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Abstract: Tree-Seed algorithm, TSA for short, is a population-based metaheuristic optimization algorithm proposed for solving continuous 

optimization problems inspired by the relation between trees and their seeds in nature. The artificial agents in TSA are trees and seeds 

which correspond to possible solutions to the optimization problem, and the optimization procedure is executed by the interaction between 

trees and seeds. In this study, a programming version of this algorithm by using a crossover solution generation mechanism has been 

proposed. The proposed algorithm is called TSp and its performance has been investigated on two problems, one of them is symbolic 

regression benchmark functions and the other is the long-term energy estimation model of Turkey. Firstly, the continuous parts of TSA, 

which are initialization and solution generation mechanisms, have been modified to solve automatic programming problems. The solution 

representation is also modified to solve the problem addressed by the study. As a result of these modifications, TSp has been obtained and 

applied to symbolic regression problems for performance judgment, energy estimation problems for real-world application. The 

experimental results of TSp have been compared with those of Genetic Programming, it is concluded that TSp is better than the GP in 

solving energy estimation problems. 
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1. Introduction 

Energy is one of the most important factors for a sustainable life. 

This factor, whose importance can be easily understood and 

exemplified, has an important place in the social and economic 

development of a country. Due to the exponential increase in 

energy consumption, world population growth, and enhancing 

living standards, energy demand management emerges as a global 

problem. As for the development of energy models which has an 

important role in energy demand management reliable energy 

model helps efficient energy planning, energy estimation, and 

optimization of energy resources [1]. Recently, many studies have 

been done on energy modeling which is the focus of scientists, 

engineers, and researchers' interest. Generally, energy models are 

studied for a given country for total energy, different energy types, 

or different sectors, and various methods are applied to obtain these 

models. These methods can be divided into three groups: 

traditional methods, modified traditional methods, and methods 

based on artificial intelligence (AI) [2]. Energy is also an important 

factor for the social and economic development of Turkey, 

especially, in this country, the need for electricity is increasing 

rapidly. When it is considered that Turkey has limited oil and 

natural gas reserve, which are mainly energy resources, and the 

majority of the country's energy is imported, it makes the demand 

for a proper energy model inevitable. In this study, Turkey's 

electricity demand was modeled using an AI technique. As an AI 

technique, a new version of the tree-seed algorithm [3] which is a 

metaheuristic optimization algorithm introduced to solve 

continuous optimization problems, has been developed for 

programming and applied to the problem addressed by the study. 

The technique called tree-seed programming (Tree-seed 

programming- TSp) was introduced as an intersection product with 

SI and automatic programming. In this study, TSp was initially 

tested on symbolic regression problems to evaluate its efficiency 

and performance. Afterward, the control parameters showed good 

results in the symbolic regression problem were selected for 

electrical energy modeling. To get energy consumption model TSp 

was applied on 25 data (1992-2016) which shows the gross 

domestic product (GDP), population, import, and export indicators 

that affect electricity consumption. The electrical energy derived 

from the TSp implication has been used for the estimation problem, 

and estimated results have been produced up to 2025 for Turkey's 

electricity consumption. Although superficial studies were carried 

out by the State Planning Organization of Turkey in 1966, 1967, 

1972, 1977, 1979, and the Ministry of Energy and Natural 

Resources (MENR) in 1973, 1975, 1977, and 1978, demand for 

energy obtained by statistical methods officially began to be used 

in 1984 first [4]. In Turkey's energy modeling there have been 

several studies that use artificial intelligence techniques such as 

swarm intelligence algorithms, genetic algorithms, neural 

networks. For example, Ceylan and Ozturk [5], Ersel Canyurt, 

Ceylan [6], Ozturk, Ceylan [7], Canyurt and Ozturk [8] have used 

a genetic algorithm to find coefficients of electrical energy model 

which has been determined in a quadratic or exponential form in 

advanced. An artificial neural network has been used for modeling 

different types of energy consumption in various sectors. Sözen, 
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Arcaklioğlu [9], Hamzaçebi and Kutay [10], Hamzaçebi [11], 

Sözen and Arcaklioglu [12], Kavaklioglu, Ceylan [13], Yetis and 

Jamshidi [14], Murat and Ceylan [15], Kankal, Akpınar [16], 

Bilgili, Sahin [17], Uzlu, Akpınar [18] are example for the studies 

using neural network. As a swarm intelligence algorithm, Ünler 

[19] has used Particle Swarm Optimization (PSO), Toksarı [20] 

has used ant colony optimization (ACO), Kiran and Gunduz [21] 

have used a hybrid version of PSO and ACO, the authors of [22] 

have used PSO and Artificial Bee Colony (ABC) for Turkey’s 

energy estimation modeling.  

When the studies in the literature on the estimation of energy 

demand are analyzed, the swarm intelligence or evolutionary 

computation algorithms have been used for optimizing the 

coefficients of some models such as linear, quadratic, nonlinear, 

etc. In this study, the tree-seed algorithm is modified for solving 

the energy estimation problem. Briefly, it is aimed to model the 

estimation of energy demand instead of optimizing coefficients of 

the models. TSA is firstly proposed for solving continuous 

optimization problems in [3]. And TSA is modified to solve the 

constraint optimization problem – the pressure vessel design 

problem [23]. To handle the constraints in the problem, a penalty 

function is designed and the performance of the tree seed algorithm 

has been analyzed on the problem. In another constrained version 

of TSA [24], Deb’s rules are integrated with TSA. Deb’s rules in 

this version are used for comparing the candidate and actual 

solutions in the stand of TSA. Muneeswaran and Rajasekaran used 

TSA to optimize the values of clustering centers, width, and 

weights of the Radial Basis Function Neural Network applied to 

the numerical function approximation problem [25]. Since the 

proposed algorithm provides accurate mapping of numerical 

functions, it has better fitness values in all cases compared to the 

other considered algorithm built based on PSO. Zheng et al. sought 

a remedy to enhance the dynamic stability of hydroelectric 

generating units by devising a multi-mode intelligent model 

predictive control strategy (MPC) consisting of the excitation MPC 

mode and the integrated MPC mode which are designed by using 

TSA [26]. A terminal penalty cost and a terminal region designed 

offline enable the stability of the closed-loop system as well as 

feedback revision adjusts system parameters automatically. 

