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Abstract: Sea-land segmentation is a key pre-processing step for ship detection from optical remote sensing imagery. Because of waves, 

illumination and shadows, conventional sea-land segmentation algorithms usually confuse between land and sea. Thus, a new maximum 

entropy segmentation scheme based on an adaptive threshold is proposed in this paper. Experimental results show that our algorithm has 

better accuracy compared to many traditional algorithms such as conventional maximum entropy algorithm, Otsu algorithm and bimodal 

histogram algorithm. 
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1. Introduction 

Automatic coastline extraction from satellites is a fundamental 

task to map coastal regions and to detect ships and small vessels, 

and sea-land segmentation is the main technology of coastline 

extraction. The development of satellite remote sensing 

technology had provided tons of high-resolution images of the 

coastal area that can be used for sea land segmentation [1].  

The sea land segmentation methods mainly include threshold 

segmentation methods, edge-based methods, active contour 

method, and machine learning methods methods.  

The threshold segmentation methods are methods that set a 

threshold value according to the image gray level to segment the 

land and sea. Guo et al. [2] proposed a method that used a 

normalized difference water index (NDWI)to segment sea and 

land. Chen et al. [3] used the tasseled cap transformation to 

extract sea-land information. Wernette et al. [4] presented a 

multi-scale relief method to extract the morphology of the barrier 

island from high-resolution digital elevation models (DEM).  A 

key of these methods is the good choice of the threshold. 

The edge-based methods apply the distinguished edge feature to 

segment the images. Wang and Liu [5] proposed a ridge-tracing 

method using the statistics of the pixel intensities in the land 

region and sea region to determine the boundary. These methods 

are fine for the detection of clear boundaries but they are deeply 

affected by noise.  

The active contour methods are segmentation methods that use 

energy forces and constraints to separate the region of interest 

from an image. Cao et al. [6] proposed a new geometric active 

contour model adaptive to the speckle noises for sea land 

segmentation from SAR images. Fan et al. [7] proposed a level 

set approach with a particle swarm optimization 

algorithm. Elkhateeb et al. [8] proposed a modified Chan–Vese 

method for sea–land segmentation with fuzzy c-means. 

Machine learning methods apply useful information and prior 

knowledge based on a variety of data to segment the sea-land 

regions. Rigos et al. [9] and Vos et al. [10] used a neural network 

to extract the shoreline from satellite images. Sun et al. 

[11] adopted a superpixel-based conditional random field model 

to detect the sea and land areas. Cheng et al. [12] proposed a 

graph cut method with a probabilistic support vector machine to 

segment the sea and land regions. 

Some convolutional neural network (CNN) methods were 

introduced recently in coastline extraction by segmenting the 

land and sea. Liu et al. [13] used a CNN with leaky rectified 

linear unit (leaky-ReLU) activation function. Liu W et al. 

[14] adopted a multitask CNN without downsampling to get 

shorelines from remote sensing images. Cui et al. [15] proposed 

a scale-adaptive CNN for sea–land segmentation. Although the 

CNNs achieve good performances, buying the remote sensing 

images directly from their providers is too expensive and 

obtaining many satellites map images freely from the web map 

services is difficult. Also, the ground truth of these data cannot 

be easily determined to train the network for the sea-land region 

extraction. 

The rest of the study has the following sections. Methodology 

suggests details about the new method used and its background. 

Results reports details about the dataset, the quality metrics used 

for evaluation and also the experimental results with a 
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discussion. The last section concludes and discusses future 

directions in research in this area. 

2. Methodology 

2.1 Maximum Entropy Algorithm 

Constantino Tsallis presented in 1988 a new defintion of the 

entropic function in order to be used in a non-extensive 

thermodynamics [16]. The first paper that applied Tsallis 

entropy on image thresholding was in 2004 [17]. 

The images are composition of pixels that have discrete gray 

level values. So, a discrete set of probabilities {𝑝𝑖}, with random 

variable 𝑖  is presented here. Condition on probabilities is: 

∑ 𝑝𝑖 = 1𝑖 . 

