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Abstract: Data-driven predictive maintenance commonly uses machine learning algorithms to conduct prognostics of an asset’s condition 

over its life cycle. Asset information and domain expert knowledge are essential in data-driven predictive maintenance to support 

maintenance-related decisions. Using a general feature selection approach in data-driven prognostics can cause misinterpretation, 

removal, or loss of domain-specific information of assets. The high dimensionality characteristics of asset data due to a large number of 

features sourced from various sensor measurements can affect the performance and reliability of machine learning algorithms. This paper 

presents a feature selection approach to overcome the challenges of retaining domain-specific asset data information by utilising the Safe 

Operating Limit of an asset. The asset information is combined with the filter method to reduce the high dimensional aspects of asset 

data for application in equipment’s remaining useful life prediction. The proposed feature selection approach is demonstrated on an oil 

and gas equipment dataset that contains multiple run-to-failure situations of a gas compressor.  
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1. Introduction 

Unplanned downtime is any unforeseen event that could be an 

unexpected shutdown or failure of equipment or process. 

Unplanned downtime can incur economic losses from $22,000 to 

$50,000 per minute [1] in the automotive industry. The same 

nature of the event would cost around $5 million per day in the 

mining industry [2] and from $38 to $88 million annually in the 

oil and gas industry [3]. 

In the oil and gas industry, according to [3], data-driven 

predictive maintenance can reduce downtime by 36% compared 

to reactive maintenance strategy. The results from the reduced 

downtime are, in economic terms, $34 million in cost savings 

annually and a 5-10% decrease in overall maintenance cost. 

Productivity values result in a 10-20% increase in uptime and 

availability.  

There are several approaches to maintenance being practised in 

the industrial environment. The earliest being used are reactive 

maintenance, where repairs are done after breakdown occurs. 

Preventive maintenance is where replacement and inspection are 

done based on intervals and schedules. Condition-based 

maintenance is a practice where critical equipment is monitored 

closely for any changes and to perform just-in-time repairs. 

Predictive maintenance is where the future state of equipment is 

estimated using mathematical models or artificial intelligence 

techniques. 

In predictive maintenance, failure prognostics consist of activities 

to anticipate failure time by predicting the future health state and 

Remaining Useful Life (RUL) of equipment [4]. RUL is the 

approximation of the time to failure based on the possibility of 

future and existing failure modes to occur. [5] 

 There are two fundamental types of prognostics: 1) Data-driven 

prognostics, where data from sensors are transformed into 

learning models [4]. Pattern recognition and machine learning 

techniques are used to discover changes in system behaviour. 

Historical condition monitoring data from sensors are used to 

predict RUL using interpolation, extrapolation, and machine 

learning techniques. 2) Model-based prognostics, where system-

specific knowledge from experts and physical characteristics of 

the system are used to produce physical failure models for 

degradation, such as crack, wear, and corrosion. Statistical 

models are applied in model-based prognostics such as Particle 

filter, Kalman filter, and hidden Markov model [6] 

From this perspective, this study aims to explore the approaches 

in the selection of features to predict the remaining useful life of 

industrial equipment. The key motivation for the selection of this 

prediction scope for the area of industrial equipment is associated 

with the fact that adequate information on possible failure allows 

the respective industrial personnel to assess and implement 

necessary actions or prevention steps within an ample period 

before an unplanned equipment failure happens. This study 

conducts a case study in which historical data from an oil and gas 

industrial equipment are used for feature selection and prediction 

of their remaining useful life. 

