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Abstract: The traditional frequent item-set mining is most popular and widely used technique for mining of related items. It considers 

whether the item is present or absence in dataset. However, item quantity and its importance is need to be consider for some real-world 

problem such as identify profitable items from the customer transaction dataset in supermarket, discover valuable customer for business, 

in medical field identify the combination of symptoms that are more significant to diseases. High utility itemset mining considers item 

quantity and its importance. Many researches have been done on the high utility itemset mining. Among them, utility list-based methods 

are efficient as it does not generate the candidate set. However, drawback of such techniques is lot of expensive join operations on utility 

list which degrades the performance of algorithm by increasing the storage requirement and time for execution. We proposed Predicted 

Utility Co-Exist Structure known as PUCS to store the utility data and Predicted Utility Co-Exist Pruning known as PUCP to eliminate 

unnecessary utility list join operations. It improves the algorithm’s performance. We experiment the proposed approach on standard real-

life datasets and results are compared with existing methods. According to experimental result analysis, proposed PUCP-miner 

outperforms existing approaches concerning execution time and memory requirement. In terms of execution time, proposed approach 

achieves more than 20 % improvement and for memory consideration, proposed approach got 3% improvement compared to state of the 

art approaches. 
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1. Introduction 

Data mining techniques such as mining of frequent itemset [2], 

mining of high utility itemset [3][4][5], are used to extract  

important patterns hidden inside the massive data [1]. Frequent 

item-set mining (FIM) is a demanding approach in real-life 

applications such as analyzing customer behavior, analyzing the 

symptoms contribution to disease, identifying valuable 

customers, etc. The FIM only consider the presence or absence of 

items within the transactions which is the major limitation of FIM 

[2][6]. Item quantities and its importance play a vital role in a 

variety of applications significantly for transaction databases 

[3][7][8][9]. High utility item-set mining (HUIM) highlights 

itemset that yields high profit/importance[3][5][10][11][12]. It 

considers the item's count and profit of the items. HUIM extracts 

the set of items whose utility is not lesser than the user-specific 

min utility threshold. The HUIM problem is substantially more 

difficult than FIM as the utility measures do not adhere to 

downward closer characteristic that is utilized to effectively trim 

the search field [5][8][10][12][13][14]. HUIM produces a huge 

number of candidate sets, which takes up high storage and time, 

in order to determine high utility itemsets[3][5] [9][15].Utilizing 

the variety of upper bound, existing methods trim the search 

space to relieve the expensive computational task. Still, some low 

utility candidate sets are remain as these upper bound are 

overestimation[5][12][16]. Recently, researchers proposed utility 

lists to locate high utility itemsets without creating candidate 

sets[10][13][14][17][18]. Utility list-based approaches for HUIM 

perform expensive join operations on utility list. The cost is 

measured in time for execution and storage demand. This study 

addresses these problems and contributes as below. 

• Unique structure namely PUCS (Predicted Utility Co-exist 

Structure) which records information of utility list for co-

exist items in dataset.  

• A novel pruning technique, PUCP (Predicted utility co-

exist pruning), is proposed that decreases join operations of 

utility list and improves the performance mining 

algorithms.  

• Extensive experiments were performed on real datasets, and 

results are compared with various existing methods. 

Experimental results demonstrated that PUCP-Miner 

performed better in the matter of storage requirements and 

time for execution. 

1.1. Problem Background 

Table 1 & 2 shows {T1, T2…….Tn}as set of transaction contains 

set of items I = {i1, i2,…..,im} with quantity (q(i1), q(i2),…..q(im))  

form a transaction database.  Tid a transaction identifier shows 
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individual transaction in the database. The utility table shows the 

external utility of each item. The external utility is treated as an 

item's weight, importance, profit, etc. 

Table 1. Transaction Database DB 

Table 2. External Utility 

Definition 1: Item's Utility. 

For an item ik and Tj the utility value of ik is u (ik,Tj) = 

q(ik,Tj)*p(ik).Consider item a’s utility in transaction T3 is               

u(a, T3)=p (a)  *q (a, T3)  = 15.  

Definition 2: Itemset ‘s Utility. 