Results in the study reveal a significant improvement in voltage 

regulation and damping capabilities. Chen, Tan, and Cai utilized 

the Tree-Seed Algorithm to establish the parameters of equivalent 

circuit models for Li-ion batteries [27]. Thanks to its ability to 

handle bad initial values and gradient information and also 

multiple mode functions, TSA produces better results in 

comparison to others such as the Gauss-Newton method and 

genetic algorithm in terms of improving the accuracy and reducing 

time consumption for parameter identification problems. The 

RMSE of the proposed model based on TSA is reduced by 61.1% 

under the DST test and 75.9% under the FUDS test, which is a 

commonly used battery test profile. Suseela and Sivakumar deal 

with spectrum scarcity of wireless communication using cognitive 

multichannel networks optimized via PSO and TSA [28]. The 

higher probability of detection and lower probability of false alarm 

are criteria considered in the algorithm. TSA-based cognitive 

networks attained a lower probability of false alarm without 

reducing the transmission rate besides quicker convergence time 

than the PSO-based cognitive networks. A parallel version of TSA 

has been developed on the GPU-based platform and the 

performance of the parallel TSA has been compared with its serial 

version in terms of speed [29]. In the study of [30], a new 

parameter has been added to the basic algorithm to improve its 

performance on multimodal optimization problems. For each tree, 

an age limit is designed and if the number of produced seeds for 

this tree is not better than the current tree, it is assumed that the 

tree is on local optimum, and the tree is withered. In another study 

[31], the TSA has been applied to solve real-world optimization 

problems. While the TSA has been modified by using s-shaped and 

v-shaped logistics functions to solve binary optimization problems 

in [32], the logic operators and similarity-based modification of 

TSA for binary optimization have been proposed in [33]. The TSA 

has been discretized by using neighborhood operators for solving 

travelling salesman problems in [34]. In [35], the different search 

strategies have been integrated with TSA, and it is used for 

optimizing high dimensional functions. The TSA has been also 

applied to optimize weights in artificial neural networks in [36]. In 

another application of TSA [37], it has been applied to the selection 

and reduction of reference points on local GNSS/leveling geoid 

determination.  

When the literature is detailed, it can be seen that some 

applications, modifications, and improvements can be found. 

However, in this study, the novel version of TSA is proposed for 

modeling. So, the novelty and originality of the algorithm and 

study have been come from the modification of TSA and its 

application to energy estimation modeling. 

2. Tree-Seed Algorithm 

Optimization problems are of great importance for both the 

industrial and scientific worlds. Many of the real-life problems 

appear as optimization problems. In general, an optimization 

problem can be defined as (S, Ω, f). Here, S refers to the search 

space and it is defined on a set of decision variables. Ω is a set of 

constraints to which variables are subjected. f is an objective 

function that assigns a value to each element of S. The objective in 

optimization problems is to minimize or maximize the objective 

function. In other words, the purpose is to find s∈S solution such 

that f(s)≤f(s^'), ∀s^'∈S (for minimization problems), f(s)≥f(s^'), 

∀s^'∈S (for maximized problems) conditions are provided [38]. 

For optimization purposes, TSA was proposed as a population-

based, heuristic optimization algorithm inspired by the relationship 

between trees and their seeds to settle continuous optimization 

problems in 2015 [3]. 

Traditional mathematical techniques ensure the optimal global 

solution for optimization problems. However, the implementation 

of these methods to real-world problems has many disadvantages. 

For example, the problem cannot be solved in polynomial time 

because of the increasing number of decision variables or the 

objective function is not differentiable. To overcome these 

deficiencies of mathematical techniques, heuristics optimization 

techniques have been proposed. These methods aim to find optimal 

or near-optimal solutions with a reasonable calculation cost [39]. 

Heuristic algorithms, which are inspired by nature, have been 

developed since the 1970s by imitating the physical or biological 

processes of natural phenomena or some living things. Intense 

interest in the development of such algorithms is continuing and 

[40], [41, 42], [43], [3] are new examples of heuristic algorithms 

being developed. As a natural phenomenon, the newly developed 

heuristic algorithm, the tree-seed algorithm, deals with the seed 

production of trees in nature, the spread of these seeds in various 

random directions, and the transformation of these seeds into new 

trees. In this algorithm, the positions of trees and seeds are possible 

solutions to the problem. 

TSA is initiated by the creation of the initial population of trees, 

called a stand. Then, a certain number of seeds is produced for 

each tree in the stand. Once the specified number of seeds have 
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been produced, their best is compared to the tree from which the 

seed is produced. If the best seed is better than the parent tree, the 

parent tree is removed from the stand and replaced with the best 

seed. Otherwise, no changes are made to the stand. The stand is 

obtained by using Equation 1. 

