelet transform. Then, Delta, Theta, Alpha, Beta waves, which 

are defined with different frequency ranges in each area, are used 

to extract the relevant features. However, in this study, raw data 

was used to evaluate the ability of each algorithm to extract 

features from unfiltered data. Although this is extremely 

meaningful since it does not require extra software and hardware 

elements, it is one of the remarkable aspects of this study. 

2.2. Detection and Classification of Sleepiness with EEG Data 

EEG signals are evaluated by machine learning algorithms and 

classified. It is desired to make two separate classifications of the 

signals given as input to machine learning algorithms as sleep 

transition phase and wakefulness state. The phase of transition to 

sleep state is determined according to the frequency ranges of the  

 

Fig. 1.  EEG electrode positions placed on the scalp. 

 

signals. The signals were classified as 1 in the transition to sleep 

state, that is, when alpha waves are active (8-12 Hz), and 0 in the  

active state of mind (12-30 Hz) without sleep state. This 

classification is shown in Table 2. The block diagram of the 

classification algorithm is shown in Figure 2. The EEG data were 

classified and tested with 25 different algorithms under 8 different 

machine learning methods. The performance of each algorithm 

according to classification accuracy and training time criteria 

under 3 different validation methods (cross validation 5, cross 

validation 10 and no validation) has been demonstrated. Here, 

cross validation (5) is a validation system and cross validation is 

done by dividing the data into 5 parts. Likewise, in cross validation 

(10), cross validation is performed by dividing the data into 10 

parts. In the No Validation method, the data is not separated as test 

and training data, but all data is included in the training and tested. 

 

Fig. 2.  Block diagram of the classification process 

 

Table 2. EEG signal classification according to sleep stages 

 

 

 

 

 

 

Classification Range Output value Stage 

8 – 12 Hz 1 Sleep stage 

12 – 30 Hz 0 Wakeful 
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Fig. 3. Feature extraction architecture

 

3. Results and Discussion 

The classification accuracies and training times of 25 different 

machine learning models are given in Table 3, and the training, 

validation and testing rates of the artificial intelligence 

classification method and the classification accuracy are given in 

Table 4. Different training methods were used for the machine 

learning models in Table 3. In the machine learning model in Table 

5, 65% of the data was reserved for training, 20% for validation 

and 15% for testing, and an accuracy rate of 98.1% was obtained. 

In this study, no validation and cross validation were used as 

classification techniques. In the no validation technique, the data 

does not separate as training and test data, it learns all of them and 

then classifies them by testing them all again. In some 

classifications made using no validation in the study, a high 

accuracy rate of 100% was obtained. In this case, excessive 

learning may have occurred because the data in the system is not 

separated as training and testing. For this reason, the results 

obtained using cross validation are given in the table and 

compared. Cross validation is an important factor preventing 

excessive learning. It's also a smart technique that helps us make 

better use of data. In this method, the data is randomly selected and 

divided into k subsets. A subset is used to validate the model 

trained using the remaining subsets. This process is repeated k 

times, with each subset used exactly once for each subset 

validation. This method is one of the most popular techniques, but 

it can take a long time to execute because the model has to be 

trained repeatedly.  The accuracy rates obtained   by choosing the 

k value as 5 and 10 in cross validation are given in Table 4. A low 

accuracy rate was obtained in the Logistic Regression model cross 

validation (5) and (10) validation types included in the Regression 

algorithm in Table 4. 

Coarse KNN, which is included in the KNN algorithm, and 

Boosted Trees, RUSBoosted Trees models, which are included in 

the Ensemble algorithm, gave low accuracy in all three training 

types, the training times were also long. Therefore, it is not 

appropriate to use these machine learning algorithms for 

drowsiness detection with EEG signals. In the Fine Tree, Medium 

Tree and Coarse Tree models included in the Tree Algorithm, the 

same accuracy rate has emerged for each verification type. These 

classification accuracy rates are 96.2%, 98.1% and 100%, 

respectively. The training times of these classification models are 

also shorter compared to other models.  In addition, it is seen that 

the artificial neural network-based classification model has a 

classification accuracy rate of 98.1%. 
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Table 3.  Machine learning algorithms examined in this study 

Table 4. Classification accuracy and training time according to machine learning algorithms 

