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Abstract: Induction motors, commonly referred as asynchronous machines, are the most frequently used electrical machinery in industries. 

The induction motor (IM) plays a crucial role in many industrial applications in the current world because of its many advantages, including 

its low cost, sturdy nature, etc. There are a variety of causes for induction motor defects, including overcurrent, undercurrents, starter 

problems, overvoltage, overloading, motor overheating, etc. Therefore, it is crucial to defend the motor from errors. The objective of this 

study is to use Grey Wolf Optimized PNN is used to find induction motor defects. In this paper some of the processing operations like 

Filtering, segmenting, extracting and classifying were carried out on the driven motor's retrieved output signals. The proposed method 

combines the wiener filter for pre-processing, the Gabor wavelet transform for segmentation, the Grey-Level Co-Occurrence Matrix for 

extracting features and the Grey Wolf Optimized PNN for classification. 

Keywords: Induction Motor, Grey Wolf Optimized PNN, Wiener Filter, Grey-Level Co-Occurrence Matrix. 

 

1. Introduction 

Induction Motors (IM) are the most broadly utilized 

electromechanical conversion devices in the world. 

Currently, it is used for all manufacturing applications and 

meets around two thirds of all commercial electricity 

demands. Therefore, it is crucial to establish effective 

methods for defect identification in induction motors [1]. 

Now there are more and more three phase IM applications 

being used in industrial and commercial settings [2]. 

Various speeds are required by many industrial 

applications to manage various loads. The speed of an IM 

can be easily modified and IMs are available in a variety 

of torque and speed levels. Since IMs are more durable 

than DC motors, they are employed in a variety of climatic 

conditions that other motors cannot handle [3]. However, 

IM frequently has sudden failures as a result of rotor and 

bearing faults. If a bearing failure occurs in an IM and it 

is not detected at an earlier time, the machine will suffer 

serious harm [4]. For the drive of three-phase induction 

motors, sensor-less direct vector control approaches are 

frequently used. These control strategies are used to 

estimate the rotor flux, rotor speed, and load torque of the 

two motors [5].  

The primary areas of interest are high-precision torque 

estimation and control of induction motor drives owing to 

the extensive use of induction motors in torque-  

controlled applications, such as electric vehicles. Accurate 

flux estimation and motor model estimates have a 

considerable impact on the open-loop torque control's 

performance [6]. For the purpose of diagnosing stator 

faults, power signature analyses are either directly or 

indirectly performed and a running three-phase induction 

motor with a squirrel cage is connected. An active and 

reactive power medium coupling, along with the stator 

voltage modulus, makes it simple to distinguish between 

the stator fault circumstances and other irregularities [7]. 

For the purpose of controlling the motor's speed and rotor 

flux, a static converter supplies the stator windings. A 

novel method for stator faults detection in induction 

motors fed by inverters under closed-loop control is 

proposed in [8]. Stator current components or an increase 

in amplitude of specific components at particular 

frequencies are indicators of a motor fault state. Induction 

motors can detect mechanical and electrical problems 

using the well-tested method known as motor current 

signature analysis. However, the amplitude of these 

components rises when a fault is present and is very low 

for healthy devices [9]. 

The performance of the fault tolerant three phase 

induction motor drives now available has been impacted 

by the current and voltage constraints for the inverter and 
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machine. Due to the absence of consideration for the flux 

producing current, this technique does not accurately 

require the torque in post fault mode. Due to this, the 

motor's top speed in post fault mode is impacted, which in 

turn affects a massive post fault power [10]. Early 

identification of IM faults utilising an electric current 

signal is performed by a Spectral Synch (SS) method. The 

developed SS method's efficiency is revealed on IMs with 

damaged bearings and IMs with broken rotor bars [11]. 

Due to the potential financial losses that unexpected 

failures of these equipment might cause for the respective 

businesses, condition monitoring of the motors is of 

highest concern. To address the drawbacks of induction 

motors, for the first time in soft started induction motors, 

a significant validation of a rotor problem diagnosis 

method is used [12]. One of the crucial electrical defects 

that impacts the dependability of numerous industrial 

applications in an induction motors is an Inter Turn Short 

Circuit (ITSC) fault.  Robustness is the main obstacle to 

using these methods to uncover ITSC flaws, despite the 

fact that there is a lot of interest in their application [13]. 