For the itemset Px and transaction Tithe utility value of Px is  

𝑢(𝑃𝑥, 𝑇𝑗) = ∑ 𝑢(𝑖𝑘, 𝑇𝑖)
𝑖𝑘 ∈ x ^ 𝑖𝑘 ∈ Ti

                                         (1)          

The itemset Px ={a,b}. Px’s utility is u(Px,T4)=u(b,T4) + u 

(a,T4)=7.  

Definition 3: itemset’s utility in database DB. 

For the itemset Px and database DB  the Px’s utility in DB is  

𝑢(𝑃𝑥)    =  ∑ 𝑢(𝑥, 𝑇𝑖)
𝑖𝑘⊂I ^ 𝑥 ∈ Ti

         (2) 

Consider itemset Px = {a b} is a part of transactions T3,T4 and 

T5. The itemset Px’s utility in database is  u(Px) =u(Px, T3) 

+u(Px, T4)+u(Px, T5) = 19+6+7=32. 

Definition 4: High Utility itemset. 

The itemset Px is high utility itemset, if it’s utility value is higher 

than the user defined MinUtility threshold specified by user.  

HUIset = {Px | Px⊆I, u(Px) ≥ MinUtility}                                   (3) 

For the item set Px = {a b} and MinUtility threshold is 30. The 

itemset Px ‘s utility is 32 so Px is consider as high utility. 

Definition 5: HUIM Problem. 

From the transaction database, finding all itemsets whose utility 

is larger than the user-specified MinUtility criterion. 

Definition 6: Transaction’s Utility 

For the given transaction, the total of all the item's utility is called 

transaction’s utility and is defined as  

𝑢(𝑇𝑖) = ∑ 𝑢(𝑖𝑘, 𝑇𝑖)
∀𝑖𝑘 ∈ 𝑇𝑖

                                                        (4) 

Consider transaction T2, u (T2) =u (f, T2)+u (g, T2)=5. 

Definition 7: Transaction Weighted Utility (TWU)  

For the itemset,   the TWU of itemset Px is the total of all 

transaction’s utility in which itemset Px exist.  

𝑇𝑊𝑈(𝑃𝑥)  = ∑ 𝑢(𝑇𝑖)
𝑥 ∈ 𝑇𝑖

.                                                      (5) 

Consider itemset Px = {a,b}, the TWU(Px) is the total of 

transaction’s utility of T3,T4 and T5, so TWU(Px) is 77. 

2. Related Work 

Mining of Frequent Itemset is a problem of HUIM. Unlike FIM, 

utility measures in HUIM is not  applicable to minimize space of 

searching as utility list can be equal, higher or lesser than its 

superset as well as subset [2][3][5][10][11][13][17][18][19]. 

Discovering the HUI is a costly task with regards to memory 

requirements and execution time[2][3][5][10][11][13][17][18] 

[19].  Most of the previous research focuses on the trim the 

search space by proposing various pruning measures [5][13][18] 

and the way to record the information of 

utility[10][12][17][18][19]. Recently the utility list based 

algorithms ware proposed that are cost 

effective[10][13][4][17][18]. In 2012, Liu and Qu introduced the 

first single-phase HUIM method, HUI-Miner, which does not 

needs candidate generation. The innovative list structure called  

utility list applied by HUI-Miner is where the utility data for the 

itemset is stored[10]. Although HUI-Miner is quicker than older 

techniques, it performs time-consuming utility list join 

operations[10]. To decrease the join count, Viger, Wu, Zida, and 

Tseng suggested FHM utilizing EUCP in 2014.Based on the item 

co-occurrence a novel pruning strategy called EUCP presented 

for reduction of  the utility list join operations[18]. To prevent 

producing utility lists of item sets that don't exist in the database, 

Peng, Koh, and Riddle presented a tree structure called IHUP in 

2017. They proposed an efficient algorithm incorporating the 

IHUP tree called mHUIMiner[13].The ULBMiner was proposed 

by Duong, Viger, ramampiaro, norvag, and dam in 2017. Authors 

introducing the itemset's memory reuse won't be further 

extended[17]. Qu, Liu, and Viger suggested a novel structure for 

utility list called Utility-List* in 2019[10]. Based on the 

observation, the output of ULB-Miner, FHM, HUI-Miner, and 

HUIMiner degraded due to ineffective Tids comparisons for 

joining the utility lists. The HUI-Miner* removes these 

ineffective comparisons by Utility-list* structure[20]. From the 

literature survey, it has been observed that researchers proposed 

various pruning measures to minimize the space for searching 

and data structures to reduce cost with regards to memory 

demand and execution time. The main limitation of the 

algorithms based on utility list is costly utility list join 

operations[10][13][14][17][18]. Even though numerous 

algorithms are proposed, there is a scope to decrease the cost of 

the join operations on utility list by reducing the number of 

comparisons, join count, etc. In this work, we Proposed novel 

pruning techniques PUCP uses PUCS to minimize the utility list 

join operations.   
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3. Proposed Method  