 𝑇𝑖,𝑗 =  𝐿𝑗,𝑚𝑖𝑛 +  𝑟𝑖,𝑗( 𝐻𝑗,𝑚𝑎𝑥 −  𝐿𝑗,𝑚𝑖𝑛)        (1) 

where  represents j’th dimension of i’th tree.  is a 

higher bound of the search space,  is a lower bound of the 

search space and r is a randomly generated number in the range of 

[0,1]. Two equations (Equations 2 and 3) are presented to produce 

seeds for each tree. Furthermore, the number of seeds produced for 

each tree may be more than one, depending on the size of the 

population. In the analysis of the effect of control parameters' 

different values on the performance of TSA, 10% of the population 

size was accepted as the minimum value for this number and 25% 

as the maximum value for this number. Thus, the number of seeds 

is randomly selected from the range [10% population size, 25% 

population size]. When we consider the stand size as 20, the k 

index in Equations 2 and 3 should be the element of {1,2,3,4,5}. 

 𝑆𝑘,𝑗 =  𝑇𝑖,𝑗 +  𝛼𝑖,𝑗( 𝐵𝑗 −  𝑇𝑟,𝑗)        (2) 

 𝑆𝑘,𝑗 =  𝑇𝑖,𝑗 +  𝛼𝑖,𝑗( 𝑇𝑖,𝑗 −  𝑇𝑟,𝑗)        (3) 

Where 𝑆𝑘,𝑗  j’th dimension of i’th seed which is produced from i’th 

tree.  𝐵𝑗 j’th dimension of the best tree, 𝑇𝑟,𝑗 is the j’th dimension 

of the r’th tree which is randomly selected from the stand.  𝛼𝑘,𝑗
 
is 

scaling factor randomly generated from a range of [-1,1]. Which of 

these equations will be used in seed production is controlled by a 

peculiar parameter of TSA whose name is search tendency (ST). 

ST is a predetermined number selected from [0,1]. If the random 

number selected from the range [0,1] is less than ST, then Equation 

2 is used, otherwise, Equation 3 is used. The seed production 

process continues until the termination condition is met. As the 

termination condition, the maximum number of function 

evaluations (Max_Fes) is selected [3, 24]. 

3. Tree–Seed Programming -TSp 

 In this section, the new version of TSA for programming is 

introduced as a product of a combination of swarm intelligence and 

automatic programming. Automatic programming solves problems 

with automatically generated computer programs without a need to 

know a form of the solution in advance. One of the successful tools 

of automatic programming is Genetic Programming (GP) [44]. As 

an extended version of TSA, TSp is an automated programming 

approach. It means, solutions are computer programs that are 

represented by trees. Computer programs consist of variables, 

constants, functions. Variables and constants are called a terminal 

set, functions are called a function set [44]. As an example, the 

representation of   the program in the tree structure is 

given as Fig. 1. 

To improve TSp, linear coding and developing rules should be 

changed according to tree coding. Therefore, the first stand in TSp 

is formed by one of the methods used to create the first population 

in the GP. In addition, due to tree coding, the basic solution 

generation mechanism used for seed production in TSA cannot be 

applied directly to TSp. Consequently, in tree coding, seed 

production can be handled through the crossover operator. 

Equations (4) and (5) are considered in TSp using the crossover 

process as follows: 

𝑆𝑘 = 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑇𝑖 , 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝐵, 𝑇𝑟))       (4) 

𝑆𝑘 = 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑇𝑖 , 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟( 𝑇𝑖 , 𝑇𝑟))       (5) 

 

Figure 1. Representation of in tree form 

Figure 2. Crossover example 

The most commonly used form, subtree crossover, was used for 

the crossover process aimed at creating a new offspring program 

from two parent programs. As regards the selection of parental 

programs, the most commonly used tournament method in 

Evolutionary Computation is used. Tournament selection is 

applied twice for crossover. In the two parent programs of different 

sizes and formats, the crossover node is selected randomly. Then, 

the offspring is obtained as shown in Fig. 2. 

 

Figure 3. Pseudocode of the TSp algorithm 

jiT , max,jH
min,jL

22sin yx+
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The sum of the absolute errors (SAE) is used to measure the 

performance of each computer program (Equation 6).  

         (6) 

where, N is the number of samples, is an actual output of j’th state, 

is targeted output of j’th state. 

4. Benchmark Test of TSp 

The effectiveness and performance of the proposed method were 

investigated in the commonly used symbolic regression problem to 

test the automated programming approach.  Symbolic regression 

involves finding a mathematical expression in a symbolic form that 

provides a good or perfect fit between the values of independent 

variables and the associated values of dependent variables [45]. 

Test problems containing polynomial, trigonometric, logarithmic, 

square root, and two-variable functions are given in Table 1. 

Terminals, and functions set must be selected by the user before 

applying the TSp to the problem. The function and terminal sets 

are selected in accordance with the 10 comparison functions: 

 

Functions set ={+, -, ×, ÷, sin, cos, exp, rlog}x  

 

Terminals set (for functions with one variable) = x 

 

Terminals set (for functions with two variables) ={ x, y } 

To evaluate the effect of stand size, Max_Fes and ST on the 

performance of the TSp, their different values were adjusted. 

Furthermore, another purpose of testing different values of control 

parameters is to select their best values for the problem of electrical 

energy modeling. Thus, each function was run 10 times for 3 

different Max_Fes (10000, 50000, 100000), 4 different stands (50, 

100, 250, 500) and 9 different ST  values(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9).  In each study, the number of hits (SAE <0.01 is 

considered as the number of successes) is recorded. To sum up, we 

have 108 different tests and each  of them is run  with a random 

number of seeds 10 times. The results of the tests are given in Table 

2-Table 10. 