Due to the Broken Rotor Bar (BRB) frequencies 

components create low impact and proximity to the 

supplying input frequency and it is difficult to identify the 

stator current. So Recursive Undecimated Wavelet Packet 

Transform (RUWPT) method is used to remove one 

parameter that can detect the problem in arbitrary working 

conditions and for low load cases in order to tackle this 

limitation [14]. Empirical Mode Decomposition (EMD) is 

suggested as a reliable method for detecting broken bars 

defects in industrial induction motors with line-start and 

inverter fed [15]. 

Currently, induction motor defect detection by using 

neural networks is a common practise. The primary issues 

with induction motors are escalating costs, worsening 

working conditions and quality production. Support 

Vector Machines (SVMs) is used to detect faults in 

induction motors. Artificial Neural Network and the 

Fuzzy Logic (FL) were used to compare the SVM 

procedure with another two artificial intelligence methods 

(ANN). The SVM is less dependent on several factors 

than the ANN, which affects the proportion of accurate 

detections [16]. In order to examine the frame vibrations 

during start-up, Continuous Wavelet Transform (CWT), a 

strong signal-processing tool is combined with support 

vector machine (SVM) [17]. The defective motor is 

examined by Correlation and Fitness Values based 

Feature Selection (CFFS). The drawback of CFFS 

is greater running expenses for other purposes with high-

dimensional characteristics [18]. Early stator defect 

detection is crucial since they spread quickly and could 

result in additional motor damage [19].  Direct Torque 

Control (DTC) uses stator resistance of the machine to 

calculate the stator flux. It is a reliable and efficient 

indicator that an artificial neural network uses to detect 

and diagnose stator turn issues [20]. 

To overcome these issues the Probabilistic neural 

network (PNN) is employed, which discovers the fault in 

induction motor.This study introduces Grey Wolf 

Optimized PNN for  detection of faults in induction 

motors which includes wiener filter for pre-processing, 

Gabor wavelet transform for segmentation, for feature 

extraction GLCM  and Grey Wolf Optimized PNN for 

classification. 

2. Description of the Proposed Work 

Power electronics have obviously become more 

accessible and have developed on a worldwide scale. To 

implement a single phase motor drive, however, a more 

straightforward approach is workable in a number of 

applications. For driving rectifiers, DC motor systems, 

and industrial machinery requires an induction motors 

respectively. However, because of the rotor and bearing 

issues, IM frequently have an unexpected failures. As a 

result, IM errors must be identified by a fault detection 

system. Fig. 1 provides an illustration of the proposed 

work's description. 

 

Fig. 1: Proposed work 

To prevent unanticipated damage in industrial 

processes, fault detection in an induction motor, especially 

at an early stage, has become essential. So in order to 

manage the speed of a single phase induction motor, a 

control technique is used. In pre-processing method, the 

Wiener filter's noise cancellation technique is used to 

evaluate the fault severity from stator current. In the 

process of segmentation Gabor wavelets transformations 

are employed to maximize the theoretical limit of joint 

resolution between space and frequency domain. 

Statistical texture features of second order can be 

extracted by using the GLCM approach in feature 

extraction. In order to achieve optimal PNN training 

parameter settings and a high level of accuracy, the GWO 

technique is adopted for classification. 

 

2.1. Wiener filter 

The Wiener filter employs spectral analysis to separate the 

desired data from noise while recognizing both as 

stochastic processes with linear features. WK coefficients 
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are used to apply this linear filter to a valued signal.   Noise 

is present in the input signal x (n). 

𝑥(𝑛) = 𝑑(𝑛) + 𝑣(𝑛)                                      (1) 

An output signal y (n), ought to be a reasonable 

approximation of d (n).  Thus, e (n) is the lowest error 

signal.  In order to reduce a mean square error, an adaptive 

algorithm rectifies the weights WK.  