The main contribution of this study is in the application, 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1 Computer and Information Sciences Department, Universiti Teknologi 

PETRONAS, Perak – 32610, Malaysia 

ORCID ID :  0000-0002-5786-0007  
2 Computer and Information Sciences Department, Universiti Teknologi 

PETRONAS, Perak – 32610, Malaysia 

ORCID ID :  0000-0001-6598-3536  
3Computer and Information Sciences Department, Universiti Teknologi 

PETRONAS, Perak – 32610, Malaysia 

ORCID ID :  0000-0002-4065-3968  

* Corresponding Author Email: ku_20000142@utp.edu.my 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 88–95  |  89 

evaluation and addition of discussions not previously established 

concerning the application of domain knowledge for data-driven 

prognostics to predict the remaining useful life of industrial 

equipment with the use of historical data. While the papers 

identified in Section 2 focus on the study of feature selection 

methods, this study proposes the investigation of the performance 

of remaining useful life prediction using the feature selection 

method with the combination of domain knowledge from domain 

experts. 

The organisation of the rest of the paper is arranged as follows. In 

Section 2, a brief review of feature selection methods that are 

emphasised in relation to the problem statement. Next, in Section 

3 we explain the process flowchart of the study with the details of 

the proposed feature selection method and the details of the data 

analysis, whereas Section 4 discusses the experimental results and 

analysis. Section 5 is the conclusion of the paper.  

2. Literature Survey 

The earliest definition of big data consists of 3Vs: Volume, 

Velocity and Variety. [23] Volume refers to the quantity of data 

that is produced. Velocity relates to the speed at which data is 

being produced and processed. Variety is the number of data 

types. According to [7], two additional dimensions are 

introduced: Veracity and Value. Veracity refers to the uncertain 

nature of data caused by many factors such as incompleteness, 

irregularities, and abnormalities. Value refers to the need to 

enhance raw and unprocessed data by obtaining higher-level 

information for use in various scenarios. Data can be classified 

into three types: structured data such as sensor signals and 

controller data, semi-structured data such as information in 

Extensible Business Reporting Language (XBRL) format [23], 

and unstructured data such as sound, images, and videos.  

In industrial application, big data analysis requires specific 

knowledge of the domain [8] as industrial data can consist of 

multiple categories such as vibration, temperature, pressure, 

electric signal, rotating speed, and acoustic values [9]. The 

spatiotemporal property of industrial data needs to be put into 

consideration. A spatial attribute integrates spatially independent 

subsystems in a complex process [10], while a temporal attribute 

refers to different sensors having diverse sampling frequencies. 

In many big data applications, industrial data also suffers from 

the ‘curse of dimensionality’ problems [11], as illustrated in 

Figure 1, where the difficulty of getting an optimal number of 

features increases as the higher the number of features, the more 

data samples will be required. 

Feature selection is one of the common practices to handle the 

curse of dimensionality problem, by reducing the number of 

features [30]. Feature selection is a pre-processing procedure used 

to detect significant attributes in a dataset, as a measure of 

dimensionality reduction [22]. Table 1 summarises the analysis 

of  

 
Fig. 1.  Curse of dimensionality in feature selection [29] 

 

four feature selection methods that are used to classify features in 

data which are the filter method, wrapper method, embedded 

method, and unsupervised learning method.  

The filter method selects variables based on ranking methods [30] 

where a scoring function is used to measure the usefulness of a 

feature by using specified criteria or measure of statistical 

dependence to evaluate the relationship between features. The 

wrapper method uses machine learning algorithms to select 

features that can contribute to the measure of the algorithm’s 

accuracy. Wrapper methods can perform better in selecting 

features as the feature space for training and testing can consider 

feature dependencies at the cost of higher computational 

complexity [31]. In the embedded method, feature selection is 

performed simultaneously during the modelling algorithm 

execution using an objective function such as goodness-of-fit 

term and penalty for a higher number of features [32]. The 

integration of modelling and feature selection in the embedded 

method results in a better computational complexity than the 

wrapper method. In unsupervised learning feature selection, 

algorithms such as neural networks and deep learning are used to 

Table 1. Analysis on feature selection method 

Feature Selection 

Method 

Filter Wrapper Embedded Unsupervised Learning 

Use in high dimensional 

data 
Yes [15][18] Yes [16] Yes [17] Yes [15] 

Incorporates domain 
knowledge 

No [24] 

Computation cost Low High Moderate High 

Advantages 

1. Independent of 

classifier 

2. Better computational 
complexity than wrapper 

methods 

3. Good scalability 

1. Models feature 

dependencies 
2. Interacts with 

classifier 

1. Better computational 

complexity than wrapper 

methods 

1. Learning more 

complex structures from 

data due to the deep 
architecture. 

