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Abstract: Recently, discovering helpful information from a database consisting of transactions has been a critical research topic. Several 

frequent itemsets mining for association rule mining, algorithms that can only handle binary databases have proposed. Transactions using 

numerical values, on the other hand, are ubiquitous in real-world applications. Thus, with reference to the quantitative transactional 

database, several algorithms were developed and “fuzzy frequent itemsets” (FFI) were discovered. Most of them just consider the term 

having maximum cardinality. As a result, the number of fuzzy regions processed is equal to the number of original elements. Multiple 

fuzzy zones of an item, on the other hand, give a better result for making a correct decision. This study presents an AMFFI-miner 

(Adjacency matrix-based Multiple Fuzzy Frequent Itemsets) for discovering multiple FFIs out of a quantitative transactional database. An 

adjacency matrix and fuzzy-list structure were designed to find multiple FFIs by scanning database only once and generates less number 

of candidate itemsets. Join two nodes if its co-occurrence between two fuzzy linguistics terms satisfies minimum support threshold by 

finding the co-occurrence between two fuzzy linguistics terms directly from the adjacency matrix, thus reducing the number of nodes 

joining and speeding up discovering multiple FFI. Experiments carried out to compare the suggested method's performance to that of 

existing methodologies based on running time, memory utilization, and the number of nodes joining. 
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1. Introduction 

Multiple Techniques belonging to “Data mining” are used for 

discovering the valuable “knowledge from datasets” called as 

(KDD)[1]. Methods of KDD are mainly classified as association 

rule mining (ARs) [1-3], Classification [4][5], and Clustering [6]. 

Amongst all of the techniques employed for mining frequent 

itemsets (FIs), the ARs are the most commonly used one. Apriori 

algorithm is first presented by Agrawal et al. [2] to mine ARs in a 

“level-wise” approach. It first generates candidate itemsets and 

applies pruning on them for finding the FIs at each level. This 

method requires scanning the database multiple times and 

generating numerous candidate itemsets, which is a time-

consuming computation. 

Han et al.[7] proposed a data structure called FP-tree (Frequent – 

Pattern Tree) to detect FIs without candidate generation using FP-

growth mining technique. The FIs can discover quickly using this 

technique.  

Quantitative databases provide higher details for analyzing and 

taking decision in real-world scenarios than typical binary 

databases. Quantitative databases built on crisp sets, on the other 

hand, are difficult to manage. To manage quantitative databases 

using fuzzy set theory, pre-established membership functions are 

employed for translating the quantitative values of a transaction 

into a representation of language concepts [8]. Hong et. al [9] 

proposed a level-wise strategy for mining fuzzy data to produce 

“fuzzy frequent itemsets”(FFIs). The maximum cardinality value 

is use in this method to generate frequent itemsets at each level. 

The maximum cardinality mechanism minimizes the cost of 

discovery calculation fuzzy frequent itemsets, but some 

information may be lost. Hong et. al [10] presented an effective 

strategy to discover complete fuzzy frequent itemsets using the 

Gradual Data-Reduction Strategy. Lin et al. then provided a 

number of techniques MFFIs can be mined depending on their tree 

topology [11-13]. Despite the fact that tree-based algorithms beat 

Apriori-like algorithms technique, MFFI mining still necessitates 

computation. Next, Lin et al. [14] proposed various algorithms, for 

discovering FIIs from their designed fuzzy list structure. Lin et al. 

[15] proposed two pruning procedures to reduce size of search 

space. However, the levels of calculation costs needed for 

discovering the multiple FFIs are still required.  

 

This study proposes an adjacency matrix and a “fuzzy-list” 

structure for mining multiple FFIs called AMFFI-miner 

(Adjacency matrix-based multiple fuzzy frequent itemsets). In this 

method, first, scan the database and generate an adjacency matrix 

and fuzzy list. Join two nodes if its co-occurrence between two 

fuzzy linguistics terms is greater or equal to minimum support 

threshold by finding directly from the adjacency matrix, thus 

reducing the number of nodes joining so AMFFI-miner algorithm 

generates a smaller number of candidate itemsets to minimize 

search space. Find L2 (2-frequent itemsets) directly from the 

adjacency matrix. As a result, the cost of computing mining MFFIs 
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can be greatly decreased. Experimental results prove superiority of 

proposed approach as compared to other prevalent techniques. 