𝑒 = min (𝐸(𝑒(𝑛)2))                                       (2) 

𝑒 (𝑛) =  𝑦(𝑛) −  𝑑(𝑛)                                    (3) 

The following equation is used by a k tap discrete Wiener 

filter to determine y's value (n). 

𝑦(𝑛) = ∑ 𝑊𝑘(𝑑(𝑛 − 𝑘) ∗ 𝑣(𝑛 − 𝑘))𝑁−1
𝑘=0         (4) 

The most important characteristic of the Wiener filter is 

the Wiener-Hopf equation, which determines the ideal 

weights. 

∑ 𝑤0]𝑟𝑥𝑥
(𝑘 − 1) = 𝑟𝑥𝑑(−𝑙)

𝑝−1
𝑖=0                       (5) 

Where the ideal tap weight values for the filter are Wo0, 

Wo1... and Wop-1. An autocorrelation function of x (n) is 

denoted by rxx .A cross correlation function between x (n) 

and d (n) is 𝑟𝑥𝑑. The Wiener filter block diagram is clearly 

displayed in Fig. 2. 

 

Fig. 2: Block diagram of Wiener filter 

2.2. Gabor Wavelet Transform (GWT) 

The human visual process is modelled as a filter bank by 

Gabor functions with various orientations and 

frequencies.  To generate a Gabor wavelet, a Gaussian 

kernel function can be modified by using a sinusoidal 

plane wave that has the optimum position in both the 

space domain and the frequency domain.  The literature 

defines a wide range of computer vision applications 

using Gabor functions, including signal processing, 

discriminations, and texture segmentation. While offering 

a fine adjustment for frequency attributes, Gabor wavelets 

highlight the directional characteristics of a signal.  The 

ability to alter frequency is especially crucial for reducing 

background noise in medical signals. The most crucial 

aspect of the noise reduction technique is the retention of 

the edge's characteristics.  The following is a definition of 

a 2D Gabor wavelet: 

𝐺 (𝑥, 𝑦, 𝜃, 𝑢, 𝜎)  =

 
1

2𝜋𝜎2  𝑒𝑥𝑝{−
 𝑥2+ 𝑦2

2𝜎2 
  } 𝑒𝑥𝑝 {2𝜋𝑗 (𝑢𝑥 𝑐𝑜𝑠 𝜃 +  𝑢𝑦 𝑠𝑖𝑛 𝜃)}    

 (6)  

Where, the orientation of the wave is mentioned as 𝜃 , the 

frequency of the sinusoidal wave is mentioned as 𝑢, a 

standard deviation of the Gaussian function in the 𝑥 and 𝑦 

direction and 𝑗 =  √−1 is mentioned as 𝜎.   The result of 

a Gabor filtering can be represented as a 2D convolution 

of the input signal (x, y) and (x, y).  Due to the complexity 

of the Gabor wavelet, the outcome is a 2D complex signal. 

An absolute of this signal is one that keeps the edge's 

features. 

When the wave vector is perpendicular to the edge, the 

Gabor wavelets strengthen an edge and remove 

background information. Local characteristics in the 

convolutional result signal point to the signal's edge.  By 

adjusting the orientation factor, one can obtain kernels 

associated with angles. The Gabor wavelet is essentially a 

complex wavelet with a few notable frequency parameter 

oscillations.  Depending on the value of, the oscillations' 

magnitude decay rate changes. Due to the characteristics 

of the 2D Gabor wavelet, it is particularly useful for 

extracting the waveform and directional features that are 

appropriate for keeping edge pixels while suppressing 

noise, which is prevalent in medical signals. 