Table 1. Symbolic regression functions 

Functions  Description 

f1 = x3 + x2 + x 20 random points ⊆ [−1,1] 

f2 = x4 + x3 + x2 + x 20 random points ⊆ [−1,1] 

f3 = x5 + x4 + x3 + x2 + x 20 random points ⊆ [−1,1] 

f4 = x6 + x5 + x4 + x3 + x2 + x 20 random points ⊆ [−1,1] 

f5 = sin(x2) cos(x) – 1 20 random points ⊆ [−1,1] 

f6 = sin(x) + sin(x + x2) 20 random points ⊆ [−1,1] 

f7 = log(x + 1) + log(x2 + 1) 20 random points ⊆ [0,2] 

f8=√𝑥 20 random points ⊆ [0,4] 

f9 = sin(x) + sin(y2) 100 random points ⊆ [−1,1] × [−1,1] 

f10 = 2 sin(x) cos(y) 100 random points ⊆ [−1,1] × [−1,1] 

 

 

Table 2. Max_FES Evaluation for ST=0.1 ve pop=50, 100, 250, 500  

 

Table 3. Max_FES Evaluation for ST=0.2 ve pop=50, 100, 250, 500  

 


=

−=
N

j

jji tgSAE
1

)(

ST=0.1 

pop=50

ST=0.1 

pop=100

ST=0.1 

pop=250

ST=0.1 

pop=500

Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000

f1 5 7 7 8 10 10 0 9 10 0 10 10

f2 9 10 10 5 10 10 0 9 10 0 0 5

f3 9 9 10 3 10 10 0 9 10 0 0 5

f4 4 6 7 2 7 9 0 3 9 0 0 0

f5 0 1 0 0 0 2 0 0 0 0 0 0

f6 3 9 7 1 9 9 0 4 9 0 1 3

f7 0 0 0 0 0 1 0 0 1 0 0 0

f8 0 0 0 0 0 0 0 0 0 0 0 0

f9 5 6 8 2 8 9 0 5 10 0 0 3

f10 1 0 1 2 1 2 0 2 2 0 1 2

36 50 55 24 60 69 0 44 68 0 15 32

ST=0.2  

pop=50

ST=0.2 

pop=100

ST=0.2 

pop=250

ST=0.2 

pop=500

Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000

f1 5 7 7 9 8 9 0 9 10 0 7 10

f2 7 10 10 6 10 10 0 10 9 0 1 5

f3 8 9 9 3 10 10 0 7 10 0 1 4

f4 1 6 7 1 5 6 0 0 6 0 0 0

f5 0 0 2 0 1 3 0 0 0 0 0 0

f6 6 5 8 4 8 9 0 9 10 0 1 4

f7 0 0 1 0 0 0 0 0 0 0 0 1

f8 0 0 0 0 0 0 0 0 0 0 0 0

f9 2 7 5 1 5 9 0 7 10 0 1 5

f10 10 0 0 0 0 1 0 1 4 0 1 0

40 47 49 24 51 57 0 46 59 0 13 29
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Table 4. Max_FES Evaluation for ST=0.3 ve pop=50, 100, 250, 500  

 
Table 5. Max_FES Evaluation for  ST=0.4 ve pop=50, 100, 250, 500 

 

Table 6. Max_FES Evaluation for ST=0.5 ve pop=50, 100, 250, 500  

 

Table 7. Max_FES Evaluation for ST=0.6 ve pop=50, 100, 250, 500  

 

