

International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING

ISSN:2147-6799

www.ijisae.org

Original Research Paper

Analyzing Educational Tweets using LDA Model

Sundravadivelu Kamatchi *1, Dr. Thangaraj Muthuraman²

Submitted: 10/09/2022 Accepted: 20/12/2022

Abstract: For the purpose of generating best educational reforms, knowledge discovery of educational tweet analysis is more important. Today the social media content on the Internet is rigorously increasing hour by hour. Hence analyzing this textual content is a vital task to solve problems in education. In this study Latent Dirichlet Allocation (LDA) is used to analyze the text content which finds the relationships among documents in the corpus. This proposed work shows that the LDA provide better result to extract topic with accurate coherence & prevalence score. This work also infers that the LDA performs best than Latent Semantic Analysis (LSA).

Keywords: Topic modeling, Latent Dirichlet Allocation, Latent Semantic Analysis, Educational tweets and etc.

1. Introduction

Due to the vast amount of information generation in social media, require effective searching & management & analysis of text data is one of the major interest in researchers [1]. Topic modeling is under the branch of unsupervised machine learning [2]. It has an ability to scan a set of documents from a corpus, analyze the word and phrases the similar word groups into clusters [3].

Traditional methods like k-means are well opted for clustering. But in social media most of the data are in textual format [4]. During the process of clustering text documents, there is an overlapping arises among documents [5]. Therefore this framework uses topic modeling. Topic modeling consists of group of algorithms which are developed to identify the hidden topics with in a document [6].

A document is a collection of topic. Topic model are used to find the hidden themes from the collection then annotate the word phrases with respect to the themes [7]. Each and every word phrase is represented by these topics. This process generates a distribution of topics with document coverage which is mainly utilized to explore investigate the data which correlation to model [8]. This is applied to drawn the group of latent topics among document in a corpus [9]. One of the leadings sources of information is captured from twitter in the form of tweets which is highly suitable to analyze the sentiments [10].

There are two basic types of topic modeling one is linear modeling and another one is Probabilistic modeling [11]. Linear modeling uses inverse document frequency to analyze the word phrases [12]. One example of linear modeling is Latent Semantic

¹Research Scholar, Department of Computer Science, School of

Information Technology, Madurai Kamaraj

Analysis (LSA) which is applied to draw similar topics but it needs large corpus to produce precise results. It is because of their inefficient representation [13]. Probabilistic model is developed to solve the issues of LSA by the use of applying probabilistic functions [14]. LDA is the Bayesian version of probabilistic model [15].

2. Literature Study

This research study [16] collects tweets from Surabaya citizen. Then analyze the tweets with respect to two algorithms LDA and LSA. Finally this study concludes that the LDA provides better results than LSA. But this paper compares LDA and LSA corresponds to coherence value only. This work is devoted to government of Surabaya and their media canter.

This paper [17] focuses the challenging events that occur in Kenya. Therefore this work collects tweets from the peoples of Kenya. Then apply the LDA algorithm to evaluate the analysis of Normalized mutual information (NMI) and coherence are used to choose the accurate model and the work concludes that the LDA performs better.

This framework [18] analyzes the educational tweets by the use of deep learning techniques. The educational tweets are collected from student's feedback. This work assures that the MLP returns best results than CNN in terms concerned dataset.

This work [19] developed a live micro blog search engine for twitter. Similar tweets are identified through the use of LDA. Topic modeling is utilized to retrieve and rank the tweets. They do not provide the evaluation results. This research [20] analyzes the tweets regarding the reactions about COVID-19 in Canada. LDA is used for topic modeling and the ABSA is used for sentimental analysis. Health experts are also devoted to this work for interpreting the results.

University, Madurai, Tamil Nadu, India-625 021.

² Professor, Department of Computer Science, School of

Information Technology, Madurai Kamaraj University, Madurai, India-625 021.