2.3. GLCM features 

The time-frequency content is described by using texture 

analysis techniques.  To determine the content of a signal, 

a number of texture-based techniques were developed, 

comprising the autocorrelation function (ACF),the binary 

Gabor pattern (BGP), the local binary pattern (LBP), the 

local spiking pattern (LSP) and the gray-level co-

occurrence matrix (GLCM). After figuring GLCM for k 

th channel of speed signal, i.e.𝐺𝑘, with L levels, features 

like entropy (S) and energy (𝑒𝑘), which are calculated as 

follows: 

According to equation 7, energy is the degree of the 

pair's concentration at a certain grey intensity on the co-

occurrence matrix. 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ ∑ 𝑝(𝑖, 𝑗)2𝐿
𝑗=1

𝐿
𝑖=1                             (7) 

Entropy displays an unpredictable nature of the shape and 

size. In addition to calculating signal information, which 

is specified in equation 8, entropy also quantifies 

information or messages lost from transition signals. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ ∑ 𝑝(𝑖, 𝑗)(−𝐼𝑛𝑝(𝑖𝑗))𝐿
𝑗=1

𝐿
𝑖=1                           (8) 

The GLCM can be used to illustrate various combinations 

of grey levels within the signal, which can be helpful in 

identifying the various areas of interest in the signal.  The 

second-order link between the neighbouring pixels and 

references are taken into consideration when GLCM 

extracts the relevant features. 

2.4. GWO algorithm  

Hunting techniques and social management are employed 

by grey wolves in nature are modelled by GWO 

algorithm. In addition to using it to solve optimisation 

issues, the researchers employed mathematical modelling 

to illustrate the main phases of the wolf's hunting process. 

GWO algorithm is shown in Fig. 3. 
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Fig. 3: GWO Algorithm 

Alpha (α), beta (β), delta (δ) and omega (ω) are four 

groups in the GWO algorithm population.  Three wolves 

that were determined to have the best parameter fit were 

α, β, and δ. They directed another wolves that were still 

present (ω) to the favourable locations within a search 

space.  The wolves circled their victim while they were 

maximising, and the following mathematical equations 

can be used to describe this behaviour: 

−→ 𝐷   =  |  − −→ 𝐶 . . . ⃗𝑋𝑝(𝑡)  −  ⃗𝑋(𝑡)|                 (9) 

    ⃗𝑋(𝑡 +  1)  =  ⃗𝑋𝑝(𝑡)  −  ⃗𝐴 ·  ⃗𝐷                        (10) 

Where the coefficient vectors are represented as ⃗A and 

⃗C, ⃗Xp labels a position vector of the prey as ⃗Xp and a 

position vector of grey wolf as ⃗X.  ⃗C and ⃗A vectors are 

calculated as follows:  α, β, and δ 

−→ 𝐴 =  2 −→ 𝑎 ·  𝑟1 −  ⃗𝑎                                     (11)              

 ⃗𝐶 =  2 · ⃗𝑟2, (4)                                                         (12) 

Where r1, r2 are the random vectors utilised in [0, 1] and 

the components are linearly dropped to 0 from 2 by using 

a few iterations.  The grey wolf may update its position 

using the above equations if the prey were to move from 

position (X, Y) to position (X*-, Y*). Several positions 

that are closer to the best agent than the current location 

could be achieved by adjusting the values of the A and C 

vectors. As an illustration, (X *-, X, Y *) is obtained by 

determining that ⃗A = (1, 0) and C = (1, 1). The grey 

wolves can reach any spot that is present between the 

random vectors r1 and r2, it must be highlighted.   As a 

result, the wolf may randomly update its location within 

the area surrounding the prey using the equations above.  

The placements of the prey are suggested by the GWO 

approach to be α, β and the initial three best solutions are 

taken to be α, β, and δ during an optimisation process. The 

following is a description of the calculated model that 

signifies the repositioning of the wolves: 

 ⃗𝐷𝛼 =  | ⃗𝐶1 ·  ⃗𝑋𝛼 −  ⃗𝑋|                         (13) 

  ⃗𝐷𝛽 =  | ⃗𝐶2 ·  ⃗𝑋𝛽 −  ⃗𝑋|                       (14) 

 ⃗𝐷𝛿 =  | ⃗𝐶3 ·  ⃗𝑋𝛿 −  ⃗𝑋|                        (15)                                    

Where Xβ denotes the β position, ⃗ Xδ labels the δ position 

and ⃗Xα denotes the α position. The random vectors are 

⃗C1, ⃗C2, ⃗C3, while ⃗X shows a position used in this 

solution. The step size of the wolf approaching the wolves 

is clearly specified, as illustrated in Eqs. (13), (14) and 

(15).  Using the existing solution, the predicted end 

positions of the wolves are as follows: 