 

The training, validation, testing, and the total confusion matrices 

are shown in Figure 4. Here, 97.1%, 100%, 100% and 98.1% 

classification accuracy rates were obtained, respectively. Here, 12 

of the data allocated for training represent the wakefulness phase, 

and 12 data of them were predicted correctly. The remaining 22 

data represent the transition to the sleep stage. Of these 22 data, 21 

data were predicted correctly and 1 was predicted incorrectly. Of 

the data allocated for the validation confusion matrix, 3 represent 

the wakefulness stage and 3 were correctly predicted. The 

remaining 7 data represents the transition to the sleep stage. All of 

these data have been estimated correctly. In addition, 5 of the data 

allocated for the Test represent the waking stage and all were 

correctly estimated. The remaining 3 data represent the transition 

to the sleep stage. All of these data have been estimated correctly. 

And finally, all the data, namely 52 data; 20 of them represent the 

wakefulness stage and all have been predicted correctly. The 

remaining 32 data represent the transition to the sleep stage. In 

these data, 31 of them were predicted correctly and 1 of them was 

predicted incorrectly. Figure 5 shows the error histogram. This 

figure represents the error between actual output and predicted 

output of the processing data. The ideal line for minimum errors 

during the training, validation, and testing stages displays the 

efficiency of the ANN model and Figure 6 shows the best 

validation performance graph. Here, the best validation 

performance was realized in 74 iterations and the best validation 

value was found to be 0.06223. In Figure 7, the Receiver operating 

characteristic (ROC) curve is shown separately as training, 

validation and test. Here it is seen that the curves are linear. 

According to these results, the classification appears to be good, 

but these data are not sufficient to prove that the classification is 

good. 

 
Table 5. ANN classification accuracy 

Training (%) 
Validation 

(%) 
Testing (%) 

Accuracy 

(%) 

65 20 15 98,1 

 

 

Decision Trees Discriminant Regression Naïve Bayes SVM KNN Ensemble AI 

Fine Tree 
Quadratic 

Discriminant 

Logistic 

Regression 

Gaussian 

Naïve Bayes 
Linear SVM Fine KNN Boosted Trees 

AI 

Classification 

Medium Tree 

 

Kernel Naïve 
Bayes 

Quadratic SVM 
Medium 
KNN 

Bagged Trees 

 

Coarse Tree 

 

Cubic SVM 
Coarse 

KNN 
Subspace KNN 

 

Fine Gaussian 
SVM 

Cosine 
KNN 

Subspace 
Discriminant 

Medium 

Gaussian SVM 
Cubic KNN 

RUS Boosted 

Trees 

Coarse Gaussian 
SVM 

Weighted 
KNN 

 

Algorithm Model Type 

Cross Validation (5) Cross Validation (10) No Validation 

Classification 

Accuracy (%) 

Training 

Time (sec) 

Classification 

Accuracy (%) 

Training 

Time (sec) 

Classification 

Accuracy (%) 

Training 

Time (sec) 