^{*}Corresponding Author Email: svadiveluk2021@gmail.com

3. Proposed Work

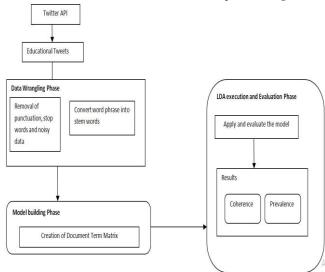
This research work comprises three components,

3.1 Data wrangling phase

3.2 Model building phase

3.3 LDA Execution and evaluation phase.

The architectural framework of the model is depicted in Fig.1.



These three phases are expressed in detail in the following sections.

3.1 Data wrangling phase

The tweets related to higher education are retrieved from twitter API V2.0. Data wrangling is the process of cleaning and managing the huge volume of data which is necessary for the analysis of textual data. The collected tweets contain much irrelevant information such as punctuation, stop words, twitter handles and hash tags. These are cleaned, after cleaning the dataset consists of three classes (positive, Negative and Neutral) with respect to the ranks of polarity. Then convert the word phrase into stem words which is the process of transforming the word phrase with corresponds to its base form. After data wrangling the parameters of the higher education dataset are described in table I.

Table I: Parameters of th	e Higher Education Dataset
---------------------------	----------------------------

Parameter name	Data type
Id	Number
Text	Nominal
Favorite count	Number 0/1/2
Screen name	Nominal
Retweet count	Number
Is retweet	Boolean
retweeted	Boolean
Class	Positive/Negative/Neutral

The following Fig.2 shows the visualization of the higher education dataset in CSV format. It consists of 5000 instances with eight attributes.

	A	В	D	E	F	G	Н	J	
1	text	favoriteCount	truncated	screenName	retweetCount	isRetweet	retweeted	Class	
2	Here's All Details about IISc, IAS Summer Fellowship 2019!	0	FALSE	latestly	1	FALSE	FALSE		
3	CBSE Launches Podcast Shiksha Vani!	0	FALSE	latestly	1	FALSE	FALSE		
4	With 30 percent of the countryit/s school going children likely to attend budget priva	2	TRUE	idr_online	3	FALSE	FALSE		
5	RT @latestly: Check List of Other Documents to Carry On the JEE Main 2019 Exam	0	FALSE	DasSemraj	1	TRUE	FALSE		
6	Check List of Other Documents to Carry On the JEE Main 2019 Exam Day!	2	TRUE	latestly	3	FALSE	FALSE		
7	With traditional solutions failing to solve Indiai¿½s public education woes, it is time to	2	TRUE	idr_online	1	FALSE	FALSE		
8	IIMB leading the management education system change in India with an online and o	0	TRUE	anilgeorge04	1	FALSE	FALSE		
9	JEE Main 2019 Exam Admit Card Released!	0	FALSE	latestly	1	FALSE	FALSE		
10	RT @Saptrainers4u: SAP Online Training is #SAPSRMonlinetraining center in India it pr	0	FALSE	guddu_mittal		TRUE	FALSE		
1	.@udemy Forays Into India https://t.co/bHGMiE34nU	0	FALSE	educationcon	1	FALSE	FALSE		
12	Hyderabad India, Ritu Thapa's on OC2O. A free online classifieds website: travel, edu	0	TRUE	on2offline	1	FALSE	FALSE		
3	CBSE Releases List of Courses for Students to Pursue After Class 12!	3	TRUE	latestly	1	FALSE	FALSE		
4	1. Online English education	2	TRUE	HateFreeWor		FALSE	FALSE		
5	Patna India, Anand's on OC2O. A free online classifieds website: blogging make mone	0	TRUE	on2offline	1	FALSE	FALSE		
16	JEE Main 2019 Exam Admit Card for April Entrance Examination to Be Released	1	FALSE	latestly	3	FALSE	FALSE		
17	Online Education In India: A Perspective	1	FALSE	tersebox	1	FALSE	FALSE		
18	RT @narendra52: E -	0	FALSE	Saurabh100a		TRUE	FALSE		
9	E-	1	TRUE	narendra52	3	FALSE	FALSE		
20	JNU will be conducting its #Entrance #Exams online this year. This will make it easier	0	TRUE	LearnPick	1	FALSE	FALSE		
1	IIT Roorkee Reschedules JEE Advanced Due to Lok Sabha Elections!	2	TRUE	latestly		FALSE	FALSE		
2	U.SBased Online Learning Leader Udemy Enters India https://t.co/RXE6sEPYnj via @	0	FALSE	rajnish249	1	FALSE	FALSE		
3	PayPal enters India�s \$215 B education market via online platforms https://t.co/w	0	FALSE	rajnish249	1	FALSE	FALSE		
14	Assam ASOS Class 12 Board Exam Date Sheet Announced!	0	FALSE	latestly	1	FALSE	FALSE		
5	RT @EconomicTimes: Founded in 2010, #Udemy is an online learning destination tha	0	FALSE	varun18vijay		TRUE	FALSE		
26	RT @Inc42: @unacademy - A company which is revolutionising the online education	0	FALSE	n2r3ndr2		TRUE	FALSE		
27	New Blog Post Helge Scherlund	0	TRUE	scherlund		FALSE	FALSE		
8	According to a KPMG study, Online Education in India: 2021, the Indian online educat	1	TRUE	SimplyShradd		FALSE	FALSE		
9	@WIRED Wholeheartedly agree education is the future of the world. The internet is	2	TRUE	msbehling	1	FALSE	FALSE		
80	RT @HigherEdSurge: A look into India's attempts of #highered innovation and how th	0	FALSE	LeylaRiley	3	TRUE	FALSE		
81	A look into India's attempts of #highered innovation and how they can become pione	3	FALSE	HigherEdSurg		FALSE	FALSE		
1	Calcutte Iniversity to accent face from students online only. Times of India https://		EVICE	hachCalcutta		EALCE	ENISE		

