

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 224–230 | 224

An Efficient High Utility Itemset Mining Approach using Predicted

Utility Co-exist Pruning

Suresh B Patel1, Sanjay M Shah2, Mahendra N Patel3

Submitted: 10/09/2022 Accepted: 20/12/2022

Abstract: The traditional frequent item-set mining is most popular and widely used technique for mining of related items. It considers

whether the item is present or absence in dataset. However, item quantity and its importance is need to be consider for some real-world

problem such as identify profitable items from the customer transaction dataset in supermarket, discover valuable customer for business,

in medical field identify the combination of symptoms that are more significant to diseases. High utility itemset mining considers item

quantity and its importance. Many researches have been done on the high utility itemset mining. Among them, utility list-based methods

are efficient as it does not generate the candidate set. However, drawback of such techniques is lot of expensive join operations on utility

list which degrades the performance of algorithm by increasing the storage requirement and time for execution. We proposed Predicted

Utility Co-Exist Structure known as PUCS to store the utility data and Predicted Utility Co-Exist Pruning known as PUCP to eliminate

unnecessary utility list join operations. It improves the algorithm’s performance. We experiment the proposed approach on standard real-

life datasets and results are compared with existing methods. According to experimental result analysis, proposed PUCP-miner

outperforms existing approaches concerning execution time and memory requirement. In terms of execution time, proposed approach

achieves more than 20 % improvement and for memory consideration, proposed approach got 3% improvement compared to state of the

art approaches.

Keywords: Data Mining, Frequent Itemset, High Utility itemset, Utility List, Transaction Weighted Utility.

1. Introduction

Data mining techniques such as mining of frequent itemset [2],

mining of high utility itemset [3][4][5], are used to extract

important patterns hidden inside the massive data [1]. Frequent

item-set mining (FIM) is a demanding approach in real-life

applications such as analyzing customer behavior, analyzing the

symptoms contribution to disease, identifying valuable

customers, etc. The FIM only consider the presence or absence of

items within the transactions which is the major limitation of FIM

[2][6]. Item quantities and its importance play a vital role in a

variety of applications significantly for transaction databases

[3][7][8][9]. High utility item-set mining (HUIM) highlights

itemset that yields high profit/importance[3][5][10][11][12]. It

considers the item's count and profit of the items. HUIM extracts

the set of items whose utility is not lesser than the user-specific

min utility threshold. The HUIM problem is substantially more

difficult than FIM as the utility measures do not adhere to

downward closer characteristic that is utilized to effectively trim

the search field [5][8][10][12][13][14]. HUIM produces a huge

number of candidate sets, which takes up high storage and time,

in order to determine high utility itemsets[3][5] [9][15].Utilizing

the variety of upper bound, existing methods trim the search

space to relieve the expensive computational task. Still, some low

utility candidate sets are remain as these upper bound are

overestimation[5][12][16]. Recently, researchers proposed utility

lists to locate high utility itemsets without creating candidate

sets[10][13][14][17][18]. Utility list-based approaches for HUIM

perform expensive join operations on utility list. The cost is

measured in time for execution and storage demand. This study

addresses these problems and contributes as below.

• Unique structure namely PUCS (Predicted Utility Co-exist

Structure) which records information of utility list for co-

exist items in dataset.

• A novel pruning technique, PUCP (Predicted utility co-

exist pruning), is proposed that decreases join operations of

utility list and improves the performance mining

algorithms.

• Extensive experiments were performed on real datasets, and

results are compared with various existing methods.

Experimental results demonstrated that PUCP-Miner

performed better in the matter of storage requirements and

time for execution.

1.1. Problem Background

Table 1 & 2 shows {T1, T2…….Tn}as set of transaction contains

set of items I = {i1, i2,…..,im} with quantity (q(i1), q(i2),…..q(im))

form a transaction database. Tid a transaction identifier shows

1 Gujarat Technological University, Ahmedabad-382424, India

ORCID ID: 0000-0003-2861-8972
2 Government Engineering College, Rajkot- 360005, India

ORCID ID: 0000-0002-4937-4527
3 Government Engineering College, Gandhinagar - 382028, India

ORCID ID : 0000-0002-4342-1070

* Corresponding Author Email: patel_sureshkumar2@gtu.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 224–230 | 225

individual transaction in the database. The utility table shows the

external utility of each item. The external utility is treated as an

item's weight, importance, profit, etc.

Table 1. Transaction Database DB

Table 2. External Utility

Definition 1: Item's Utility.