Tsallis entropy is defined as:  

𝑆𝑞 =
𝑘

𝑞−1
(1 − ∑ 𝑝𝑖

𝑞
𝑖 )                                                    (1) 

Where 𝑞 is real parameter and 𝑘 is constant equals 1 for image 

processing 

For a bi-level threshold t of the gray levels, the Tsallis entropies 

are defined as [17]:  

𝑆𝑞
𝐴(𝑡) =

1

𝑞−1
{1 − ∑ (

𝑝𝑖

𝑝𝐴
)

𝑞
𝑡
𝑖=1 } ; 𝑆𝑞

𝐵(𝑡) =
1

𝑞−1
{1 −

∑ (
𝑝𝑖

𝑝𝐵
)

𝑞
𝑘
𝑖=𝑡+1 }                                                               (2) 

Where A and B are two independent systems (e.g. Sea and Land 

areas) 

The total entropy is: 

𝑆𝑞 (𝑡) =  𝑆𝑞
𝐴(𝑡) + 𝑆𝑞

𝐵(𝑡) + (1 − 𝑞)𝑆𝑞
𝐴(𝑡)𝑆𝑞

𝐵(𝑡)         (3) 

When this entropy is maximized, the corresponding gray level t 

is considered the optimum threshold value [17]. One drawback 

to this approach is the need to select a good threshold t in order 

to get high segmentation accuracy.  

2.2 Modified Maximum Entropy Algorithm 

 

It is clear from section 2.1 that the bi-level thresholding 

segmentation highly depends on the choice of the threshold t. 

Hence, we develop our new algorithm for sea-land segmentation 

by estimating a good threshold. The new threshold is based on 

statistics considering the sea region. 

The new algorithm is as follows 

Algorithm 1: Modified Maximum Entropy 

                   Inputs: Satellite Image I, Initial threshold t 

                   Output: Segmented Image O 

Step 1: Apply the Tsallis threshold segmentation using t to get 

sea region and land region of the input image I 

Step2: Calculate mean 𝜇 for the sea region by adding all pixel 

values in the sea region then divide by their number 

Step 3: Calculate new threshold  . The threshold for sea-land 

segmentation is as follows: 𝑇 = 𝜆 𝜇 Where 𝜆 is the weight of 

mean (𝜇). 

Step 4: Run the maximum entropy algorithm for sea land 

segmentation with the new threshold 𝑇 to get the final segmented 

image O  

Here, we choose 𝜆 = 1.3  for considering the gaussian 

distribution of the pixel values in the image and also for the 

illumination on the sea surface 

3. Experimental Results 

3.1 Materials and Dataset 

Eight Landsat-8 OLI remote sensing images were used as 

experimental data. These images were extracted from a sea-land 

benchmark dataset using Landsat-8 Operational Land Imager 

(OLI) imagery consisting of 18,000 km2 of coastline around 

China [18-19] 

The semantic annotation of this dataset was done [18] by 

dividing pixels of all images into two classes: sea and land. 

Ground truth images were first labelled for all images with 

LabelMe [20] taking into account the properties of different 

coastlines then the land positions and the coastlines standards 

were extracted using OpenStreetMap [21] data. Finally, 

disturbing images with cloud and large blank areas were 

removed from the dataset. 

 

3.2 Quality Metrics 

In the experiments, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹1 𝑠𝑐𝑜𝑟𝑒, and the 

accuracy of sea and land areas are used as quality metrics to 

evaluate the results of different segmentation methods, their 

formulas [22] are defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                       (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                             (5) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                       (6) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                (7) 

 

where TP is the number of pixels of land classified as land, FP 

is the number of pixels of sea classified as land, TN is the number 

of pixels of sea classified as sea, and FN is the number of pixels 

of land classified as sea. 

 

Precision denotes the number of positive class predictions that 

actually belong to the positive class while Recall (Sensitivity) 

denotes the number of positive class predictions taken from all 

positive samples in the dataset. 

F1 score represents the score that balances the precision and 

recall in one term 

The accuracy is the ratio of the number of samples correctly 

classified to the total number of samples of the dataset. 