2. Do not require feature 

extractor 

Disadvantages 

1. Ignores feature 

dependencies. 

2. Ignores interaction 
with classifier [12] 

1.Risk of overfitting [14] 
2. Computationally 

intensive 

1. Classifier dependent 

selection 

1. Require large samples 

2. No physical meaning 

3. Long training time 
4. Risk of overfitting 
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learn and select features where many layers of information 

processing stages are implemented to analyse and compute 

hierarchical features from the observed data [33]. 

There were several works of literature in studies on feature 

selection method to be used in a high dimensional dataset that has 

been conducted. These papers were studied, and the results are 

summed up in Table 2. Based on the findings, the four approaches 

can be used for high dimensional data according to 

[15][16][17][18]. The filter approach has been chosen as the 

feature selection method for the case study. It has good scalability 

for a high dimensional dataset [12] and a low computational cost 

compared to other approaches due to its independence from the 

classification algorithm. However, the drawback of the method is 

filter method does not interact with the classifier, and feature 

dependencies are ignored as features are considered separately. 

Although the wrapper method and embedded method can identify 

feature dependencies by interacting with the classifier, there is a 

risk of overfitting and high computational cost. The risk is due to 

the exponential growth of the feature subset as the number of 

features increases, and both methods do not have high generality 

[28]. Hence, the filter method is more suitable for our case as we 

will handle a large dataset.  

There is room for improvement to the currently selected method 

as there are a few disadvantages to the filter method in selecting 

features. The filter method requires some enhancement to 

overcome the drawback of lacking feature dependencies. 

In real-world data analytics applications, expert knowledge and 

data-driven approaches should be synergised to better understand 

data [19] in order to eliminate data inconsistencies and irrelevant 

data. In the medical domain, [25] proposed an expert-driven 

feature selection where domain experts prioritise and rank the 

features that could predict the Large Gestational Age of infants. 

A medical knowledge motivated feature selection (MFS) was 

proposed in [27] to evaluate the effectiveness of domain 

knowledge in feature selection for heart disease diagnostics. An 

expert-driven feature selection was proposed in [26] to predict 

accident-related causes of death from plaintext autopsy reports. 

These studies have shown acceptable results in the output of 

prediction by using expert-driven feature selection. However, the 

number of features used in the studies is considered relatively 

small compared with high dimensional data.  

From an industrial perspective, when handling high-dimensional 

industrial data, the interpretation of feature attributes varies 

between general data and equipment or asset data. For instance, 

in asset data, a feature of low variance can indicate a nominal 

state, while a feature with high variance in values could refer to 

an inaccurate sensor. [20] A feature’s importance should be based 

on its capability to explain and relate to domain-specific 

information in asset data.  

The application of standard feature selection can cause the 

dismissal of features with significant value of domain-specific 

information. The ability to quantify and retain domain knowledge 

to minimise loss of information during feature engineering is 

crucial to ensure the selected feature continues to be useful to 

data-driven prognostics. Also, improper use of asset data in 

developing machine learning models for prognostics can lead to 

poor model performance and high levels of imprecise predictions. 

The incorrect assessments could result in heightened loss of value 

during an asset’s life cycle, operational inefficiencies, and 

unacceptable safety situations [21]. Therefore, there is a need to 

improve the selected method with domain knowledge and expert 

knowledge for the feature selection process.  

Section 2 reviews the recent works related to feature selection 

methods used for high-dimensional data. In data-driven 

predictive maintenance, machine learning algorithms’ 

performance and reliability depend on the quality of data used in 

model training and testing [37]. Factors that can cause poor 

algorithm performance include a large number of variables, 

commonly in a high dimensional dataset, features with low 

information and variance changes, and redundant features [38]. 