 

Fig 1. Flow of Proposed work 

 

The utility list base approaches find the high utility itemset 

without generating a candidate set. Utility list-based HUIM 

methods initially read the dataset to determine support count and 

TWU for each individual item. Discard the unpromising items. 

Unpromising item can be considered as the item with less TWU 

value than MinUtility threshold. Consider the database in tables 1 

& 2, the items f and g are unpromising, so they are discarded. 

Rearrange the transaction as per support count ascending order. It 

will lead to reducing the cost of mining procedure by decreasing 

count of comparisons needed to join utility list. The SCAO is c-d-

e-a-b. The revised database is in table 3. Utility list-based HUIM 

algorithms apply the list structure to record the itemsets’s utility. 

Utility list is a triplet <Tid,iutility,rutility>.  Here Tid represents 

unique transaction id in which the itemset exists. iutility is a value 

of itemset’s utility in a transaction. rutility represents sum of 

value of item’s utility that come after itemset in a transaction to 

be considered.  

 

Table 3. Revised Database 

 

Definition 8:  All the items in Transaction T that come after 

itemset x where x⊆ T is denoted as T|x. Consider revised 

database as in table 3  T5 | de = {ab} and T3|a = {b}  

 

Definition 9: Remaining utility. 

The sum of all item's utility that follows itemset x in transaction 

Ti, is represented as rutility(x, Ti). 

 

rutility(x ,T) = ∑ u(i, T)i∊(T|X)  where X⊆T 

 

Consider itemset x = {de}, the rutility(x, T5) is u (ab, T5) =7. 

 

Previous algorithms like HUI-Miner, mHUI-Miner, and ULB-

Miner explore the search space that can represent as a set-

enumeration tree. Then recursively extend the itemset by joining 

the utility list of a smaller itemset and then pruning the search 

space by using the following properties. 

 

Property 1:  If the sum of iutility and rutility value of  the utility 

list of itemset x is less than minUtility threshold, then any 

extension of itemset x by appending item y comes after x as per 

order is not a high utility itemset[14].   

 

These algorithms' performance degrades due to numerous costly 

utility list join operations. In this work, the proposed PUCS 

(Predicted utility co-exist structure) and PUCP (Predicted utility 

Co-exist pruning) minimize the number of utility list join 

operations. It eliminates the low utility itemset directly without 

performing the join operations. In the following part, we 

introduce our novel structure and pruning method.  

 

3.1. The PUCS (Predicted Utility co-exist Structure) 

Based on the item's coexistence analysis, we proposed a novel 

structure called PUCS as in fig. PUCS is defined as the triplet in 
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the form (x, y, PU)∈IXIX R. PU in the triplet is the Predicted 

utility of item-set xy. The PUCS constructed during the second 

time database scanning parallel with formation of the initial list of 

utility for the items.   

𝑃𝑈 = ∑ (𝑖𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑥𝑦) + 𝑟𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑥𝑦))
𝑥𝑦∈𝑇𝑖

                           (6) 

Fig shows the PUCS of our example. The pruning condition is 

defined as, “if tuple (x, y, PU) does not exist such that PU ≥ 

minUtil, then itemset p= {xy} and superset are itemsets with low 

utility, so the itemset does not need to explore further”. 

 

 B C D E 

A PUAB PUAC PUAD PUAE 

B  PUBC PUBD PUBE 

C   PUCD PUCE 

D    PUDE 

E     

Fig 2. PUCS Structure 
 

 D E A B 

C 42 35 16 18 

D  33 33 23 

E   40 23 

A     

B     

Fig 3. PUCS of the sample database 

The PUCS was constructed during the second time database 

scanning with the construction of an initial utility list of items. 

Consider the element of PUCS for item c & d, the triplet <c, d, 

PUcd>. Here PUcd is the sum of iutility and rutility values of 

itemset {cd} that can be calculated initially at a time of database 

scanning. We also propose a unique strategy for pruning called 

PUCP (Predicted Utility Co-exist Pruning) to minimize the 

number of join operations that uses PUCS.  