For an item ik and Tj the utility value of ik is u (ik,Tj) =

q(ik,Tj)*p(ik).Consider item a’s utility in transaction T3 is

u(a, T3)=p (a) *q (a, T3) = 15.

Definition 2: Itemset ‘s Utility.

For the itemset Px and transaction Tithe utility value of Px is

𝑢(𝑃𝑥, 𝑇𝑗) = ∑ 𝑢(𝑖𝑘, 𝑇𝑖)
𝑖𝑘 ∈ x ^ 𝑖𝑘 ∈ Ti

 (1)

The itemset Px ={a,b}. Px’s utility is u(Px,T4)=u(b,T4) + u

(a,T4)=7.

Definition 3: itemset’s utility in database DB.

For the itemset Px and database DB the Px’s utility in DB is

𝑢(𝑃𝑥) = ∑ 𝑢(𝑥, 𝑇𝑖)
𝑖𝑘⊂I ^ 𝑥 ∈ Ti

 (2)

Consider itemset Px = {a b} is a part of transactions T3,T4 and

T5. The itemset Px’s utility in database is u(Px) =u(Px, T3)

+u(Px, T4)+u(Px, T5) = 19+6+7=32.

Definition 4: High Utility itemset.

The itemset Px is high utility itemset, if it’s utility value is higher

than the user defined MinUtility threshold specified by user.

HUIset = {Px | Px⊆I, u(Px) ≥ MinUtility} (3)

For the item set Px = {a b} and MinUtility threshold is 30. The

itemset Px ‘s utility is 32 so Px is consider as high utility.

Definition 5: HUIM Problem.

From the transaction database, finding all itemsets whose utility

is larger than the user-specified MinUtility criterion.

Definition 6: Transaction’s Utility

For the given transaction, the total of all the item's utility is called

transaction’s utility and is defined as

𝑢(𝑇𝑖) = ∑ 𝑢(𝑖𝑘, 𝑇𝑖)
∀𝑖𝑘 ∈ 𝑇𝑖

 (4)

Consider transaction T2, u (T2) =u (f, T2)+u (g, T2)=5.

Definition 7: Transaction Weighted Utility (TWU)

For the itemset, the TWU of itemset Px is the total of all

transaction’s utility in which itemset Px exist.

𝑇𝑊𝑈(𝑃𝑥) = ∑ 𝑢(𝑇𝑖)
𝑥 ∈ 𝑇𝑖

. (5)

Consider itemset Px = {a,b}, the TWU(Px) is the total of

transaction’s utility of T3,T4 and T5, so TWU(Px) is 77.

2. Related Work

Mining of Frequent Itemset is a problem of HUIM. Unlike FIM,

utility measures in HUIM is not applicable to minimize space of

searching as utility list can be equal, higher or lesser than its

superset as well as subset [2][3][5][10][11][13][17][18][19].

Discovering the HUI is a costly task with regards to memory

requirements and execution time[2][3][5][10][11][13][17][18]

[19]. Most of the previous research focuses on the trim the

search space by proposing various pruning measures [5][13][18]

and the way to record the information of

utility[10][12][17][18][19]. Recently the utility list based

algorithms ware proposed that are cost

effective[10][13][4][17][18]. In 2012, Liu and Qu introduced the

first single-phase HUIM method, HUI-Miner, which does not

needs candidate generation. The innovative list structure called

utility list applied by HUI-Miner is where the utility data for the

itemset is stored[10]. Although HUI-Miner is quicker than older

techniques, it performs time-consuming utility list join

operations[10]. To decrease the join count, Viger, Wu, Zida, and

Tseng suggested FHM utilizing EUCP in 2014.Based on the item

co-occurrence a novel pruning strategy called EUCP presented

for reduction of the utility list join operations[18]. To prevent

producing utility lists of item sets that don't exist in the database,

Peng, Koh, and Riddle presented a tree structure called IHUP in

2017. They proposed an efficient algorithm incorporating the

IHUP tree called mHUIMiner[13].The ULBMiner was proposed

by Duong, Viger, ramampiaro, norvag, and dam in 2017. Authors

introducing the itemset's memory reuse won't be further

extended[17]. Qu, Liu, and Viger suggested a novel structure for

utility list called Utility-List* in 2019[10]. Based on the

observation, the output of ULB-Miner, FHM, HUI-Miner, and

HUIMiner degraded due to ineffective Tids comparisons for

joining the utility lists. The HUI-Miner* removes these

ineffective comparisons by Utility-list* structure[20]. From the

literature survey, it has been observed that researchers proposed

various pruning measures to minimize the space for searching

and data structures to reduce cost with regards to memory

demand and execution time. The main limitation of the

algorithms based on utility list is costly utility list join

operations[10][13][14][17][18]. Even though numerous

algorithms are proposed, there is a scope to decrease the cost of

the join operations on utility list by reducing the number of

comparisons, join count, etc. In this work, we Proposed novel

pruning techniques PUCP uses PUCS to minimize the utility list

join operations.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 224–230 | 226

3. Proposed Method

Fig 1. Flow of Proposed work

The utility list base approaches find the high utility itemset

without generating a candidate set. Utility list-based HUIM

methods initially read the dataset to determine support count and

TWU for each individual item. Discard the unpromising items.