Difficulties in choosing an ideal sample from high dimensional 

data and disparities in understanding domain-specific knowledge 

also become a challenge to apply machine learning methods to 

asset data for predictive maintenance [39] 

To ensure a conducive data representation for predictive 

maintenance analytics, domain knowledge that includes the 

details during asset failures, such as fault modes and their 

implications [40], needs to be identified and preserved during 

feature engineering. Considering the effects of failures and their 

occurrences on an asset life cycle can help produce good 

predictive maintenance analytics [41]. To avoid the ‘curse of 

dimensionality problem, feature selection methods are typically 

utilised to identify the best features that contain the most 

distinctive information [11].  

Traditional feature selection methods are suitable for general 

data. Still, they may not be adequate to capture domain-specific 

information in asset data due to the lack of information on an 

asset’s process design and characteristics [42]. There is no 

generic approach to incorporating domain knowledge in high-

dimensional equipment datasets feature selection. General feature 

selection tends to disregard prior knowledge of domain-specific 

information about which features are more relevant, which 

removes crucial features that contain such information. Features 

selected by standard feature selection methods may be useful for 

general machine learning applications but may not ensure the 

relevancy of  

features when applied to data-driven prognostics. This paper 

proposes a hybrid feature selection method to avoid such 

limitations in the general feature selection method. The ideal 

feature subset is identified while retaining domain-specific asset 

data information that can represent sensitivity to changes for 

application in predictive maintenance. 

3. Proposed Method 

The overall process flow of the methodology in this study is 

broadly summarised in Fig. 2. The proposed feature selection 

method in this work is applied to time series data, where the 

values of features are measurements and readings of various 

sensors and parameters of an industrial machine.    

3.1. Methodology 

Data acquisition is the process of sampling signals acquired from 

physical sensors, converting analogue signals into digital numeric 

values that can be stored and analysed in a computer. Next, the 

data preparation stage will include data cleaning where irrelevant, 

incomplete, or incorrect values will be identified, replaced, 

modified, or removed to prepare data for analysis. Then, the 

feature selection process comprises a selection of relevant 

features that is useful and can contribute to the machine learning 

prediction model. This phase will propose an improved feature 

selection method that combines domain knowledge or expert-
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driven features with the existing feature selection method. The 

last step consists of generating a training dataset by identifying 

the target column for model training and formatting the dataset 

into an acceptable format for the machine learning module. The 

shutdown and maintenance log of the equipment is obtained and 

analysed to determine and classify between the planned shutdown 

and unplanned shutdown or failures that occurred. The dates and 

descriptions of the events are studied and utilised as the basis to 

generate the target column for the dataset for the ML model 

training. Based on discussion with equipment maintenance 

personnel, the duration for TTE prediction to be beneficial for 

intervention by personnel for the equipment is 120 hours before a 

failure. The TTE labelling method is performed based on the 

approach in [43] where the time to the next event is used as the 

label for each point of time in the dataset. The outcome of the 

TTE labelling process is visualised in Fig 3.  

In the model training stage, the machine learning model is used 

to predict the remaining useful life. Features from the feature 

selection process and training data generated from the data pre-

processing phase will be used in this stage. Next, the validation 

stage is done, where the trained model is evaluated using test data. 

This phase is a critical step as it acts to test the reliability and 

generalisation capability of the model. This phase will focus on 

the machine learning model’s performance in the prediction of 

test data. Mainly, the performance will be measured by the error 

measurement such as Mean Absolute Error (MAE), Coefficient 

of determination (R2), Root Mean Squared Error (RMSE) and 

Median Absolute Deviation (MAD).  