 ⃗𝑋1 =  ⃗𝑋𝛼 −  ⃗𝐴1 ·  ( ⃗𝐷𝛼)                           (16) 

 ⃗𝑋2 =  ⃗𝑋𝛽 −  ⃗𝐴2(⃗𝐷𝛽)                                (17) 

⃗𝑋3 =  ⃗𝑋𝛿⃗𝐴3 ·  ( ⃗𝐷𝛿)                                  (18)              

 ⃗𝑋(𝑡 +  1)  =   
 ⃗𝑋1 + ⃗𝑋2 + ⃗𝑋3 

3
                            (19) 

Where a positions of  α, β, and δ wolves are mentioned as 

Xα, ⃗Xβ and ⃗Xδ, respectively. The random vectors are 

⃗A1, ⃗A2, ⃗A3, while t represents total number of 

iterations.  The final location of the wolves is established, 

as indicated in Eqs. (16), (17), (18) and (19). 

2.4.1. Proposed GWO-PNN   

There are two hidden layers and one input layer in a PNN.  

The pattern units are contained in the first hidden layer. 

The back-propagation NN approach is different from the 

PNN approach.  The PNN's main benefit is that the 

probabilistic technique just requires one learning step. 

Backward propagation NN learning is comparable to 

learning via trial and error. Contrarily, the PNN gains 

knowledge from experience rather than through trial and 

error.   

 
Fig. 4: Mechanism of GWO Algorithm with PNN. 
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 A PNN has a strong framework and exceptionally 

viable operations. Even with a limited amount of training 

instances, it still performs effectively. . The proper 

weights w (ij), which are calculated using the PNN 

approach and shown in Fig. 4, are multiplied by the output 

of this input dataset. Then transferred to the pattern layer.  

A transfer function is used to transform them into the 

summation and output layers, as it was previously 

demonstrated. The output layer, which is the final layer, 

normally consist of one class because only one output is 

required. The main objective of the training process is to 

identify the most precise weights that were assigned to a 

connector line.  The GWO technique was chosen in order 

to obtain optimised PNN training parameter settings and 

to achieve a high level of accuracy.  

3. Result and Discussion 

 In this work fault detected in induction motor using an 

optimized neural network approach. Basic signal 

processing concepts are applied for an efficient and 

accurately detected the faults. The obtained simulation 

outputs are presented and explained below as follows: 

 
Fig. 5: Motor speed waveform 

  Fig. 5 displays the speed waveform of the motor 

which indicates a constant speed value of 1301 RPM. This 

speed signal is applied as the input to the Wiener filter for 

the efficient preprocessing approach. 

 
Fig. 6: Wiener filter output 

A wiener filter is a tool used in signal processing that 

removes undesirable elements or features from a signal. 

Signal to noise ratios are optimized with the Wiener filter 

and the obtained output is clearly shown in Fig. 6. 

 
Fig. 7: Normalization results 

 Normalization makes a signal's amplitude correspond 

to a particular standard.  Fig. 7, shows a histogram with a 

normalised frequency distribution with a range of the 

normalized frequency is [0, 0.7]. 

 

Fig. 8: Absolute results 

Fig. 8, clearly shows the frequency range of an 

absolute of the proposed work respectively. 

 
9(a) 

 
9(b) 

Fig.: 9(a) Energy results   9(b) Shanon energy results 

In order to improve significant peaks for reliable peak 

detection, Shannon energy has been integrated into peak 

detection methods of various signals is clearly shown in 

Fig.: 9(a, b). 

 

Fig. 10: Decomposed input signal 

Decomposition, which involves splitting a single 

signal into two or more additive components, is the 

opposite of synthesis.   

11(a) 
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11( b) 

11(c) 

 
11(d) 

Fig. 11(a) (b) (c) (d): First, second, third and fourth level 

reconstruction 

Fig. 11 (a), (b), (c) and (9) illustrates this process as 

the first, second, third and fourth levels of reconstruction, 

which are comparable to interpolating between points on 

a graph. However, it can be demonstrated that, under 

certain circumstances, an original analogue signal may be 

precisely recreated from its samples. 