Fig.2. visualization of the higher education dataset in CSV format.

3.2 Model building phase

The first step of model building is to construct a word cloud which displays the most frequent words. The next step is to build the Document Term Matrix (DTM). It is a matrix with terms is in columns and tweets are in rows. If the word phrase appears in the document then its value is indicated as 1 otherwise 0.

In order to evaluate the model performance, the log-likelihood of the model is calculated. The result assures that the log-likelihood per word is inspected to be good. The log-likelihood of the model in 500 Iterations are presented in Fig.3. It shows the likelihood of topics in iteration wise.

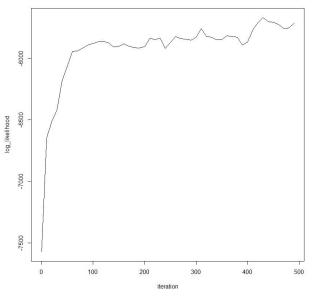


Fig.3. Log-likelihood of the model in 500 iterations.

3.3 LDA Execution and Evaluation phase

The main future of LDA is to understand the relationship between word phrases by the use of topics. The term topic is used to relating a word with a definition. For example if the machine reads: cow is white, the LDA first tokenizes this into two topics cow which is an animal and white is a color. The steps of LDA algorithm is given below,

Step 1: Determine the number of words in the document.

Step 2: Topic mixture is created regarding to the collection of topics.

Step 3: Based on the document's multinomial distribution, select the topics from topic mixture.

Step 4: Picked the corresponding words with respect to topics. Step 5: Calculate the probability of the topic t in the document d and probability of the word appeared on the topic.

Step 6: Based on the probability value, topics are updated.

The top 20 terms with its beta value are given in Fig.4. Beta value corresponds to the density of the topic word. High beta value indicates that the most of the topics in the corpus are represented correctly.

ew1.R ×			Untitled2* ×
gan cos I	topic *	term *	beta
	1		
1		percent	0.009806671
2	1	million	0.006837635
3	1	new	0.005942985
4	1	year	0.005750201
5	1	billion	0.004267884
6	1	last	0.003679708
7	1	two	0.003596430
8	1	company	0.003483348
9	1	people	0.003452703
10	1	market	0.003332170
11	2	ī	0.007054248
12	2	president	0.004887314
13	2	government	0.004519754
14	2	people	0.004065070
15	2	soviet	0.003716266
16	2	new	0.003698227
17	2	bush	0.003696676
18	2	two	0.003606322
19	2	years	0.003367307
20	2	states	0.003200802

Fig.4. Top 20 terms with its beta value.