Tree 

Fine Tree 96,2 64.913 98,1 113.92 100 15.418 

Medium Tree 96,2 224.18 98,1 119.73 100 17.407 

Coarse Tree 96,2 61.115 98,1 122.59 100 17.121 

Discriminant 

Linear Discriminant 80,8 79.372 78,8 134.55 100 25.184 

Quadratic 

Discriminant 
- - - - - - 

Regression Logistic Regression 57,7 433.67 44,2 719.73 100 91.802 

Naïve Bayes 
Gaussian Naïve Bayes 98,1 194.58 96,2 330.53 96,2 48.13 

Kernel Naïve Bayes 98,1 584.48 96,2 991.9 96,2 114.19 

SVM 

Linear SVM 96,2 123.97 96,2 241.81 96,2 31.539 

Quadratic SVM 96,2 139.1 96,2 233.56 96,2 32.302 

Cubic SVM 98,1 183.3 96,2 254.22 96,2 33.972 

Fine Gaussian SVM 96,2 193.98 98,1 349.88 98,1 44.21 

Medium Gauss SVM 96,2 239.13 96,2 352.58 96,2 45.461 

Coarse Gauss SVM 86,5 251.99 84,6 365.77 86,5 47.225 

KNN 

Fine KNN 98,1 251.4 100 448.42 100 57.429 

Medium KNN 98,1 426 96,2 456.56 96,2 58.614 

Coarse KNN 59,6 298.78 59,6 469.75 59,6 57.897 

Cosine KNN 96,2 316.39 96,2 484.86 96,2 58.924 

Cubic KNN 98,1 309.43 96,2 562.46 96,2 71.169 

Weighted KNN 96,2 354.38 98,1 572.02 100 69.92 

Ensemble 

Boosted Trees 59,6 359.54 59,6 560.22 59,6 67.058 

Bagged Trees 98,1 366.94 100 584.64 100 69.18 

Subspace Discriminant 82,7 414.19 80,8 656.12 98,1 78.844 

Subspace KNN 98,1 414.26 100 652.28 100 79.787 

RUS Boosted Trees 59,6 417.53 59,6 649.23 59,6 75.734 

 

http://en.wikipedia.org/wiki/Sordariomycetes
http://en.wikipedia.org/wiki/Leotiomycetes
http://en.wikipedia.org/wiki/Sordariomycetes
http://en.wikipedia.org/wiki/Dothideomycetes
http://en.wikipedia.org/wiki/Dothideomycetidae
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Fig. 4. ANN confusion matrices 

Fig. 5. Error histogram graph 

Fig. 6. Best validation performance 

Apart from these results, the efficiency of the performance of 

machine learning is also determined by using data such as true 

positive rate, false positive rate, true negative rate and false 

negative rate. These data are used for sensitivity and specificity, to 

describe the clinical diagnostic test, and to estimate how well the 

test is. The terms TP, TN, FP and FN are used for accuracy, 

sensitivity and specificity. These can be defined as; TP, number of 

people predicted as positive and actually positive. TN, the number 

of people who were negatively predicted and actually negative. FP, 

number of people predicted positive and actually negative. FN, 

number of people predicted negatively and actually positive 

[31,32]. In Figure 8, the terms TP, TN, FP and FN are shown on 

the confusion matrices. In addition, in Figure 9, the terms TP, TN, 

FP and FN are visualized for better understanding. Here, the stars 

in the TN cluster are negatively predicted and actually negative 

data. Stars within the FP cluster are data that are predicted 

positively but actually negative. The circles inside the FN cluster 

are data that are predicted negatively but are actually positive. The 

circles inside the TP set are positively predicted and actually 

positive data. 

Fig. 7. ROC curves 

 

Fig. 8. Confusion matrices 

In classification, prediction accuracy is the ratio of correctly 

classified data to all data in the cluster, as seen in Eq. (1). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

P+N
=  

TP+TN

TP+TN+FP+FN
                                                       (1)   

 

Classification recall and sensitivity, on the other hand, calculates 

the probability that the positive data will also be positive in the 

prediction, and it is as seen in Eq. (2).        

                 

𝑅𝑒𝑐𝑎𝑙𝑙, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

P
=

TP

TP+FN
                                                           (2) 

 

Specificity in classification is the ratio of predicted negative data 

to actually negative data, as seen in Eq. (3). 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

N
=  

TN

TN+FP
                                                         (3) 

Precision in classification gives the ratio of positively predicted 

data to the total number of positively data and is as shown in Eq. 

(4). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
                                                                      (4) 

F1 in classification is the Harmonic mean of recall and precision, 

as seen in Eq. (5).  

F1 =
2TP

2TP+FP+FN
                                                                          (5) 

Accuracy, Recall, Sensitivity, Specificity, Precision, F1 values are 

calculated according to each of the machine learning algorithms 

method in Table 4 and shown in Table 6. Considering the data 

obtained in Table 6, although the specificity value of the Logistic 

regression, Coarse KNN, Boosted Trees and RUS boosted 

algorithms is 100%, the values of accuracy, recall/sensitivity, 

precision, F1 were found to be 59%, 0%, 0%, respectively. The 

data here is obtained for Cross Validation (5). In cross validation 

(10), only the accuracy, recall/sensitivity, specificity, precision and 

F1 values of the logistic regression method were different from 

cross validation (5). In the No validation method, the accuracy, 

recall/sensitivity, specificity, precision and F1 values of the 

Logistic regression method were 100%, which is quite good. 