 
Fig. 12: Smoothed signal 

 The smoothing of a signal is vividly illustrated in Fig. 

12 by a function that creates important patterns in the 

signal respectively. 

Fig. 13: Bearing fault 

 

                            Fig. 14: Detected peak amplitude 

Fig. 13, indicates the bearing faults in an induction 

motors by adopting signal processing approach. The 

detected peak amplitude is indicated in Fig. 14. 

4. Conclusion 

Nowadays, the induction motor (IM) is an essential 

component in a variety of industrial applications, because 

of its many advantages, such as its cost and durability. 

Induction motor flaws are to be found using the Grey Wolf 

Optimized PNN in this study. The driven motor’s 

retrieved output signals were subjected to some 

processing procedures in this study, including filtering, 

segmenting, extracting, and classifying. The suggested 

approach combines feature extraction using the Grey 

Level Co-Occurrence Matrix (GLCM), segmentation 

using the Gabor wavelet transform and classification 

using the Grey Wolf Optimized PNN. 

References 

[1] Guerra de Araujo Cruz A., Delgado Gomes R., Antonio 

Belo F., Cavalcante Lima Filho A., A Hybrid System Based 

on Fuzzy Logic to Failure Diagnosis in Induction Motors, 

in IEEE Latin America Transactions, 2017, 15(8), p.1480-

1489. 

[2] Ferreira, Fernando JTE, Ge Baoming, de Almeida A. T., 

Reliability and Operation of High-Efficiency Induction 

Motors, in IEEE Transactions on Industry Applications, 

2016, 52(6), p. 4628-4637. 

[3] Ojaghi M., Akhondi R., Modeling Induction Motors Under 

Mixed Radial–Axial Asymmetry of the Air Gap Produced 

by Oil-Whirl Fault in a Sleeve Bearing, in IEEE 

Transactions on Magnetics, 2018, 54(11), p. 1-5. 

[4] Malla, S., M. J. . Meena, O. . Reddy. R, V. . Mahalakshmi, 

and A. . Balobaid. “A Study on Fish Classification 

Techniques Using Convolutional Neural Networks on 

Highly Challenged Underwater Images”. International 

Journal on Recent and Innovation Trends in Computing 

and Communication, vol. 10, no. 4, Apr. 2022, pp. 01-09, 

doi:10.17762/ijritcc.v10i4.5524. 

[5] Pandarakone S.E., Mizuno Y., Nakamura H., Distinct 

Fault Analysis of Induction Motor Bearing Using 

Frequency Spectrum Determination and Support Vector 

Machine, in IEEE Transactions on Industry Applications, 

2017, 53(3), p. 3049-3056. 

[6] Gunabalan R., Sanjeevikumar P., Blaabjerg F., Ojo O., 

Subbiah V., Analysis and Implementation of Parallel 

Connected Two-Induction Motor Single-Inverter Drive by 

Direct Vector Control for Industrial Application, IEEE 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 16–22  |  22 

Transactions on Power Electronics, 2015, 30(12), p. 6472-

6475. 

[7] Gupta, D. J. . (2022). A Study on Various Cloud 

Computing Technologies, Implementation Process, 

Categories and Application Use in Organisation. 

International Journal on Future Revolution in Computer 

Science &Amp; Communication Engineering, 8(1), 09–

12. https://doi.org/10.17762/ijfrcsce.v8i1.2064 

[8] Stender M., Wallscheid O., J. Bocker, ¨ Senior Member, 

Accurate Torque Control for Induction Motors by 

Utilizing a Globally Optimized Flux Observer, IEEE 

Transactions on Power Electronics,2021, 36(11), p. 

13261-13274. 

[9] Drif M., Cardoso A.J.M., Stator Fault Diagnostics in 

Squirrel Cage Three-Phase Induction Motor Drives Using 

the Instantaneous Active and Reactive Power Signature 

Analyses, IEEE Transactions on Industrial Informatics, 

2014, 10(2), p. 1348-1360. 