MAE is used to compute the projected value of absolute error 

loss, using the calculation method shown in (1). R2 quantifies the 

amount of variance on dependent variables from the independent 

variables [45]. The formula is defined in equation (2). RMSE is a 

function to compute the risk metric related to the values of 

quadratic error or loss that is expected [44]. The general 

calculation method is as shown in (3). The general formula of 

MAD is shown in (4). MAD is the calculation of regression loss 

based on the absolute amount of dispersion around the median of 

the data. 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑛=1

𝑛
 (1) 

𝑅2 = 1 −  
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑛
𝑖=1

 (2) 

𝑅𝑀𝑆𝐸 = √∑
(𝑦̂𝑖−𝑦𝑖)2

𝑛
𝑛
𝑖=1  (3) 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − 𝑋̃|) (4) 

3.2. Feature Selection Process 

Two main challenges when dealing with industrial high 

dimensional datasets are the “curse of dimensionality” and the 

missing of important features. One of the most direct methods to 

overcome the two challenges is to reduce the search space or 

features while retaining domain knowledge. Hence, this study 

proposes a hybrid feature selection algorithm that considers 

domain knowledge during the process, as illustrated in Fig. 3. 

Given a collection of features, the filter method is used to find the 

mutual relationship or correlation between the features to remove 

duplicate and correlated features, which results in the deletion of 

irrelevant or weakly related features. Constant features are 

removed, with features that contain similar values for all the 

outputs in the dataset, which provide no information that can help 

in the machine learning process. Quasi-continuous features are 

removed, with features that give a continuous reading, but the 

values are almost constant; an example in asset data is where a 

sensor marks a certain condition by giving 0 and 1 values only. 
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Fig. 2.  Overall process flow 

 

Fig. 3.  TTE labelling process 
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The steps taken to for filter-method are explained in Algorithm 1.  

 

Algorithm 1: Filter-method feature selection 

Input: Dataset containing N features 

Output: Dataset with j features excluding irrelevant features 

based on filter-method 

1 Assign variance threshold object, vs_constant = 

VarianceThreshold(threshold=0) 

2 Assign train dataset, x_train = df 

3 Select numerical columns from x_train, assign to 

numerical_x_train 

4 fit vs_constant to numerical_x_train 

5 Get names of columns with constant values, assign to 

constant_columns 

a. For columns in numerical_x_train where 

6 Select constant categorical columns from x_train, 

assign as constant_cat_columns 

a. Check if x_train[column].dtype == “0” and 

len(x_train[column]).unique == 1 

7 Concatenate column list: constant_columns and 

constant_cat_columns. Assign as 

all_constant_columns 

8 Drop the constant columns all_constant_columns from 

x_train 

9 Set threshold = 0.95 

10 Assign list for quasi_constant_column 

11 For feature in x_train.columns: 

a. Calculate ratio of each row by 

x_train[feature].value_counts / 

x_train.sort_values.values 

b. Assign ratio to predominant 

c. If predominant >= threshold, append 

quasi_constant_column with feature 

12 Create a set to hold correlated features, corr_features 

13 Create correlation matrix using Pearson correlation, 

corr_matrix = x_train.corr 

14 For each row in corr_matrix: 

a. If value > 0.9, add column name to 

corr_features 

15 Exit with features remaining 

16 End 

 

Expert knowledge-driven features are acquired mainly from the 

experts’ inputs on the physical boundaries of an asset derived 

from the combination of equipment design limits, process flow, 

and aspects of the operational processes [34]. In this study, Safe 

Operating Limit (SOL) [35] is used as a guideline to identify 

sensors with physical boundaries or limits in the range of 

parameters in which operations will result in safe and acceptable 

equipment performance. SOL can be defined as a range of values 

for a critical operating parameter such as pressure, temperature, 

pH, speed, and flow that defines a safe operating envelope for 

equipment or process unit where if the values exceed the envelope 

threshold, predetermined actions are to be taken in order to 

prevent the possibility of impending catastrophic events and 

failure or loss of containment. [36] The sensors in which SOL is 

considered critical by the experts during operational activities are 

taken as important features of the dataset. 