3.2.  The PUCP (Predicted Utility Co-exist Pruning)  

According to property 1, Previous algorithms like HUI-

miner,mHUI-Miner, and ULB-Miner trim searching space, using 

the addition of iutility and rutility values of an itemset. For any 

itemset {xy}, these algorithms construct itemset {xy} 's utility list 

even though it is a low utility itemset. Then decide whether 

itemset {xy} should extend further based on sum of iutility and 

rutility values. These algorithms perform a number of costly 

utility list join operations for constructing low utility itemset.  

 Our proposed PUCP eliminates the joining operation for the 

low utility itemset. For constructing the utility list of itemset {xy} 

our proposed algorithm, PUCP-Miner, checks the element <x, y, 

PUxy> fromPUCS. Suppose such an element does not exist in the 

PUCS where PUxy ≥ MinUtility, itemset {xy} is discarded 

directly without constructing the utiliy list of itemset {xy}. As a 

result, it will minimize join operations of utility list.  

Take the MinUtility threshold 40 as an example. To construct 

the itemset {cd} and its utility list, apply join operation on utility 

list of individual items c & d. According to PUCP, check the 

PUcd from the PUCS that is 42, so join operations has performed. 

While for construction of itemset {ce} the PUce from the PUCS 

is 35, less than MinUtility threshold, so there is no need to 

perform the join operation. By removing pointless join actions, 

this pruning method allows PUCP to dramatically reduce the 

amount of join operations. 

 

Algorithm 1: Creating preliminary utility lists & Build 

RPUCS 

Input: - Transaction Database DB, Minimum utility threshold 

minUtil 

Output: - List of Utilitylist of each promising items LULs 

1. Scan the DB  

2. compute TWU of all items i 

3.         Calculate Support_Count of each item i 

4. If TWU(i) <MinUtility Threshold Discard item i. 

5. Rearrange the items in transaction as SCAO (Support 

Count Ascending Order)  

6. Scan the database DB again  

7. Create first list of utility for each favorable item. 

8. Build  the RPUCS (Reduced Predicted Utility Co-exist 

Structure) 

Algorithm 2: Mining Algorithm 

Input: -LUL - List of UtilityList of 1-itemset 

Prev.UL-  previous item's utiitylist initially it is empty, 

MU – User specific threshold for Minimum utility 

Output: - itemsets with high utility 

1. For each element K in LUL do 

2.       If TOTAL of K’s iutil ≥ MinUtil then 

3.           Add K & its previous itemsets in resultset 

4. End If 

5.      If TOTAL of all K's iutil&rutils  ≥ MU then 

6.       Create empty  extUL; 

7.           For each element L follow  K in LUL do 

8.               If  ∃(K,L,PUKL) ∈ RPUCS such that                               

              PUKL   ≥ MinUtility  then  

                  extUL=extUL+ join(Prev.UL,K,L) 

          Endif 

9.           Endfor 

10.           Mining(K, extUL, MU) 

11.   Endif 

12.  Endfor 

 

Algorithm 3: Join Algorithm 

Input: - ULPrev- itemset Prev ‘s utility list. 

                    ULK–   itemset K's utility list, 

                    ULL –   itemset L's utility list 
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Output: - ULKL- itemset KL's utility list. 

1. Initialize ULKL is NULL 

2. Eoreach component Ek  ULK 

3.      if ∃ component EL  ULL&&Ek.Tid == EL.Tid  then 

4.           if  ULPrev ≠ empty then 

5.               Search component  EPrev∈  ULPrev  have same Tid 

6.               Create new component Where EkL = <Ek.Tid, 

Ek.iutil+EL.iutil – Eprev.iutil,EL.rutil> 

7.           else  

8. EkL= <Ek.Tid,Ek.iutil+EL.iutil – Eprev.iutil,EL.rutil> 

9. Endif 

10.        Insert component EkLtoULKL 

11. Endif 

12. Endfor 

return ULKL 

 

4. Results & Discussion 

In depth experiments have been performed on verity of real 

datasets with different MinUtility percentages. The author 

compared proposed PUCP-Miner with HUI-Miner, mHUI-Miner 

and ULB-Miner with regards to memory requirement and 

execution time. The java environment was used to implement 

each experiment. All the test were executed on a computer with 

8GB RAM and 3.4GHz intel core i5 CPU. Standard real-time 

datasets were used in the experiments to record the algorithm's 

performance. Table 4 lists the dataset's properties and a full 

description. 