The screenshot of 20 topics with their terms are shown in fig.5. The following fig.6 displays the topic modeling with rating 5 selected from the top terms. By measuring the percentage of semantic similarity of top terms, the coherence score is calculated. How the words are related on a topic is described by the coherence which is represented as below,

P(b|a) - P(b) here {a,b} are the pair of words. The best topics with its coherence score is presented in fig.7.

RStudio

ource												ć
onsole	Terminal ×	Jobs ×										
R R 4.	2.0 · ~/ Ø											
mod_	Ida_5\$top_t	erms <-	GetTopTerns (ph	1 =	mod_lda_5\$phi.	м = 1	0)					
	frame(mod_											
		t.	1	t_2		t_3		t_4		t_5	t_6	
		educati		tps		april		times		april	april	
	educati	on_syst	em https_skepti	cal	bd_	focus		india	bd_:	focus	bd_focus	
		syste	em skepti	cal	be	sides	0	nline	be	sides	besides	
	online_	educati	on ap	ril	besides_cr	eated		https	besides_cr	eated	besides_created	
		re	ad e	xam	classi	fieds	https_skep	tical	classi	fieds	classifieds	
		compar	ny ir	idia.	classifieds_we	ebsite	skep	tical	classifieds_wel	bsite	classifieds_website	
		1		ine		eated	times_	india	Cr	eated	created	
		ind									created_emurgo	
		onli			educati		unive				education_ef	
comp	pany_revolu	tionisi	ng besides_crea	ted	e	enurgo	stu	idents	er	nurgo	emurgo	
		t_7	t,	.8		t_9		t_10	t_11		t_12	
		april	agoraco	m	ap	ril	educa	tion	bf		april	
	bd_	focus	to	0	bd_fc	icus e	ducation_ma	irket	bf_bd		bd_focus	
	be	sides	tco_e	f	besi	des	ma	irket	ef		besides	
	besides_cr		udemy_enter	s	besides_crea	ted or	nline_educa	tion	bd	b	esides_created	
	classi	fieds	r	t	classifi	eds	1	ndia	ef_bf		classifieds	
clas	ssifieds_we	bsite :	agoracom_better	u cl	assifieds_webs	ite	or	line	https	class	ifieds_website	
	cr	eated	aro	1	crea	ted	ir	idian h	nttps_skeptical		created	
	created_e	nurgo	arcl_cpl	а	created_emu	ingo	indi	a_ef	skeptical		created_emurgo	
	educati	on_ef	better	u	education	Lef		via	bd_https		education_ef	
	e	murgo be	etteru_educatio	n	emu	rqo	ł	ttps	online		emurgo	
	t_1	3	t_14		t_15		t_16		t_17		t_18	
	an	p	leader		april		learning		classifieds		april	
	bd_focu	s	leader_udeny		bd_focus		india	classi	fieds_website		bd_focus	
	beside	5	learning		besides	onlin	e_learning		free		besides	
bes:	ides_create	d	india	be	sides_created		enters		free_online	be	sides_created	
	create	d agor.	acom_betteru		classifieds	en	ters_india	onlin	ne_classifieds		classifieds	
Cre			u_education cl	assi	fieds_website		udemy			classi	fieds_website	
	emurg	0	bpi_fingers		created		online		online		created	
	emurgo_e		btruca	0	reated_emurgo	ud	eny_enters		april	C	reated_emurgo	
	focu		btruca_ef		education_ef				bd_focus		education_ef	
	focus_am		corp		emurgo		https		besides		emurgo	
		_19	t_20		3							
	cpla_		sticking									
	arcl.c		tonque									
			ue_sticking									
		bpi	e									
	corp_btr		e_tonque									
		pla	india_ef									
10	ossedca_ht		april									
	fing		bd focus									
fin	iers_crosse		besides									

Fig.5. Top 20 topics with their terms.