2. Related Work 

Delgado et. al [16] proposed method to find fuzzy ARs for both 

types of databases namely relational and quantitative. Hong et. al 

[17] presented a novel method based on Apriori Tid data structure 

to get frequent patterns for increasing itemsets from quantitative 

databases. Hong et. al [18] used an FP-tree structure called FUFP-

tree for reducing execution time in case of insertion or arrival of 

new data. Lin et. al [19] used the same FP-tree-like structure called 

FFP-tree (fuzzy frequent pattern) to discover FFIs from 

quantitative databases. There are some limitations which are 

resolved by Lin et. al [20][21]. Here, the authors proposed a 

compressed fuzzy frequent pattern (CFFP-tree) structure and the 

upper bound fuzzy frequent pattern (UBFFP-tree) structure. The 

CFFP-tree [20] and UBFFP-tree [21] structures, like the FFP-tree 

[19], use a global sorting approach for reducing the amount of tree 

nodes. In UBFFP [21] method used upper bound value for mining 

FFIS then CFFP-tree [20] method. Li et. al [22] proposed the FC-

Tree structure and FCFI-miner (Fuzzy closed frequent itemsets 

miner) for discovering FFIS. In this method, the author used a 

superset pruning strategy for speeding up mining. To find complete 

information of all linguistic terms in the fuzzy set, authors discover 

MFFIs (Multiple fuzzy frequent itemsets). Hong et. al [11] 

proposed MFFP-tree structure and MFFP-growth mining method 

to discovering MFFIs. Similarly authors designed CMFFP-tree 

[12] and UBMFFP-tree [13] methods to generate MFFIs based on 

CFFP-tree [20] and UBFFP-tree [21], respectively. Lin et. al [15] 

designed a Fuzzy-list structure and MFFI-miner method to 

discover MFFIs. In this method author used two different pruning 

strategies for reducing the search space, running time and running 

space. In [23], authors used complex fuzzy list (CFL)-structure 

same like fuzzy list structure [15] and used type-2 membership 

function for discovering MFFIs. Fuzzy-set theory based various 

algorithms for discovering the knowledge in different application 

domains are also developed [24-26]. 

3. Problem Fundamentals and Research Gap  

The Itemset-I = {i1, i2, . . .,im} is a finite set of m unique items. The 

quantitative database D contains n number of transactions such that 

D= {T1, T2, T3, . . . , Tn}. In which each transaction says Tq ∈ D 

and Tq ∈ I. As well as each transaction has a unique identifier, that 

says TID. Each transaction Tq consists item with its purchase 

quantity value, say wiq. A k length itemsets K= {i1, i2…ik} is called 

k-itemsets.  

Table 1 shows a sample quantitative dataset, say D, consisting of 

seven transactions in the following example. In this example, 

consider minimum support Ø=1. Membership function £ shown in 

figure 1. 

Table 1. Sample dataset (Quantitative) 

Transaction ID Item: Quantity 

TID_1 A: 5; B: 10; C: 2; D: 9 

TID_2 B: 8; C: 2; E: 3 

TID_3 A: 5; B: 3; C: 10; E: 11 

TID_4 A: 1; C: 8; D: 3 

TID_5 A: 5; B: 2; C: 6 

TID_6 B: 3; C: 10; D: 2; E: 2 

TID_7 C: 3; E: 9 

 

 

Fig. 1. Membership values  

Table 2. Fuzzy dataset 

Transaction 

ID 

Linguistic terms of items 

TID_1 AL-0.2 + AM-0.8, BM-0.2 + BH-0.8, CL-0.8 + CM-
0.2, DM-0.4 + DH-0.6 

TID_2 BM-0.6 + BH-0.4, CL-0.8 + CM-0.2, EL-0.6 + EM-0.4 

TID_3 AL-0.2 + AM-0.8, BL-0.6 + BM-0.4, CM-0.2 + CH-

0.8, EH-1.0 

TID_4 AL-1.0, CM-0.6 + CH-0.4, DL-0.6 + DM-0.4 

TID_5 AL-0.2 + AM-0.8, BL-0.8 + BM-0.2, CM-1.0 

TID_6 BL-0.6 + BM-0.4, CM-0.2 + CH-0.8, DL-0.8 + DM-

0.2, EL-0.8 + EM-0.2 

TID_7 CL-0.6 + CM-0.4, EM-0.4 + EH-0.6 

Fuzzy frequent itemsets mining method generally follow the 

following three steps. 