 

 

3.3 Results and Discussion 

In these experiments, we set Lambda =1.3 and Threshold of 

Maximum Entropy= 0.8. All implementations in this paper were 

performed using Python 3.7. 
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In this subsection, Figures (1-8) and Tables (1-8) show the 

subjective and the objective evaluations, respectively, of the new 

algorithm compared to the Otsu algorithm [23], the bimodal 

histogram algorithm [24] and the conventional maximum 

entropy algorithm [17].  

   
(a)Original (b)Ground Truth (c)Otsu 

   
(d)Bimodal 

Histogram 

(e)Maximum 

Entropy 

(f) Modified Max 

Entropy 

Figure 1. The first image sample 

Table 1. Quality Metrics for the different algorithms applied on the 

first image sample 

 Otsu Bimodal 

Hist. 

MaxEntropy Modified 

MaxEntropy 

Preci 

sion 

0.6591 0.8201 0.3286 0.9850 

Recall 0.9732 0.9390 0.9419 0.8316 

F1 

score 

0.7859 0.8755 0.4872 0.9018 

Accu 

racy 

0.9143 0.9568 0.6796 0.9707 

 

   
(a)Original (b)Ground Truth (c)Otsu 

 
  

(d)Bimodal 

Histogram 

(e)Maximum 

Entropy 

(f) Modified Max 

Entropy 

Figure 2. The second image sample 

Table 2. Quality Metrics for the different algorithms applied on the 

second image sample 

 Otsu Bimoda

l Hist. 

MaxEntrop

y 

Modified 

MaxEntrop

y 

Preci 

sion 

0.349

8 

0.6678 0.1606 0.9728 

Recal

l 

0.978

1 

0.9387 0.9479 0.7939 

F1 

score 

0.515

4 

0.7804 0.2747 0.8743 

Accu 

racy 

0.873

7 

0.9637 0.6562 0.9843 

 

   
(a)Original (b)Ground Truth (c)Otsu 

   

(d)Bimodal 

Histogram 

(e)Maximum 

Entropy 

(f) Modified Max 

Entropy 

Figure 3. The third image sample 

Table 3. Quality Metrics for the different algorithms applied on the 

third image sample 

 Otsu Bimodal 

Hist. 

MaxEntropy Modified 

Max 

Entropy 

Preci 

sion 

0.9126 0.9546 0.7243 0.9959 

Recall 0.9840 0.9766 0.9889 0.9396 

F1 

score 

0.9470 0.9654 0.8361 0.9669 

Accu 

racy 

0.9479 0.9669 0.8167 0.9696 

 

   

(a)Original (b)Ground 

Truth 

(c)Otsu 
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(d)Bimodal 

Histogram 

(e)Maximum 

Entropy 

(f) Modified 

Max Entropy 

Figure 4. The fourth image sample 

Table 4. Quality Metrics for the different algorithms applied on the 

fourth image sample 

 Otsu Bimodal 

Hist. 

MaxEntropy Modified 

Max 

Entropy 

Preci 

sion 

0.7762 0.8608 0.6947 0.9962 

Recall 0.9795 0.9612 0.9802 0.8370 

F1 

score 

0.8661 0.9082 0.8131 0.9097 

Accu 

racy 

0.8494 0.9034 0.7760 0.9174 

 

   

(a)Original (b)Ground Truth (c)Otsu 

 

  

(d)Bimodal 

Histogram 

(e)Maximum 

Entropy 

(f) Modified 

Max Entropy 

Figure 5. The fifth image sample 

Table 5. Quality Metrics for the different algorithms applied on the 

fifth image sample 

 Otsu Bimodal 

Hist. 

MaxEntropy Modified 

Max 

Entropy 

Preci 

sion 

0.4428 0.7039 0.1545 0.9218 

Recall 0.9637 0.9360 0.9546 0.8743 

F1 

score 

0.6068 0.8036 0.2659 0.8974 

Accu 

racy 

0.8895 0.9595 0.5337 0.9823 

 

   
(a)Original (b)Ground Truth (c)Otsu 

   

(d)Bimodal 

Histogram 

(e)Maximum 

Entropy 

(f) Modified 

Max Entropy 

Figure 6. The sixth image sample 

Table 6. Quality Metrics for the different algorithms applied on the 

sixth image sample 

 Otsu Bimodal 

Hist. 