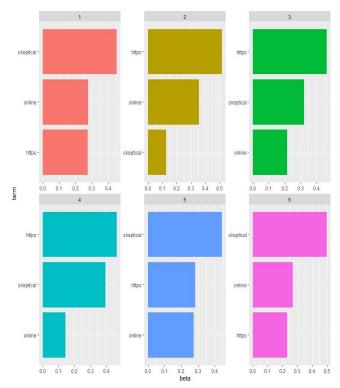


Fig.6. Topic modeling with rating 5.

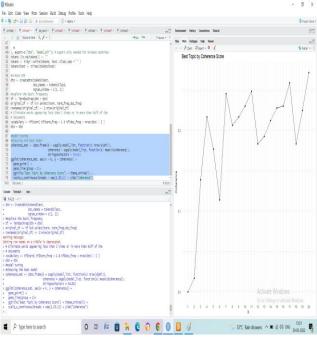


Fig.7. Best topics with its coherence score.

It shows that the topic 17 has the high coherence value that means the words in the topic are highly associated to each other. It is best way to group the topics using dendogram that shows how the topics are closely related. The result of the dendogram for this model is presented in fig.8.

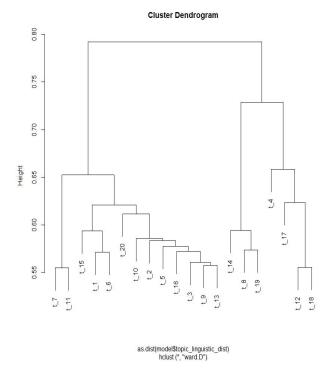


Fig.8. Dendogram of the model.

It shows that the topic t7 and t11 have high similarity to each other.

Prevalence is a score which explains the most frequent topics that is, probability of topics in the entire document. Fig. 9 illustrates both the coherence and prevalence score of the top topics. Based on coherence topic 17 has high value but in prevalence topic 11 has high score and topic 17 has the low value, which means that the tough words inside the topic 17 are also supporting each other.

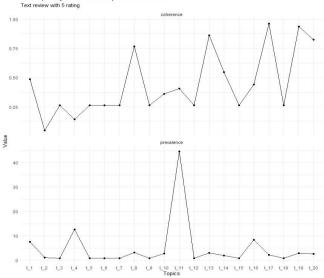


Fig.9. Coherence and prevalence of the top 20 terms.

4. Experimental Result

In order to compare LDA and LSA the first 10 topic coherence that are derived by both modeling is calculated which is indicated in fig.10. It clearly defines that the number of best topic is 6 for LDA and 2 for LSA. Coherence score greater than 0.75 is considered to be high. It concludes LDA bring off good results than LSA.

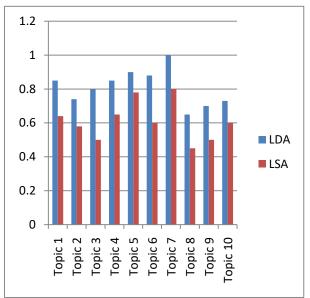


Fig.10. Comparison of LDA and LSA using 10 Topics.

5. Conclusion and Future Work

After implementing the framework LDA works effectively to modeling topics in a corpus as well as topic modeling with respect to tweets. LDA construct topics that are both coherent and consistent with regarding to the determined clusters that are thus far presented in the tweet data. In future the proposed framework would be enhanced to analyze the relation between user feedback and coherence of the topics drawn from the framework which creates more understanding among the topics.