Step 1: Find membership value of each item: 

Quantities of an item i say wiq represented in a linguistic variable 

say Li. In natural language representation, linguistic terms Li will 

be (Li1, Li2,…,Lih). Here h is defined by the membership function 

and h= no. of fuzzy regions of an item. For example, a 3-linguistic 

term membership function generates High-H, Middle-M and Low-

L. Similarly, a 2-linguistic term membership function generates 

High-H and Low-L. Based on the membership function £, fuzzy 

terms are obtained from the quantitative value. The fuzzy linguistic 

term is fuzzy set fiq, where i is an item in a transaction Tq. 

fiq={ Li1 - fwiq1 + Li2 - fwiq2 + . . . . +  Lih- fwiqh}. 

Fwiqk is the fuzzy value of k-th linguistic terms of Lik, 1≤ k≤h, and 

fwiqk⊆ [0, 1]. 

 

For example, item A with quantity five is represented in linguistic 

terms (AL- 0.2, AM- 0.8, AH- 0.0) by 3-term membership function 

£ used in the above example. First, apply membership function £ 

to transform quantitative dataset into fuzzy set say D’ of different 

linguistic terms for all item shown in Table 2. In fuzzy set 

generated linguistic terms are denoted as fuzzy itemsets. Here in 

example AL-0.2 consider as linguistic variable A-low with 0.2 

fuzzy values, same style use for other all. 

Step 2: Find scalar cardinality of each fuzzy itemsets and 1-

fuzzy frequent itemsets: 

The scalar cardinality of fuzzy itemset Lik denoted as sup (Lik). In 

this step, find the support of each fuzzy itemsets. This defined as 

follow: 

Sup (Lik) =∑ (fwiqk)𝑞=𝑛
𝑞=0,   𝐿𝑖𝑘⊆Tq ^ Tq𝜖𝐷′ .   

Where fwiqk is the fuzzy value of fuzzy item Lik and D' is a fuzzy 

dataset. 

For example, the fuzzy value of AL is 0.2, 0.2, 1.0, and 0.2 from 

transactions 1, 3, 4, and 5, respectively, according to the example 

taken.  Scalar cardinality or support of AL = 1.6, it is a summation 

of all of its fuzzy values. Find scalar cardinality of all fuzzy 
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itemsets. If scalar cardinality >= Ø, where Ø is the minimum 

support threshold then, save the corresponding fuzzy item into 

fuzzy 1-frequent itemsets (FL1). Verify for each fuzzy item sup 

(Lik), if satisfied with minimum support threshold then store in 

FL1. 

FL1= FL1 ∪ (sup (Lik) >= Ø). 

Step 3: Finding the support value: 

Fuzzy 1-frequent itemsets (FL1) generate next-level fuzzy 

frequent itemsets say fuzzy k-itemsets where k ≥2. Using join 

operation joins fuzzy items from FL1 and generates candidate set 

say FC2 (fuzzy 2-candidate itemsets). Consider itemset X created 

by joining itemset A and B from FL1. Sup(X) = Support of 

itemset:X, calculated by summing up the minimum fuzzy value of 

fuzzy itemset A and B from truncation Tq, where X ⊆ Tq and Tq 

∈ D’. This defined as follow: 

Sup(X) = 𝑋 ∈ 𝐿𝑖 ∕  ∑ 𝑚𝑖𝑛(fwaql, fwbql)
𝑞=𝑛
𝑞=0,   X⊆Tq^ Tq𝜖𝐷′ .   

From FC2 itemsets that satisfy minimum support threshold Ø then 

store in fuzzy 2-frequent itemsets (FL2). The same way 

subsequently finds fuzzy k-frequent itemsets. 