[10] Elbouchikhi E., Amirat Y., Feld G., Benbouzid M., 

Generalized Likelihood Ratio Test Based Approach for 

Stator-Fault Detection in a PWM Inverter-Fed Induction 

Motor Drive, IEEE Transactions on Industrial Electronics, 

2019, 66(8), p. 6343-6353. 

[11] Tousizadeh M., Che H.S., Selvaraj J., Abd Rahim N.,  Ooi 

B.T.,  Performance Comparison of Fault-Tolerant Three-

Phase Induction Motor Drives Considering Current and 

Voltage Limits, IEEE Transactions on Industrial 

Electronics, 2019, 66(4), p. 2639-2648. 

[12] Elbouchikhi E., Choqueuse V., Auger F., BenbouzidM.E., 

Motor current signal analysis based on a matched 

subspace detector, IEEE Transactions on Instrumentation 

and Measurement, 2017, 66(12), p. 3260-3270. 

[13] Li D.Z., Wang W., Ismail F., A Spectrum Synch Technique 

for Induction Motor Health Condition Monitoring, IEEE 

Transactions on Energy Conversion, 2015, 30(4), p. 1348-

1355. 

[14] Corral-Hernandez J.A., Antonino-Daviu J.A., "Thorough 

validation of a rotor fault diagnosis methodology in 

laboratory and field soft-started induction motors," 

Chinese Journal of Electrical Engineering, 2018, 4(3), p. 

66-72. 

[15] Xu Z., Hu  C., Yang F., Kuo S.H., Goh C.K., Gupta A., 

Nadarajan S., Data-Driven Inter-Turn Short Circuit Fault 

Detection in Induction Machines, IEEE Access, 2017, 5, 

p. 25055-25068. 

[16] Keskes H., Braham A., Recursive undecimated wavelet 

packet transform and DAG SVM for induction motor 

diagnosis. IEEE Transactions on Industrial Informatics, 

2015, 11(5), p. 1059-1066. 

[17] Faiz J., Ghorbanian V., Ebrahimi B.M., EMD-Based 

Analysis of Industrial Induction Motors With Broken Rotor 

Bars for Identification of Operating Point at Different 

Supply Modes, IEEE Transactions on Industrial 

Informatics, 2014, 10(2), p. 957-966. 

[18] Silva V.A.D., Pederiva R., Fault detection in induction 

motors based on artificial intelligence, In International 

Conference on Surveillance, 2013, 7, p. 1-15. 

[19] Konar P., Chattopadhyay P., Bearing fault detection of 

induction motor using wavelet and Support Vector 

Machines (SVMs), Applied Soft Computing, 2011, 11(6), 

p. 4203-4211. 

[20] Lee C.Y., Wen M.S., Zhuo G.L., Le T.A., Application of 

ANN in Induction-Motor Fault-Detection System 

Established with MRA and CFFS. Mathematics, 2022, 

10(13), p. 2250. 

[21] Lashkari N., Azgomi H.F., Poshtan J., Poshtan M., 

Asynchronous motors fault detection using ANN and fuzzy 

logic methods, IEEE Energy Conversion Congress and 

Exposition (ECCE), 2016, p. 1-5. 

[22] Patil, V. N., & Ingle, D. R. (2022). A Novel Approach for 

ABO Blood Group Prediction using Fingerprint through 

Optimized Convolutional Neural Network. International 

Journal of Intelligent Systems and Applications in 

Engineering, 10(1), 60–68. 

https://doi.org/10.18201/ijisae.2022.268 

[23] Refaat S.S., Abu-Rub  H., Iqbal A., ANN-based system for 

inter-turn stator winding fault tolerant DTC for induction 

motor drives, 17th European Conference on Power 

Electronics and Applications (EPE'15 ECCE-Europe), 

2015, p. 1-7. 

[24] M. J. Traum, J. Fiorentine. (2021). Rapid Evaluation On-

Line Assessment of Student Learning Gains for Just-In-

Time Course Modification. Journal of Online Engineering 

Education, 12(1), 06–13. Retrieved from 

http://onlineengineeringeducation.com/index.php/joee/art

icle/view/45 