ST=0.3  

pop=50

ST=0.3 

pop=100

ST=0.3 

pop=250

ST=0.3 

pop=500

Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000

f1 7 8 4 5 9 7 0 10 10 0 8 10

f2 7 9 9 5 10 8 0 7 10 0 0 2

f3 6 7 9 5 9 10 0 6 8 0 1 4

f4 3 6 6 2 5 5 0 3 6 0 0 1

f5 0 1 1 0 1 1 0 0 0 0 0 0

f6 2 5 7 5 7 9 0 8 10 0 3 5

f7 0 0 0 0 0 0 0 0 0 0 0 0

f8 0 0 0 0 0 0 0 0 0 0 0 0

f9 3 4 5 1 7 8 0 7 7 0 1 3

f10 0 0 0 0 2 0 0 1 3 0 0 1

28 43 41 23 53 48 0 45 54 0 17 26

ST=0.4  

pop=50

ST=0.4 

pop=100

ST=0.4 

pop=250

ST=0.4 

pop=500

Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000

f1 6 7 8 5 6 8 0 9 10 0 10 10

f2 7 8 10 5 10 8 0 6 10 0 0 7

f3 4 8 10 6 9 8 0 6 8 0 3 5

f4 6 5 8 1 4 5 0 2 5 0 1 0

f5 0 0 0 0 0 2 0 0 0 0 0 0

f6 6 7 7 3 10 7 0 7 9 0 10 8

f7 0 0 3 0 0 0 0 0 1 0 0 0

f8 0 0 0 0 0 0 0 0 0 0 0 0

f9 2 5 7 1 7 6 0 5 10 0 4 10

f10 1 1 0 0 3 2 0 0 2 0 1 2

27 42 53 21 53 51 0 35 55 0 31 42

ST=0.5  

pop=50

ST=0.5 

pop=100

ST=0.5 

pop=250

ST=0.5 

pop=500

Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000

f1 6 4 7 7 9 7 0 10 9 0 10 10

f2 9 8 7 5 9 10 0 8 9 0 3 6

f3 7 9 9 4 8 8 0 4 9 0 3 4

f4 2 4 3 1 4 7 0 1 2 0 0 0

f5 0 0 0 0 0 1 0 0 0 0 0 0

f6 3 5 9 7 8 6 0 6 8 0 4 6

f7 0 0 0 0 0 1 0 0 0 0 0 0

f8 0 0 0 0 0 0 0 0 0 0 0 0

f9 6 3 4 4 6 10 0 8 8 0 8 6

f10 1 0 1 0 1 2 0 1 1 0 1 2

34 36 40 29 50 52 0 42 46 0 32 34

ST=0.6  

pop=50

ST=0.6 

pop=100

ST=0.6 

pop=250

ST=0.6 

pop=500

Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000

f1 6 7 5 6 8 7 3 10 10 9 10 9

f2 7 9 8 4 7 5 0 6 10 1 3 3

f3 7 6 8 5 6 9 0 3 5 0 3 6

f4 2 2 1 1 5 2 0 2 2 0 0 0

f5 0 1 0 0 2 3 0 0 0 0 0 0

f6 3 2 7 4 8 5 0 9 8 0 8 7

f7 0 0 1 0 0 1 0 0 0 0 0 0

f8 0 0 0 0 0 0 0 0 0 0 0 0

f9 1 3 3 3 8 8 0 7 10 0 6 9

f10 0 1 0 0 1 1 0 3 4 0 4 1

26 33 33 24 45 41 3 42 49 10 40 35
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Table 8. Max_FES Evaluation for ST=0.7 ve pop=50, 100, 250, 500  

 
Table 9. Max_FES Evaluation for ST=0.8 ve pop=50, 100, 250, 500  

 
Table 10. Max_FES Evaluation for ST=0.9 ve pop=50, 100, 250, 500  

 
 

When we analyze the results tables, the better results are obtained 

under Max_FES = 100000, ST = 0.1 and population size = 250 

conditions. So, we select these parameters for the parameters of 

energy estimation modeling. 

5. Electrical Energy Estimation Modeling for 
Turkey 

The problem of electricity prediction can generally be divided into 

three categories: short-term prediction, medium-term prediction, 

long-term prediction. Short- and medium-term forecasts are used 

by power generation facilities. Long-term forecasting is the basis 

for energy system expansion planning for both developing and 

developed economies. Long-term forecasting requires historical 

data of selected indicators that will impact electricity consumption 

for all approaches used. The quality of forecasting models is based 

on current historical data and information on factors affecting 

energy demand [46]. 

This study aims to obtain Turkey's electricity consumption 

modeling and make long-term forecasts planning until 2025. For 

this purpose, the observed historical data given in Table 5.1 has 

been used. As it can be seen from Table 5.1, 4 indicators have been 

selected to model electrical energy: GDP, population, import, and 

export factors so this indicator selection is proper to the research 

in the literature. Because, these indicators are directly related to 

energy, especially electrical energy consumption. Obviously, as 

the population increases, more electricity will be consumed. Since 

import and export is a factor related to the manufacturing 

procedure in Turkey, it has a profound effect on electricity 

consumption. GDP, on the other hand, is a measure of all economic 

activities, and its increase means the development of livelihood 

standards and it has a huge effect on the increase in electricity 

consumption. 

Here, data for GDP, population, imports, and exports are obtained 

from WORLD BANK, and electricity consumption is obtained 

from the Ministry of Energy and Natural Resources. In other 

words, the terminal set of TSp consists of GDP, population, import, 

and export indicators. As to the selection of the function set of TSp, 

3 cases were evaluated. Since we aim to find the mathematical 

model for electrical energy, +, -, /, *, cos, sin, log, exp operations 

are considered for the function set. To the selection of the best 

function set, the conditions in Table 12 were evaluated. Then, the 

obtained results on these sets are given in Table 13. 

ST=0.7  

pop=50

ST=0.7 

pop=100

ST=0.7 

pop=250

ST=0.7 

pop=500

Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000

f1 4 3 8 6 6 7 2 9 9 4 10 9

f2 6 7 7 4 6 8 1 7 7 1 0 4

f3 8 7 7 5 6 7 0 4 5 0 2 2

f4 1 1 2 2 1 2 0 2 2 0 2 0

f5 0 0 1 0 0 2 0 0 2 0 1 0

f6 5 5 6 2 9 6 0 8 9 0 7 10

f7 0 0 0 0 0 0 0 0 0 0 0 0

f8 0 0 0 0 0 0 0 0 0 0 0 0

f9 1 2 5 2 5 8 0 10 10 0 2 6

f10 0 2 0 0 3 2 0 4 2 0 1 2

25 29 36 22 37 42 4 51 46 7 28 33

ST=0.8  

pop=50

ST=0.8 

pop=100

ST=0.8 

pop=250

ST=0.8 

pop=500

Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000

f1 3 4 5 5 6 6 3 7 10 3 10 9

f2 2 6 7 0 8 7 0 6 8 0 1 4

f3 9 8 5 1 3 5 0 2 6 0 1 4

f4 0 1 2 0 5 4 0 2 2 0 0 0

f5 0 0 2 0 1 1 0 1 0 0 5 0

f6 3 1 5 9 8 7 0 5 10 0 7 5

f7 0 0 0 0 0 2 0 0 0 0 0 0

f8 0 0 0 0 0 0 0 0 0 0 0 0

f9 1 4 2 1 6 7 0 9 10 0 5 7

f10 0 0 0 3 3 1 0 3 2 0 4 0

18 28 28 19 41 40 0 39 48 3 37 29

ST=0.9  

pop=50

ST=0.9 

pop=100

ST=0.9 

pop=250

ST=0.9 

pop=500

Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000 Fes=10000 Fes=50000 Fes=100000