4. Proposed works 

In this section, a proposed two-phase approach generates multiple 

fuzzy frequent itemsets. In phase 1, construct adjacency matrix and 

fuzzy-list from quantitative dataset D. Next, efficiently discover 

multiple fuzzy frequent itemsets from adjacency matrix and fuzzy-

list using AMFFI-miner method. In proposed approach efficiently 

generates complete MFFIs by scanning the database only one time. 

4.1. Phase 1(Adjacency matrix and fuzzy list construction): 

Fuzzy list construction takes place in the first phase. Algorithm 1 

shows the construction of the Adjacency matrix and fuzzy list for 

2-fuzzy itemsets.  

Items arranged in ascending order in transaction Tq, Tq ∈ D. Let 

us considers 3-term membership function £. First, construct 

adjacency matrix says AdjMat (M) of size (m *3) X (M *3). Here, 

m= total no. of items as per D.  Here required matrix size is three-

time more than the number of items (m). Matrix size is based on 

membership function. Use the 2-term membership function; then, 

the matrix size is two times more than the number of items. 

AdjMat (M) = (m *t)X (m*t). Here m= total no. of items as per D 

and t = no. of fuzzy region as per membership function. 

Scan transaction Tq and applying membership function £ to 

transform quantitative dataset into a fuzzy dataset of that 

transaction whose TID is q.  Generate a pair of transformed fuzzy 

itemsets for different fuzzy variables from transaction Tq. 

Calculate the minimum fuzzy value of each pair, and then update 

the adjacency matrix's correspondence cell value by adding it and 

inserting the associated fuzzy list.  

AdjMat (Li, Lj) =AdjMat (Li, Lj) +min (fwiq, fwjq) 

Where Li and Lj are fuzzy items whose fuzzy value fwiq and fwjq 

respectively. 

Construct the fuzzy list for Li and Lj if not exist. This fuzzy list 

inserted transaction id q (TID of Tq) and minimum fuzzy value of 

pair as min (fwiq, fwjq). 

Algorithm 1: Construction of the Adjacency matrix and fuzzy 

list for 2-fuzzy itemsets   

Input: Quantitative dataset D, No. of Items M 

Output: Adjacency matrix AM and Fuzzy-list FL 

Step 1: Initialize Matrix AM for ( M  * no of the fuzzy region)  X ( 

M * no of the fuzzy region) 

Step 2: Initialize TID=1 

Step 3: Read line L from D 

Step 4: Repeat through step 7 while L is not the end of file D 

Step 5: Apply membership function on each item's quantitative 

value in L and create fuzzy linguistic terms fl[] of all items.  

Step 6: Store fuzzy value in adjacency matrix AM for all co-

occurrences of fuzzy linguistic terms 

Define FV= min (fuzzy value of fl[i], fuzzy value of fl[j]) 

AM (fl[i], fl[j]) + =   FV 

Create Fuzzy-List of “ ’ fl[i] ‘+’ fl[j]’ “if not exist 

Create element with (TID, FV) & insert into Fuzzy-List of “ ’ fl[i] 

‘+’ fl[j]’ “ 

Step 7: Increment TID by 1 and Read Next Line from D into L 

Step 8: Finished. 

Let us consider an example for the quantitative dataset as table 1 

and membership function as fig 1 for 5 different items from A to 

E. The corresponding constructed the adjacency matrix shown in 

fig 2. 

Scan first transaction (A: 5, B: 10, C: 2, D: 9) from dataset D and 

apply the membership to create fuzzy set (AL-0.2 + AM-0.8, BM-

0.2 + BH-0.8, CL-0.8 + CM-0.2, DM-0.4 + DH-0.6) as shown in 

table 2. So created pair of transformed fuzzy itemsets are AL-BM, 

AL-BH, AL-CL, AL-CM, AL-DM, AL-DH, AM-BM, AM-BH, 

AM-CL, AM-CM, AM-DM, AM-DH, BM-CL, BM -CM, BM -

DM, BM-DH, BH-CL, BH -CM, BH -DM, BH-DH, CL-DM, CL-

DH, CM-DM, and CM-DH. Update all pair co-occurrences into 

adjacency matrix with minimum fuzzy value as shown in fig 3. 