Unpromising item can be considered as the item with less TWU

value than MinUtility threshold. Consider the database in tables 1

& 2, the items f and g are unpromising, so they are discarded.

Rearrange the transaction as per support count ascending order. It

will lead to reducing the cost of mining procedure by decreasing

count of comparisons needed to join utility list. The SCAO is c-d-

e-a-b. The revised database is in table 3. Utility list-based HUIM

algorithms apply the list structure to record the itemsets’s utility.

Utility list is a triplet <Tid,iutility,rutility>. Here Tid represents

unique transaction id in which the itemset exists. iutility is a value

of itemset’s utility in a transaction. rutility represents sum of

value of item’s utility that come after itemset in a transaction to

be considered.

Table 3. Revised Database

Definition 8: All the items in Transaction T that come after

itemset x where x⊆ T is denoted as T|x. Consider revised

database as in table 3 T5 | de = {ab} and T3|a = {b}

Definition 9: Remaining utility.

The sum of all item's utility that follows itemset x in transaction

Ti, is represented as rutility(x, Ti).

rutility(x ,T) = ∑ u(i, T)i∊(T|X) where X⊆T

Consider itemset x = {de}, the rutility(x, T5) is u (ab, T5) =7.

Previous algorithms like HUI-Miner, mHUI-Miner, and ULB-

Miner explore the search space that can represent as a set-

enumeration tree. Then recursively extend the itemset by joining

the utility list of a smaller itemset and then pruning the search

space by using the following properties.

Property 1: If the sum of iutility and rutility value of the utility

list of itemset x is less than minUtility threshold, then any

extension of itemset x by appending item y comes after x as per

order is not a high utility itemset[14].

These algorithms' performance degrades due to numerous costly

utility list join operations. In this work, the proposed PUCS

(Predicted utility co-exist structure) and PUCP (Predicted utility

Co-exist pruning) minimize the number of utility list join

operations. It eliminates the low utility itemset directly without

performing the join operations. In the following part, we

introduce our novel structure and pruning method.

3.1. The PUCS (Predicted Utility co-exist Structure)

Based on the item's coexistence analysis, we proposed a novel

structure called PUCS as in fig. PUCS is defined as the triplet in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 224–230 | 227

the form (x, y, PU)∈IXIX R. PU in the triplet is the Predicted

utility of item-set xy. The PUCS constructed during the second

time database scanning parallel with formation of the initial list of

utility for the items.

𝑃𝑈 = ∑ (𝑖𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑥𝑦) + 𝑟𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑥𝑦))
𝑥𝑦∈𝑇𝑖

 (6)

Fig shows the PUCS of our example. The pruning condition is

defined as, “if tuple (x, y, PU) does not exist such that PU ≥

minUtil, then itemset p= {xy} and superset are itemsets with low

utility, so the itemset does not need to explore further”.

 B C D E

A PUAB PUAC PUAD PUAE

B PUBC PUBD PUBE

C PUCD PUCE

D PUDE

E

Fig 2. PUCS Structure

 D E A B

C 42 35 16 18

D 33 33 23

E 40 23

A

B

Fig 3. PUCS of the sample database

The PUCS was constructed during the second time database

scanning with the construction of an initial utility list of items.

Consider the element of PUCS for item c & d, the triplet <c, d,

PUcd>. Here PUcd is the sum of iutility and rutility values of

itemset {cd} that can be calculated initially at a time of database

scanning. We also propose a unique strategy for pruning called

PUCP (Predicted Utility Co-exist Pruning) to minimize the

number of join operations that uses PUCS.

3.2. The PUCP (Predicted Utility Co-exist Pruning)

According to property 1, Previous algorithms like HUI-

miner,mHUI-Miner, and ULB-Miner trim searching space, using

the addition of iutility and rutility values of an itemset. For any

itemset {xy}, these algorithms construct itemset {xy} 's utility list

even though it is a low utility itemset. Then decide whether

itemset {xy} should extend further based on sum of iutility and

rutility values. These algorithms perform a number of costly

utility list join operations for constructing low utility itemset.