f1 5 7 4 5 6 9 3 9 10 2 9 9

f2 4 6 2 3 6 3 1 2 7 2 1 3

f3 4 7 4 4 4 4 0 0 5 0 2 4

f4 3 3 5 2 4 2 0 0 1 0 0 2

f5 1 5 0 0 1 4 0 0 1 0 0 0

f6 5 2 3 4 8 3 0 7 8 2 6 10

f7 0 0 0 0 0 0 0 0 0 0 0 0

f8 0 0 0 0 0 0 0 0 0 0 0 0

f9 6 4 5 3 10 4 0 8 10 0 9 9

f10 0 0 0 0 1 0 0 3 2 0 1 4

29 34 23 21 42 29 4 31 44 7 32 41
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Table 11. Turkey's data from 1992 to 2016 

 

Table 12. Different states of the set of functions 

Symbols F1 F2 F3 

T State1 State2 State3 

 

F1={+, -, /, *} 

F2={+, -, /, *, cos, sin} 

F3={+, -, /, *, cos, sin, log, exp} 

T={GDP, population, import, export} 

 

 

 

 

 

Table 13. State evaluation for function set 

 

The error between the actual value and the value obtained by TSp 

was calculated by absolute percentage error, and mean absolute 

percent error (MAPE) was chosen as the performance criterion of 

the algorithm (Equation 6). 

MAPE=
1

𝑁
∑ |

𝑎𝑐𝑡𝑢𝑎𝑙−𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑

𝑎𝑐𝑡𝑢𝑎𝑙
|*100                   (6) 

Years GDP   Population Import Export

Electricity 

consumption

1992 158 55,748 27,485 22,806 67,217

1993 180 56,653 34,851 24,636 73,432

1994 131 57,564 26,64 27,918 77,783

1995 169 58,486 41,272 33,713 85,552

1996 181 59,423 50,499 39,095 94,789

1997 190 60,372 57,688 46,665 105,517

1998 276 61,329 54,343 56,721 114,023

1999 256 62,287 48,167 47,538 118,485

2000 273 63,24 61,562 53,091 128,276

2001 200 64,191 45,699 53,223 126,871

2002 238 65,143 54,838 58,321 132,553

2003 312 66,085 72,837 69,359 141,151

2004 405 67,007 102,691 92,091 150,018

2005 501 67,903 122,443 105,387 160,794

2006 552 68,763 146,413 119,616 174,637

2007 676 69,597 176,169 143,4 190

2008 764 70,44 206,983 174,469 198,085

2009 645 71,339 150,58 145,519 194,079

2010 772 72,326 196,452 157,845 210,434

2011 833 73,409 253,092 185,34 230,306

2012 874 74,569 249,766 206,849 242,37

2013 951 75,787 266,904 211,715 246,357

2014 934 77,03 258,3 222,003 257,22

2015 860 78,271 223,151 200,728 265,724

2016 864 79,512 214,64 189,717 278,345

($    ) (   ) ($    ) ($    ) (       )

Years Actual value Result(state1) Error % Result(state2) Error % Result(state3) Error %

1992 67,217 76 13,750666 76 13,3301168 68 1,755218035

1993 73,432 78 6,7902607 73 0,3993447 72 1,934245057

1994 77,783 83 7,344982 91 16,5624388 78 0,049111845

1995 85,552 84 1,4071128 86 0,38639482 87 1,660233849

1996 94,789 98 2,8717127 86 8,87114211 95 0,546922132

1997 105,517 105 0,6098695 105 0,0548555 106 0,340278536

1998 114,023 115 0,7401371 118 3,1271778 118 3,515771466

1999 118,485 110 6,7993912 121 1,8217928 109 8,032168478

2000 128,276 113 11,870979 123 4,03510227 116 9,423535327

2001 126,871 128 1,2723127 127 0,11768867 117 7,537607004

2002 132,553 121 8,4077162 127 4,27258772 123 6,880203923

2003 141,151 130 7,547164 142 0,29946566 134 4,982794206

2004 150,018 150 0,2470101 152 1,12604286 152 1,055083397

2005 160,794 161 0,4032913 155 3,52466996 161 0,42707484

2006 174,637 174 0,3383503 181 3,45338055 172 1,309908166

2007 190 193 1,6294206 184 3,25110846 192 0,886661028

2008 198,085 219 10,50319 211 6,65273852 220 10,83969019

2009 194,079 198 2,2381921 216 11,095175 195 0,226930737

2010 210,434 207 1,5096242 211 0,32994913 206 2,241810805

2011 230,306 231 0,2824315 206 10,3898195 231 0,503045163

MAPE 4,328191 4,65505 3,20741471
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As can be seen from the table, the smallest value of MAPE is 

observed in case 3. Therefore, for TSp, the function set F3 = {+, -, 

/, *, cos, sin, log, exp} was selected. 

To evaluate the performance of TSp in electrical energy modeling, 

its results are compared with those obtained from applying GP to 

the same problem. In addition, the k-fold cross-validation method 

was applied to better evaluate the performance of both algorithms. 

For this purpose, the data between 1992 and 2016 were divided 

into 5 layers and one of them was held for testing and the remaining 

layers were used for training. Each program was run once and the 

results of the first model were recorded. Table 14 shows MAPE 

results for each algorithm in each layer. 