Initially, there is no fuzzy-list created, therefor construct fuzzy-list 

for each pair and TID=1 and minimum fuzzy value is inserted. In 

figure 4 shown some pairs (AL-BM, BM -DM, CL-DH) Fuzzy-

list. The same procedures followed for the next transaction. After 

reading all transaction adjacency matrix (M) looks like shown in 

figure 5 and figure 6 shown some pair (AL-BM, BM -DM, CL-

DH) Fuzzy-list. 

Fig. 2. Adjacency Matrix 

Fig. 3. Adjacency Matrix after a 1st-row scan 
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Fig. 4. Fuzzy-list after a 1st-row scan 

Fig. 5. Adjacency Matrix after all row scan 

Fig. 6. Fuzzy list after all row scan 

4.2. Phase 2(AMFFI-miner to mine MFFIs): 

In case of quantitative transaction data, the proposed AMFFI 

algorithm improved Apriori-like [16][17], FP-tree-like 

[12][13],[18-22], and the fuzzy-list-like [15][23] methods in 

finding FFIs. To reduce the huge no. of candidate generation, we 

utilize the upper triangular of adjacency matrix M. 

In this phase, mine MFFIs from the adjacency matrix (M) row-by-

row using fuzzy lists generated in phase1. 

Scan the row from M and identify the cell with value >= Ø.  Fuzzy-

lists with RowNumber-ColumnNumber of an identified cell 

fetched from fuzzy-lists and declared as fuzzy 2-frequent itemsets 

say FL2 of this row. Subsequently, generate fuzzy k-frequent 

itemsets say FLk (K>2) recursively by intersection operation by 

TIDs on FLk-1. Use the binary search method to find combined 

fuzzy lists quickly. The fuzzy list (FLk) for k-frequent itemsets 

(k>2) is constructed by combining existing fuzzy list of FLk-1. 

Newly constructed fuzzy list consist elements those have common 

Tid in existing fuzzy list. 

To reduce the search space and candidate set, not join fuzzy 

itemsets that cannot generate its superset that knows directly from 

adjacency matrix M. I.e., considering running example where Ø=1, 

read the second row from M. Here, the row number is A.M whose 

cells BL and CM satisfied the min support value. Thus, get FL2 

from this row is AM-BL and AM-CM. By joining this possible 

superset is AM-BL-CM from FL2.However, the proposed method 

does not join this because it knows that generated superset does not 

satisfy the min support value. Here AM-BL and AM-CM are fuzzy 

frequent itemsets. Its superset AM-BL-CM is possible or not 

checked by BL row and CM column cell value. If it is greater or 

equal to min_support value, it may be possible; otherwise, not. In 

our example, this value is zero, which does not satisfy the Ø means 

its superset is impossible. Extensions of these are not fuzzy 

frequent itemsets, so discarded them before joining. This way 

minimizes join operation so vast reducing the candidate set, 

ultimately improving the running time performance. The AMFFI 

and AMFFI-miner methods show in Algorithm 2 and Algorithm 3, 

respectively. 

Algorithm 2: AMFFI method 

Input: AM: adjacency Matrix; FLs: the fuzzy-list; Minsupport 

Output: MFFIs 

Step 1: Initializations  

for each row in AM do 

Initialize fuzzy-list 

L.FL ← null; 

Step 2:   for each cell in row 

 If cell value >= minsupport 

Get fuzzy-list of (F[row.id][cell.id]) from FLs into temp 

  Add temp to L.FL 

 Call AMFFI-miner with L.FL and row_id 

 

Algorithm 3: AMFFI-miner 

Input: AM adjacency Matrix; FLs, fuzzy-list; Minsupport, row_id 

(fuzzy linguistic term) 

Output: MFFIs 

Step 1: for each fuzzy-list A in FLs do 

Step 2: if SUM.A.if>= minsupport then 

  MFFIs ← A ∪ MFFIs. 

Step 3:temp.FLs ← null; 

Step 4: for each fuzzy-list B after A in FLs do 

 If A.ITEM = B.ITEM then 

  Continue; 

 If AM [A.ITEM][B.ITEM] >= minsupport then 

temp.FL ← temp.FLs + Construct (A, B); 

Step 5: AMFFI-Miner (temp.FLs); 

Step 6: Return MFFIs. 