6. References

- Aletras, N., Baldwin and et.al, "Evaluating Topic Representations for Exploring Document Collections", Journal of the Association for Information Science and Technology, 2015.
- [2]. Nugroho, R and D. Molla-Aliod et.al, "Incorporating Tweet Relationships into Topic Derivation", Proceedings of the 2015 Conference of the Pacific Association for Computational Linguistics, PACLING. 2015
- [3]. Bettina Grun, kurt Hornik ,"topicmodels: An R Package for Fitting Topic Model", Journal of Statistical Software, 2011, 40(13).
- [4]. Goel, Vikas, Amit Kr Gupta, and Narendra Kumar, "Sentiment Analysis of Multilingual Twitter Data using Natural Language Processing." 2018 8th International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2018.
- [5]. L. Hong and B. D. Davison,"Empirical study of topic modelling in twitter", In Proceedings of the First Workshop on Social Media
- [6]. Kumari, S. S. ., and K. S. . Rani. "Big Data Classification of Ultrasound Doppler Scan Images Using a Decision Tree Classifier Based on Maximally Stable Region Feature Points". International Journal on Recent and Innovation Trends in Computing and Communication, vol. 10, no. 8, Aug. 2022, pp. 76-87, doi:10.17762/ijritcc.v10i8.5679.
- [7]. Ponweiser, M., Latent Dirichlet Allocation in R. Diploma Thesis Institute for Statistics and Mathematics, 1-138, (2012).
- [8]. Qi Jing," Searching for Economic Effects of User Specified Event Based on Topic Modeling and Event Reference", Jordery School of Computer Science, Acadia University 2015.
- [9]. David M.Blei , "Probabilistic Topic Models", Communications of the ACM, 2012, 55(4), 77-84.
- [10]. David M.Blei and John D. Lafferty, "A Correlated Topic Model of Science", Annals of Applied Statistics 2006, 1(1), 17-35.
- [11]. L. Yao, D. Mimno, and A. McCallum, "Efficient methods for topic model inference on Streaming document collections", In Proceedings of the 15th ACM SIGKDD international conference on KDD, KDD '09, 2009, 937–946, NY, USA, ACM.
- [12]. M. Hoffman, D. Blei, and F. Bach,"Online learning for latent dirichlet allocation", Advances in Neural Information Processing Systems, 2010, 23,856–864.
- [13]. 12. D. M. Blei, A. Y. Ng, and M. I. Jordan,"Latent dirichlet allocation", JMLR, 2003, 3, 993–1022.
- [14]. David Mimno and Hanna M Wallach et.al," Optimizing semantic coherence in topic models", In Proceedings of the Conference on Empirical Methods in Natural Language processing, 2011, 262–272. Association for Computational Linguistics.
- [15]. Li-Qiang Niu and Xin-Yu Dai."Topic2vec: Learning distributed representations of topics", 2015 Available at: arXiv preprint arXiv: 1506.08422
- [16]. Vivek Kumar and Rangarajan Sridhar, "Unsupervised topic modeling for short texts using Distributed representations of words", In Proceedings of NAACL-HLT, 2015, 192–20
- [17]. Siti Qomariyah, Nur Iriawan and Kartika Fithriasari, "Topic modeling Twitter data using Latent Dirichlet Allocation and Latent Semantic Analysis", AIP Conference Proceedings 2194, 020093 (2019); https://doi.org/10.1063/1.5139825 Published online: 18 December 2019.
- [18]. Marina Sokolova1, Kanyi Huang1 and Stan Matwin and et.al," Topic Modeling and Event Identification from Twitter Textual Data",

- [19]. G. Bala Krishna Priya 1], Dr. Jabeen Sultana 2., Prof. M. Usha Rani 3," A Review to Classify Sentiments Using Some Machine Learning Techniques", International Journal of Computer Science Trends and Technology (IJCST), 2021, 9(4), 18-22.
- [20]. Garg, D. K. (2022). Understanding the Purpose of Object Detection, Models to Detect Objects, Application Use and Benefits. International Journal on Future Revolution in Computer Science & Amp; Communication Engineering, 8(2), 01–04. https://doi.org/10.17762/ijfrcsce.v8i2.2066
- [21]. Jabeen Sultana, M. Usha Rani and M.A.H. Farquad," Knowledge Discovery from Recommender Systems using Deep Learning", 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), 1074-1078. IEEE.
- [22]. Kose, O., & Oktay, T. (2022). Hexarotor Yaw Flight Control with SPSA, PID Algorithm and Morphing. International Journal of Intelligent Systems and Applications in Engineering, 10(2), 216–221. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/1879
- [23]. Christan Grant, Clint P. George, Chris Jenneisch," Online Topic Modeling for Real-time Twitter Search".