Table 14. Comparison of TSp and GP 

Error of Layers 
TSp GP 

training test training test 

k1 (MAPE) 4.0494 7.34919 5.828 6.29223 

k2 (MAPE) 7.71094 7.63107 10.9263 25.9011 

k3 (MAPE) 5.49096 3.05628 6.34631 5.644 

k4 (MAPE) 4.41305 8.84297 6.51932 9.40058 

k5 (MAPE) 5.10258 3.62744 6.95984 8.61886 

Mean of Error 5.35339 6.10139 7.31595 11.1714 

The electrical energy models obtained by TSp and GP in each k 

layer are shown as follows: 

 

The models produced by TSp 

 

k1: (X4  + (( log ((X4  + X4 )) + (X2  - (X4  - X4 ))) * (X2  / (X4  

+ (( log (X4 ) + (X2  - (X4  + (( log (X4 ) + (X2  - ((X4  + X2 ) - 

X4 ))) * (X2  / X4 ))))) * (X2  / X4 )))))) 

 

k2: ((X2  + (X1  /  log ((( log (X2 ) + (X1  /  log ((X2  * (X1  * X1 

))))) + (X2  + X2 ))))) + sin((X1  / (sin((X1  / (X1  /  log ((X2  + ( 

log (X2 ) + (X1  /  log ((X2  * (X2  * X1 )))))))))) /  log ((X2  + ( 

log (X2 ) + (X1  /  log ((X2  * (X2  * X1 ))))))))))) 

 

k3: (((X2  + (X4  + X4 )) - X3 ) +  exp ( exp (sin( exp ((X4  + X4 

)))))) 

 

k4: (((X2  + ((((X4  - sin((X4  - X3 ))) - sin((X4  - X3 ))) - sin((X4  

- X3 ))) + (X4  - X3 ))) + (X1  / X2 )) +  cos( (X3  + (X3  + X2 )))) 

 

k5: ((sin((X3  - (X4  + X2 ))) + (sin((X3  - (X4  + X2 ))) + X4 )) + 

( log ((((X4  + sin(((X3  - (X4  + (X4  - (X3  - X2 )))) + sin(X4 )))) 

+ sin(((X3  - (X4  + X2 )) + sin(X4 )))) + X2 )) - (X3  - (((X4  + 

sin(((X3  - (X4  + X2 )) + sin(X4 )))) + sin(((X3  - (X4  + X2 )) + 

sin(X4 )))) + X2 )))) 

 

The models produced by GP 

 

k1: (((X2  + X4 ) - (((X3  - sin(X3 )) - (X4  / X3 )) /  log ((X2  * 

(X2  -  log ((X2  * (((X2  + X4 ) - (X3  / X4 )) /  log ((X2  * (((X2  

+ X4 ) - (((X2  + X4 ) - (sin(X3 ) / (X2  / X2 ))) / X3 )) -  cos( X2 

)))))))))))) -  cos( X3 )) 

 

k2: (X3  + ((X2  /  log ((X1  / X2 ))) /  log ( log ((X1  / (X1  / ( log 

((( log (X3 ) +  cos( sin( cos( ((X3  + (X2  /  log (X3 ))) - X2 ))))) 

+ (X3  + (X3  + X2 )))) + X3 ))))))) 

 

k3: ( exp ((sin(X2 ) / (X4  - sin((X3  / X1 ))))) + ( log ((sin((((X2  

- X3 ) + X4 ) / X1 )) / X4 )) + ((X2  -  exp ( log ((X1  / (X2  -  exp 

( log ((X1  / ((X2  - X3 ) + X3 ))))))))) + (X4  - sin(((((sin(X2 ) / 

X1 ) - X3 ) + X3 ) / X2 )))))) 

 

k4: ((X4  + X2 ) + (( exp ( cos( ( cos(  cos( X2 )) - ( cos( (X4  + 

X2 )) - X3 )))) -  log (X3 )) -  log (X3 ))) 

 

k5: (((X4  + X2 ) -  log ((X4  + X4 ))) -  log (X3 )) 

 

As can be seen from the tables, except for the results on test data 

in k1, TSp shows better results in both training and test data in all 

layers. In addition, both algorithms attained successful results in 

the test data as well as in the training data (except GP in layer 2). 

In order to find the final model of electrical energy, TSp was run 4 

times on 25 data (1992-2016) using the same control parameters 

and the models giving the results in Table 15 were obtained. The 

model in the 4th experiment with the smallest error was chosen as 

the electrical energy consumption model (Equation 7). The actual 

energy demand and estimated values are also figured in Fig. 4. 

The estimation model of electrical energy is as follows: 

 

((sin (X4) + 

((cos (cos (log (((cos (cos (log ((X4 + 

(cos (cos (log (X4))) + X4))))) ∗ X4) + 

(cos (cos (log (X3))) ∗ 

(cos (cos (log (((cos (cos (log ((X4 + X2)))) ∗      (7) 

X4) + (cos (cos (cos (log (X4)))) ∗ X4))))) ∗ 

X4)))))) ∗ X4) + X2)) + 

log ((cos (cos (log (((cos (cos (log ((X4 + X2)))) ∗ 

X4) + (cos(cos(cos(log(X4)))) ∗ X4))))) ∗ X4))) 

Figure 4. Comparison of the values of the energy model with the actual 

values 
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Table 15. Selection of electrical energy model 

 

6. Estimation of electrical energy 

In this section, it is aimed to find the estimated values of electricity 

between 2017-2025 by using the obtained electricity energy 

consumption model. For this purpose, the data in Table 11 is 

prepared for the estimation problem under different scenarios. 

Scenario 1 indicates that GDP increased by 0.7%, population by 

1.6%, imports by 6.2%, exports by 4.8%, while scenario 2 shows 

that GDP increased by 8.8%, population by 1.5%, imports by 

11.1%, exports by 10%. Forecasted values for electrical energy in 

2017-2025 are given in Table 16 and Fig.5. 