5. Evaluation of Experimental Results 

Here we present the performance analysis of proposed method as 

compared to MFFI-Miner [15]. In [15] authors, make a comparison 

of its own method MFFI-miner with other two methods: GDF [10] 

and UBMFFP tree [21].  The proposed AMFFI and MFFI-miner 

methods coded using Java. The results are analyzed on two real-

life datasets, chess [27], mushroom [27], as well as one synthetic 

dataset, T10I4D100k [27]. In the datasets, the quantities of items 

give randomly in the 1 to 20 intervals. The experimental results 

analyzed in terms of runtime, join count and memory utilization. 

5.1. Runtime Analysis: 

The implemented3-term fuzzy linguistic AMFFI and MFFI-miner 

[15] were evaluated with different minimum support thresholds to 

compare execution running time. The output of execution running 

time evaluated on chess dataset shown in Fig 7, mushroom dataset 

shown in Fig 8 and T10I4D100k dataset shown in Fig 9. 

Fig. 7. Execution time comparisons: Chess dataset 

Tiid Fuzzy Value Tiid Fuzzy Value Tiid Fuzzy Value

1 0.2 1 0.2 1 0.6

3 0.2 6 0.2

5 0.2

A.L-B.M B.M -D.M C.L-D.H

Tiid Fuzzy Value Tiid Fuzzy Value Tiid Fuzzy Value

1 0.2 1 0.2 1 0.6

A.L-B.M B.M -D.M C.L-D.H
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Fig. 8. Execution time comparisons: Mushroom dataset 

Fig. 9. Execution time comparisons: T10I4D100k dataset 

MFFI-miner [15] outperforms the GDF [10] and the UBMFFP tree 

[21] in terms of running time. The proposed AMFFI method 

outperforms MFFI-miner method. Thus it proves to be the fastest 

amongst the three namely MFFI-miner [15], GDF [10] and 

UBMFFP tree [21]. The AMFFI method also exhibits its 

robustness when a lower minimum support threshold taken. 

5.2. Join counts Analysis: 

In this section, performance evaluated for the number of join count 

that occurs when generating MFFIs. The number of join counts for 

the chess dataset shown in Fig 10, mushroom dataset in Fig 11, and 

T10I4D100k dataset in Fig 12. 

The result shows that the AMFFI method generates fewer join 

counts (candidate itemsets). It also observed that the most 

remarkable performance given the AMFFI method is the number 

of join counts. As compared to state-of-the-art methods, the 

proposed AMFFI method generates fewer candidate itemsets. 

 

Fig. 10. Number of joint count comparisons on Chess dataset 

 

 

Fig. 11. Number of joint count comparisons on Mushroom dataset 

Fig. 12. Number of joint count comparisons on T10I4D100k dataset 

5.3. Memory Usage Analysis: 

Here, performance evaluated concerning the utilization of memory 

when evaluating experiments. The memory usage shows for the 

chess dataset in Fig 13, mushroom dataset in Fig 14 and 

T10I4D100k dataset in Fig 15. 

The result shows that on the chess and mushroom dataset AMFFI 

method requires less memory than the existing MFFI-miner 

method. It also observed that on the synthetic T10I4D100k dataset 

AMFFI method requires more memory than the MFFI-miner 

method. From doing other experiments with different datasets, we 

can derive a special case where number of items in a dataset is 

higher than 1000, the proposed AMFFI will need a higher memory. 

 

Fig. 13. Memory usage comparisons on Chess dataset 
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Fig. 14. Memory usage comparisons on Mushroom dataset 

Fig. 15. Memory usage comparisons on T10I4D100k dataset 

6. Conclusions: 

With an objective to mine multiple fuzzy frequent itemsets 

efficiently, this paper presents an adjacency matrix as data 

structure and the AMFFI method. In comparison to the state-of-

the-art methods, It generate fewer candidate itemsets by using an 

efficient search strategy. In addition, it generates fewer join counts 

(candidate itemsets), which in turn increasing the execution time 

performance. As far as the memory requirement is concerned, it is 

directly proportionate to the number of items in the dataset as 

discussed as a special case in section 5.3, in all other scenarios it 

utilizes comparatively less memory. 
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