 Our proposed PUCP eliminates the joining operation for the

low utility itemset. For constructing the utility list of itemset {xy}

our proposed algorithm, PUCP-Miner, checks the element <x, y,

PUxy> fromPUCS. Suppose such an element does not exist in the

PUCS where PUxy ≥ MinUtility, itemset {xy} is discarded

directly without constructing the utiliy list of itemset {xy}. As a

result, it will minimize join operations of utility list.

Take the MinUtility threshold 40 as an example. To construct

the itemset {cd} and its utility list, apply join operation on utility

list of individual items c & d. According to PUCP, check the

PUcd from the PUCS that is 42, so join operations has performed.

While for construction of itemset {ce} the PUce from the PUCS

is 35, less than MinUtility threshold, so there is no need to

perform the join operation. By removing pointless join actions,

this pruning method allows PUCP to dramatically reduce the

amount of join operations.

Algorithm 1: Creating preliminary utility lists & Build

RPUCS

Input: - Transaction Database DB, Minimum utility threshold

minUtil

Output: - List of Utilitylist of each promising items LULs

1. Scan the DB

2. compute TWU of all items i

3. Calculate Support_Count of each item i

4. If TWU(i) <MinUtility Threshold Discard item i.

5. Rearrange the items in transaction as SCAO (Support

Count Ascending Order)

6. Scan the database DB again

7. Create first list of utility for each favorable item.

8. Build the RPUCS (Reduced Predicted Utility Co-exist

Structure)

Algorithm 2: Mining Algorithm

Input: -LUL - List of UtilityList of 1-itemset

Prev.UL- previous item's utiitylist initially it is empty,

MU – User specific threshold for Minimum utility

Output: - itemsets with high utility

1. For each element K in LUL do

2. If TOTAL of K’s iutil ≥ MinUtil then

3. Add K & its previous itemsets in resultset

4. End If

5. If TOTAL of all K's iutil&rutils ≥ MU then

6. Create empty extUL;

7. For each element L follow K in LUL do

8. If ∃(K,L,PUKL) ∈ RPUCS such that

 PUKL ≥ MinUtility then

 extUL=extUL+ join(Prev.UL,K,L)

 Endif

9. Endfor

10. Mining(K, extUL, MU)

11. Endif

12. Endfor

Algorithm 3: Join Algorithm

Input: - ULPrev- itemset Prev ‘s utility list.

 ULK– itemset K's utility list,

 ULL – itemset L's utility list

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 224–230 | 228

Output: - ULKL- itemset KL's utility list.

1. Initialize ULKL is NULL

2. Eoreach component Ek ULK

3. if ∃ component EL ULL&&Ek.Tid == EL.Tid then

4. if ULPrev ≠ empty then

5. Search component EPrev∈ ULPrev have same Tid

6. Create new component Where EkL = <Ek.Tid,

Ek.iutil+EL.iutil – Eprev.iutil,EL.rutil>

7. else

8. EkL= <Ek.Tid,Ek.iutil+EL.iutil – Eprev.iutil,EL.rutil>

9. Endif

10. Insert component EkLtoULKL

11. Endif

12. Endfor

return ULKL

4. Results & Discussion

In depth experiments have been performed on verity of real

datasets with different MinUtility percentages. The author

compared proposed PUCP-Miner with HUI-Miner, mHUI-Miner

and ULB-Miner with regards to memory requirement and

execution time. The java environment was used to implement

each experiment. All the test were executed on a computer with

8GB RAM and 3.4GHz intel core i5 CPU. Standard real-time

datasets were used in the experiments to record the algorithm's

performance. Table 4 lists the dataset's properties and a full

description.

4.1. Result Analysis

We have executed HUI-Mniner, mHUI-Miner, ULB-Miner, and

PUCP-Miner on various real datasets with decreasing order of

MinUtility threshold until it takes too long execution time or run

out of memory. We noted the execution time and required

memory for different datasets. The execution time for various

datasets of above-mentioned algorithms is as shown in fig 4.