 

Fig. 4.  Cause and Effects matrix  

 

Finally, a subset of features containing a dimensionally reduced 

form of the original data while retaining adequate information on 

the asset is generated. The selected feature subset is expected to 

have limited correlation after removing highly correlated and 

duplicate features during the filter method process. Limiting 

feature correlation and redundancy reduces the risk of overfitting 

during machine learning model application. The selected feature 

subset should have unbiased properties as the features selected 

with experts’ guidance are obtained through operation and 

maintenance strategies using risk assessment techniques like 

Failure Modes, and Effects Analysis (FMEA). The features 

gathered from FMEA should cover sensors that can show 

significant changes in an abnormal event of an asset. Based on the 

FMEA, domain experts will develop a cause-and-effects matrix 

that maps failure events to their related sensors from these sensor-

based indicators. The cause-and-effects matrix as shown in Fig. 4 

becomes a reference to identify the sensors that are most likely 

relevant to identified failures from the FMEA analysis. The 

analysis of the matrix allows us to understand the relationship 

between failure causes and their effects. By understanding the 

logical implementation in system safety, relevant sensors can be 

identified for the failure events. The sensors will be considered as 

features and combined with the features obtained using the filter 

method. The feature selection evaluation process will be done to 

select relevant features among the result of the previous steps. 

Features that do not show a trend or deviation during a confirmed 

failure event can be inferred that they do not show detectable 

changes or contain minimal discriminatory information about an 

asset during changes of state in a machine failure event. The 

chosen features are expected to be adequately sensitive and 

represent the condition changes experienced by an asset, which 

will be useful for machine learning model training and analytics. 

Based on the following properties, a conducive feature subset 

selection is prepared to fulfil the requirements of machine 

learning and predictive maintenance. 

The machine learning model training will be using an ensemble 

of Random Forest, Extra Trees, KNearestNeighbour, and Linear 

Regression algorithms. These algorithms are commonly used for 

regression models and numeric values prediction [43]. The 

dataset obtained from the feature selection process is used in the 

model training, and the performance in predicting the time-to-

failure for each model and feature subset is compared. K-fold 

cross-validation is utilised on all the experiments to ensure every 

case from the original dataset is efficiently incorporated into the 

training and test splits. 

4. Experiment and Findings 

For our case study, a sample dataset from one oil and gas 
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equipment is analysed for this research. The dataset consists of 

data from 17000 sensors. In the equipment instrumentation 

system, the records in the dataset are updated at a rate of 3500 

rows per minute. The sensor values are sourced from multiple 

components with varying categories of measurements. The data 

contains missing values and inconsistencies, which require 

further understanding. There is domain-specific information that 

needs to be considered during feature selection, such as failure 

modes, operational limits and the relationship of components that 

is identified by the operational personnel. Table 2 summarises the 

details of dataset. 

Table 2. Dataset details and number of features 

Dataset Description 
Number of 

features 

Baseline Target equipment and related systems 7543 

Filter-based 

features 

Constant filter, Quasi-constant filter, 

Pearson correlation, low variance filter, 

and high correlation filter 

778 

FMEA-based 

features 

Analysis from FMEA, Cause & Effect 

matrix 

857 

Hybrid 

 

Combine filter-based and FMEA-based 

features, remove duplicate features 

 

1509 

 

The baseline features in this case study of gas compressor 

equipment are determined by grouping sensors based on asset 

structure documentation, and identification of sensors belonging 

to the equipment and its nearest related systems. The baseline 

features consist of 7543 features. The filter-based features are 

obtained after the removal of sensors with constant, quasi-

constant, low variation and highly correlated sensors from the 

baseline using the filter method. The number of features retained 

after the implementation of the filter method is 778 features. 

Based on domain expert knowledge from operational engineers, 

the sensors that function as first-up alarms and flags are removed 

as they are not useful in giving information prior to abnormal 

equipment events. The analysis of the cause-and-effects matrix 

that is developed during the FMEA process is used to determine 

relevant sensors to past failure events and system logical design. 