4.1. Result Analysis 

We have executed HUI-Mniner, mHUI-Miner, ULB-Miner, and 

PUCP-Miner on various real datasets with decreasing order of 

MinUtility threshold until it takes too long execution time or run 

out of memory. We noted the execution time and required 

memory for different datasets. The execution time for various 

datasets of above-mentioned algorithms is as shown in fig 4. 

Table 4. Dataset characteristics 

Sr.No Name of 

Dataset 

#Transactions #Items Average 

Length 

1 Foodmart 4141 1559 4.4 

2 Retail 88,162 16,470 10.3 

3 BMS 59,602 497 2.51 

4 Kosark 990002 41270 8.1000 

5 ecommerce 14975 3468 11.71 

 

4.1.1. Execution Time Analysis 

From the experimental result, it has been observed that on 

ecommerce dataset, Compared to HUI-Miner, mHUI-Miner, and 

ULB-Miner, suggested PUCP-Miner is almost 62% faster, 65% 

faster, and 20% faster, respectively. On the BMS dataset, PUCP-

Miner takes nearly 45% less time than HUI-Miner, 46% less time 

than mHUI-Miner, and 42% less time than ULB-Miner. On the 

Foodmart dataset, almost PUCP-Miner is 67% quicker than HUI-

Miner, 18% quicker than mHUI-Miner, and 18% quicker than 

ULB-Miner. On the retail dataset, proposed PUCP-Miner almost 

takes 88%, 74% and 35% less running time than HUI-Miner, 

mHUI-Miner and ULB-Miner respectively. Lastly, on the kosark 

dataset, PUCP-Miner is almost 10% faster than HUI-Miner, 14% 

faster than mHUI-Miner, and 19% faster than ULB-Miner. From 

the execution time analysis, proposed PUCP-Miner outperforms 

on retail, BMS and eCommerce datasets. While it is a satisfactory 

improvement in execution time on foodmart and kosark datasets.  
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Fig 4. Execution Time comparisons 

 

4.1.2. Memory Analysis 

We recorded the required memory for executing the algorithms 

on various real-time datasets. Accorduing to the result analysis of 

experiments proposed PUCP-Miner takes almost 46% and 8% 

less memory than mHUIMiner and ULB-Miner, respectively, on 

ecommerce dataset. It takes nearly 3%, 12%, and 13% less 

memory than HUI-Miner, mHUIMiner, and ULB-Miner, 

respectively on BMS dataset. On the Foodmart dataset proposed, 

PUCP-Miner consumes 41% less memory than mHUI-Miner and 

ULB-Miner. On the retail dataset, PUCP-Miner consume 32% 

and 12 % less memory then mHUI-Miner and ULB-Miner 

respectively. Finally, on the kosark dataset PUCP-Miner 

algorithm consume more memory than HUI-Miner, mHUIMiner 

and ULB-Miner. From the result, it has been observed that HUI-

Miner required less memory with the cost of execution time. It is 

very time-consuming.   

 

 

  

  

 

 

Fig 5.  Memory Requirement comparisons 
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5. Conclusion 

HUIM is a core of many real application for decision making. 

Approaches based on utility list for HUIM are recent as well as 

efficient. By reducing the amount of expensive utility list join 

operations, the performance of the mining methods based on 

utility list-High Utility itemset has increased. Proposed PUCP-

Miner uses the novel pruning method PUCP to decrease utility 

list join counts. PUCP uses PUCS to eliminate the unnecessary 

join operations to construct the low utility itemset. Hence, 

according to the experiment’s result analysis, it is proven that 

suggested PUCP-Miner is faster and memory efficient approach 

than various state-of-art methods i.e HUI-Miner, mHUI-miner 

and ULB-Miner. While it is lagged in memory utilization only 

with HUI-Miner, it has noticeable improvement in running time 

compared to HUI-Miner.  

6. Future Work 

In this work, only static dataset has been taken into consideration. 

But in a real sense, the transaction datasets are continuously 

updated. This work can be extended for dynamic and stream 

datasets. The itemset correlation can also be considered.   
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