Table 16. Estimated values for electrical energy 

 

 

 

Figure 5. Estimation of electricity demand according to scenarios 

As can be seen in Table 16 and Fig. 5, in both scenarios, close 

values for electricity consumption were estimated and these values 

increased gradually and reached 310,277     kWh in scenario 1 , 

349,768     kWh in scenario 2 for 2025 

7. Conclusion and Future Works 

Energy has an important place in the economic, social, and 

technological development of a country. For this reason, many 

studies are done on energy modeling. Considering that the obtained 

reliable model allows predicting future energy consumption, this 

may prevent over-expenditure of energy resources, cost, or lack of 

energy. 

In this study, as a technique for modeling Turkey's electricity 

Years

Actual 

value 1st run Error % 2nd run Error % 3rd run Error % 4th run Error %

1992 67,217 73,79321 9,783555 76,719151 14,1365292 77,48925 15,28222 70,10921 4,302791

1993 73,432 74,53599 1,503417 76,332202 3,9495065 80,19131 9,204861 72,86392 0,773612

1994 77,783 88,30436 13,52655 87,08603 11,9602359 84,28706 8,3618 77,78017 0,003638

1995 85,552 86,98876 1,6794 85,387323 0,19248746 90,75864 6,085938 87,68983 2,49887

1996 94,789 92,5772 2,33339 94,017723 0,81367817 96,80561 2,127476 97,67912 3,048999

1997 105,517 100,5375 4,719152 102,93402 2,44792931 104,8485 0,633573 109,2529 3,54061

1998 114,023 120,4028 5,595145 123,90718 8,66858749 115,0729 0,920801 121,9863 6,983912

1999 118,485 108,7137 8,246906 116,01133 2,08775244 107,7147 9,089984 110,8598 6,435543

2000 128,276 113,3343 11,64808 114,43897 10,7869198 113,8604 11,23795 120,1053 6,369649

2001 126,871 126,4232 0,352975 126,75583 0,09077551 115,0129 9,346604 120,414 5,089397

2002 132,553 131,9636 0,444662 131,74367 0,61056872 120,7212 8,926076 128,3761 3,151088

2003 141,151 136,3915 3,371931 139,08063 1,46677955 131,7462 6,66296 139,0001 1,523849

2004 150,018 152,9454 1,951372 150,31242 0,19625358 152,6597 1,760918 154,8756 3,237981

2005 160,794 157,3068 2,168735 158,10301 1,67356513 164,8698 2,534819 164,2592 2,155084

2006 174,637 170,8324 2,178582 166,99749 4,37451005 177,4055 1,585287 176,1227 0,850735

2007 190 189,2901 0,37361 182,94721 3,71199467 196,2792 3,30482 192,7347 1,439323

2008 198,085 218,9496 10,53317 216,94516 9,52124634 217,2484 9,674308 215,7009 8,893095

2009 194,079 213,955 10,2412 219,80586 13,2558696 200,5961 3,35795 195,4969 0,730601

2010 210,434 204,8317 2,662282 199,18319 5,34647992 210,7516 0,150924 207,8536 1,226233

2011 230,306 213,5514 7,27494 199,38472 13,4261726 229,5447 0,330554 231,0135 0,307198

2012 242,37 248,5788 2,561687 244,22555 0,76558458 242,6216 0,103799 244,0538 0,694703

2013 246,357 242,8202 1,435643 236,83788 3,86395359 247,857 0,608892 249,3612 1,219443

2014 257,22 269,1014 4,61914 265,95208 3,39478998 255,2862 0,751812 257,0188 0,078212

2015 265,724 262,2066 1,323695 260,6869 1,89561301 248,4848 6,487628 241,2638 9,205133

2016 278,345 250,9333 9,848098 248,84692 10,597668 244,4952 12,16111 236,3904 15,07288

4,815093 5,16941805 5,227722 3,553303

Years

Scenario1 

Electricity 

consumption

Scenario2 

Electricity 

consumption

2017 242,714634 251,1928615

2018 252,6439915 265,3401234

2019 259,2632887 281,8077973

2020 269,3086822 296,4210462

2021 278,3193847 307,8388044

2022 285,9812313 319,7838084

2023 293,836533 328,2871161

2024 301,9541565 336,9941503

2025 310,27674 349,7675897
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consumption, the new version of TSA presented for automatic 

programming was used. TSA is a population-based, heuristic 

algorithm based on the relationship between a tree and its seeds. 

As an extended version of TSA, TSp is an automated programming 

approach that uses tree-based crossover for solution representation. 

In order to obtain the electrical energy model, the indicators 

affecting the consumption of electrical energy were determined 

and their historical data between 1992-2016 were used. GDP, 

population, import, and export were selected as indicators. The 

new TSp method was applied to 10 symbolic regression problems 

before applying it to the energy modeling problem. TSp, which has 

achieved good results on some functions, has shown that it is an 

applicable approach for different problems. GP was applied to the 

same problem in order to investigate the performance of TSp in 

energy modeling. To better evaluate the performance of both 

algorithms, the k-fold cross-validation method was used, GP and 

TSp results were compared in each layer. According to the results, 

TSp performed better on both test and training data. In order to 

obtain the electrical energy model to be used in the estimation 

problem, TSp was applied to all data in 1992-2016. This model has 

a 3.6% error and produced estimated electricity consumption under 

2 scenarios for 2017-2025. For future works, it is planned that the 

programming version of TSA will be applied to the different 

problems. 
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