This step includes the SOL as a guideline where sensors 

containing operating envelopes of Higher High, High, Lower 

Low, and Low are grouped as critical sensors that can impact the 

equipment performance. The number of features retained after the 

FMEA-based selection is 857 features. 

 
Fig. 6.  TTE Prediction on FMEA-based dataset 

 

The hybrid set of features is a combination of the FMEA-based 

features and the filter-method features. Ideally, this selection of 

features should incorporate the domain-knowledge information 

while keeping only statistically relevant features. After the 

removal of any duplicate features from the combined selection, 

the number of features in the hybrid selection is 1509 features. 

This group of sensors will be the features used for the model 

training process. 

The machine learning models’ predictions are plotted as line 

charts to visualise the difference in prediction against target 

values. Fig. 5 and Fig 6 show the TTE prediction values for ML 

models trained using the filter-method dataset and FMEA-based 

dataset respectively. Based on the observed TTE prediction 

values generated from the ML model trained using the hybrid 

dataset as shown in Fig. 7, the hybrid dataset model displayed 

more sensitivity in the predictions based on the significant range 

of fluctuations in predictions as the time towards actual event 

decreases. 

Therefore, in this study, predictions of the models using Filter-

based features and FMEA-based features are generally unable to 

display a significant change in prediction values for upcoming 

events compared to the prediction using Hybrid Features. The 
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Fig. 7.  TTE Prediction on hybrid dataset 
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Hybrid Features predictions also drop slightly closer to the target 

TTE than the other predictions. 

Table 3. Performance metrics based on testing dataset prediction 

Metrics/ 

Features 
MAE R2 RMSE MAD 

Filter-based 2906.8094 0.0918 3885.9657 1934.9761 

FMEA-based 2717.5796 0.1578 3873.0734 1932.9175 

Hybrid 

 

2438.8284 

 

0.2836 

 

3147.9908 

 

1919.9727 

 

 

The experimental results of this study show that machine learning 

models trained with hybrid features incorporating domain-

specific information and filter-based selection can predict the 

time-to-failure of equipment with a better performance. Table 3 

shows the calculation of performance measures of up to 16% 

lower MAE compared to the filter method and up to 10% lower 

MAE compared to domain-specific features only. In terms of 

correlation, the hybrid features improved the correlation score 

(R2) to 67% compared to the filter method and up to 44% against 

FMEA-based features. From the performance metrics evaluation 

of the predictions, a significant reduction in error rate can be 

deducted for the predictions using the hybrid dataset. 

5. Conclusion 

The challenges concerning feature selection of big data in the 

industrial dataset have been studied. The comparison study of 

existing feature selection methods and their implementation in a 

high-dimensional dataset is documented in this study. 

Firstly, the objective of this research was to investigate the 

feasibility of the feature selection method for high-dimensional 

data and the research was summarised in the literature review. 

The second objective was to develop an improved feature 

selection method with domain knowledge for remaining useful 

life prediction of an industrial equipment dataset to improve 

prediction accuracy. The final objective was to evaluate and 

validate the proposed feature selection method in terms of 

accuracy in predicting the remaining useful life. 

In this paper, a hybrid feature selection method for remaining 

useful life prediction based on filter method and domain expert 

knowledge has been proposed. The filter method has been used 

to optimise the high dimensional data and a large number of 

parameters in industrial asset data. Domain expert knowledge is 

utilised to ensure critical and valuable features based on system 

logic are not missing from the dataset used in machine learning 

applications. As asset data does not always follow general data 

characteristics, a feature selection method that retains critical 

domain expert knowledge is required. This work is to show that 

feature selection that is done with consideration of domain-

specific knowledge and information can produce a selection of 

features useful for application in predictive maintenance and able 

to obtain higher accuracy of machine learning model prediction. 
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