However, good results in no validation do not mean that this 

method is suitable for this study because cross validation (5) and 

(10) give poor results. As in cross validation (5) and (10) of Course 

KNN, Boosted Trees and RUS boosted algorithms, accuracy, 

recall/sensitivity, specificity, precision and F1 values were found 

to be 59%, 0%, 100%, 0%, 0%, respectively. It has also been 

confirmed by these data that it is not possible to use these 

algorithms. The same accuracy, recall/sensitivity, specificity, 

precision and F1 values were obtained for each verification type in 

the Thin Tree, Medium Tree and Coarse Tree models in the Tree 

Algorithm. These are 96%, 100%, 93%, 90% and 95%, 

respectively, in the cross validation (5). In cross validation (10), it 

is 98%, 100%, 96%, 95% and 97% respectively. In the no 

validation, all values were obtained as 100% and according to these 

values, it is proven that the tree algorithms are suitable for this 

study. 

As seen in the results, Table 4 and Table 6 confirm each other. In 

the ANN Classification method, accuracy, recall/sensitivity, 

specificity, precision and F1 values were calculated as 98%, 95%, 

100%, 100%, 97%, respectively. These results show that the 

performance of the classification is high. In addition, these values 

are shown in Table 7. As a result, the most appropriate method 

should be chosen by the developers considering the minimum 

accuracy rate and the maximum time required for classification 

that must be met in the system to be designed for drowsiness 

detection. 

Fig. 9. The process of forming the confusion matrix 

Table 6.  Change of accuracy, recall/sensitivity, specificity, precision and F1 values according to classification algorithms 

A
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Model 

Type 

Cross Validation (k=5) Cross Validation (k=10) No Validation 

A
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u
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S
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n
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S
p

e
ci
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y 
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si
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S
e
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S
p

e
ci

fi
c
it

y 

P
re

ci
si

o
n

 

F
1
 

T
r
ee

 

Fine Tree 0.96 1 0.93 0.90 0.95 0.98 1 0.96 0.95 0.97 1 1 1 1 1 

Medium 

Tree 
0.96 1 0.93 0.90 0.95 0.98 1 0.96 0.95 0.97 1 1 1 1 1 

Coarse 

Tree 
0.96 1 0.93 0.90 0.95 0.98 1 0.96 0.95 0.97 1 1 1 1 1 

D
is

cr
im

in
a

n
t 

Linear 

Discrimin

ant 

0.80 0.76 0.83 0.76 0.76 0.78 0.77 0.61 0.66 0.71 1 1 1 1 1 

Quadrati

c 

Discrimin

ant 

- - - - - - - - - - - - - - - 

R
eg

re

ss
io

n
 Logistic 

Regressio

n 

0.59 0 1 0 0 0.44 0.34 0.53 0.71 0.50 1 1 1 1 1 
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Table 7. Variation of accuracy, recall/sensitivity, specificity, precision 

and F1 values according to ANN classification algorithm 

4. Conclusion 

In conclusion, performance analysis on 25 models of 8 different 

machine learning algorithms using EEG signals in a data set 

collected from 20 different subjects was studied for the detection 

of drowsiness. Thus-obtained performance data were compared by 

means of classification accuracy and classification time. 

Accordingly, the Tree Algorithm showed the optimal display in 

terms of both accuracy and classification time in 3 different 

validation types. The reasons for the good performance of tree 

algorithms can be attributed to its simple classification logic, 

rapidity, less data cleaning required after created, no necessity of 

data preprocessing. In addition, since the missing values in the data 

will not significantly affect the formation of the decision tree 

unlike other classification algorithms, the methodology serves high 

performance. It should also be noted that the Bagged Trees and 

Subspace KNN models, which are included in the Ensemble 

algorithm, gave better results in terms of classification accuracy 

compared to the Tree Algorithms despite their long classification 

time. Therefore, the priorities in determining the most appropriate 

technique should be selected according to the expectations and the 

area of practice.  

Performance tests run by creating a hybrid structure that includes 

other measurements (driving parameters, facial expressions, other 

physiological signals etc.) used in the detection of drowsiness is 

also an interesting topic to increase the efficiency of the artificial 

intelligence in safety driving. Studies in this line are now in 

progress. 
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