MaxEntropy Modified 

Max 

Entropy 

Preci 

sion 

0.8165 0.8249 0.6751 0.9699 

Recall 0.9958 0.9952 0.9943 0.9649 

F1 

score 

0.8973 0.9021 0.8042 0.9674 

Accu 

racy 

0.8713 0.8780 0.7266 0.9633 

 

 
  

(a)Original (b)Ground Truth (c)Otsu 

   

(d)Bimodal 

Histogram 

(e)Maximum 

Entropy 

(f) Modified Max 

Entropy 

Figure 7. The seventh image sample 
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Table 7. Quality Metrics for the different algorithms applied on the 

seventh image sample 

 Otsu Bimodal 

Hist. 

MaxEntropy Modified 

Max 

Entropy 

Preci 

sion 

0.9768 0.9870 0.8065 0.9999 

Recall 0.9963 0.9953 0.9963 0.9753 

F1 

score 

0.9865 0.9911 0.8914 0.9875 

Accu 

racy 

0.9802 0.9871 0.8240 0.9821 

 

   
(a)Original (b)Ground Truth (c)Otsu 

   

(d)Bimodal 

Histogram 

(e)Maximum 

Entropy 

(f) Modified Max 

Entropy 

Figure 8. The eighth image sample 

Table 8. Quality Metrics for the different algorithms applied on the 

eighth image sample 

 Otsu Bimodal 

Hist. 

MaxEntropy Modified 

Max 

Entropy 

Preci 

sion 

0.8448 0.9019 0.3556 0.9274 

Recall 0.9888 0.9845 0.9820 0.9477 

F1 

score 

0.9111 0.9413 0.5221 0.9375 

Accu 

racy 

0.9467 0.9661 0.5036 0.9651 

 

Table 9. Average Quality Metrics for the different algorithms over the 

eight images 

 Otsu Bimodal 

Hist. 

MaxEntropy Modified 

Max 

Entropy 

Preci 

sion 

0.7223 0.8401 0.4875 0.9711 

Recall 0.9824 0.9658 0.9733 0.8955 

F1 

score 

0.8145 0.8960 0.6119 0.9303 

Accu 

racy 

0.9091 0.9477 0.6895 0.9669 

From the objective evaluation presented in Tables (1-6), we can 

see that the new modified Maximum Entropy Algorithm 

outperforms the state-of the art algorithms used for comparison 

in terms of three quality metrics: the Precision, the F1- score and 

the Accuracy.  

However, in Tables (7-8), the bimodal histogram is the best in 

terms of F1-score and Accuracy with slight differences between 

it and our algorithm in those two images while the new algorithm 

outperforms the other algorithms used in comparison in terms of 

Precision in the eight images.  

The metric recall changes the best algorithm from an image to 

another although the subjective evaluation using images from 

Figures (1-8) where it is clear by the eye observation that this 

metric does not describe which is the best algorithm in most 

cases. The reason for this can be explained by: “Precision is a 

measure of quality, and recall is a measure of quantity”. High 

recall values mean that an algorithm returns most of the relevant 

results not necessary to return also irrelevant ones and hence 

recall is not always a significant metric to evaluate the 

segmentation  

According to Table 9 where we calculate the average over the 

eight images, our algorithm has the best values in Precision 

(0.9711), F1-score (0.9303) and Accuracy (0.9669) 

4. Conclusions and Future Work 

The sea land segmentation constitutes a necessary step in the 

process of ship detection from optical satellite images. In this 

paper, we presented a novel approach to segment sea-land areas 

using an adaptive threshold to the Tsallis maximum entropy bi-

level thresholded segmentation algorithm. Our threshold 

depended on the statistical properties of the pixels’ intensities in 

the sea region. The new method showed high efficiency 

comparing to three of the state-of the art sea land segmentation 

methods when it was applied to eight different Landsat-8 OLI 

satellite images of a public dataset.  

As future research directions, we suggest the determination of 

the range of 𝜆 based on the illumination of the sea region in the 

satellite images. 
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