Table 4. Dataset characteristics

Sr.No Name of

Dataset

#Transactions #Items Average

Length

1 Foodmart 4141 1559 4.4

2 Retail 88,162 16,470 10.3

3 BMS 59,602 497 2.51

4 Kosark 990002 41270 8.1000

5 ecommerce 14975 3468 11.71

4.1.1. Execution Time Analysis

From the experimental result, it has been observed that on

ecommerce dataset, Compared to HUI-Miner, mHUI-Miner, and

ULB-Miner, suggested PUCP-Miner is almost 62% faster, 65%

faster, and 20% faster, respectively. On the BMS dataset, PUCP-

Miner takes nearly 45% less time than HUI-Miner, 46% less time

than mHUI-Miner, and 42% less time than ULB-Miner. On the

Foodmart dataset, almost PUCP-Miner is 67% quicker than HUI-

Miner, 18% quicker than mHUI-Miner, and 18% quicker than

ULB-Miner. On the retail dataset, proposed PUCP-Miner almost

takes 88%, 74% and 35% less running time than HUI-Miner,

mHUI-Miner and ULB-Miner respectively. Lastly, on the kosark

dataset, PUCP-Miner is almost 10% faster than HUI-Miner, 14%

faster than mHUI-Miner, and 19% faster than ULB-Miner. From

the execution time analysis, proposed PUCP-Miner outperforms

on retail, BMS and eCommerce datasets. While it is a satisfactory

improvement in execution time on foodmart and kosark datasets.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 224–230 | 229

Fig 4. Execution Time comparisons

4.1.2. Memory Analysis

We recorded the required memory for executing the algorithms

on various real-time datasets. Accorduing to the result analysis of

experiments proposed PUCP-Miner takes almost 46% and 8%

less memory than mHUIMiner and ULB-Miner, respectively, on

ecommerce dataset. It takes nearly 3%, 12%, and 13% less

memory than HUI-Miner, mHUIMiner, and ULB-Miner,

respectively on BMS dataset. On the Foodmart dataset proposed,

PUCP-Miner consumes 41% less memory than mHUI-Miner and

ULB-Miner. On the retail dataset, PUCP-Miner consume 32%

and 12 % less memory then mHUI-Miner and ULB-Miner

respectively. Finally, on the kosark dataset PUCP-Miner

algorithm consume more memory than HUI-Miner, mHUIMiner

and ULB-Miner. From the result, it has been observed that HUI-

Miner required less memory with the cost of execution time. It is

very time-consuming.

Fig 5. Memory Requirement comparisons

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 224–230 | 230

5. Conclusion

HUIM is a core of many real application for decision making.

Approaches based on utility list for HUIM are recent as well as

efficient. By reducing the amount of expensive utility list join

operations, the performance of the mining methods based on

utility list-High Utility itemset has increased. Proposed PUCP-

Miner uses the novel pruning method PUCP to decrease utility

list join counts. PUCP uses PUCS to eliminate the unnecessary

join operations to construct the low utility itemset. Hence,

according to the experiment’s result analysis, it is proven that

suggested PUCP-Miner is faster and memory efficient approach

than various state-of-art methods i.e HUI-Miner, mHUI-miner

and ULB-Miner. While it is lagged in memory utilization only

with HUI-Miner, it has noticeable improvement in running time

compared to HUI-Miner.

6. Future Work

In this work, only static dataset has been taken into consideration.

But in a real sense, the transaction datasets are continuously

updated. This work can be extended for dynamic and stream

datasets. The itemset correlation can also be considered.

References

[1] D.-N. Le Ashour, Amira S., Nilanjan Dey, "Biological data

mining: Techniques and applications,"Min. Multimed. Doc.,

vol. 1, no. 4, pp. 161–172, 2017.

[2] R. S. Agrawal, Rakesh, "Fast algorithms for mining

association rules,"Proc. 20th int. conf. very large data bases,

VLDB, vol. 1215, pp. 487–499, 1994.

[3] H. J. H. Yao, Hong, "Mining itemset utilities from transaction

databases,"Data Knowl. Eng. 59, vol. 59, no. 3, pp. 603–626,

2006.

[4] Malla, S., M. J. . Meena, O. . Reddy. R, V. . Mahalakshmi, and

A. . Balobaid. “A Study on Fish Classification Techniques

Using Convolutional Neural Networks on Highly Challenged

Underwater Images”. International Journal on Recent and

Innovation Trends in Computing and Communication, vol. 10,

no. 4, Apr. 2022, pp. 01-09, doi:10.17762/ijritcc.v10i4.5524.

[5] A. M. Hu, Jianying, "High-utility pattern mining : A method

for discovery of high-utility item sets,"Pattern Recognit., vol.

40, no. 11, pp. 3317–3324, 2007.

[6] Y. Liu, W. Liao, and A. Choudhary, "A two-phase algorithm

for fast discovery of high utility itemsets,"Pacific-Asia Conf.

Knowl. Discov. Data Mining, Springer, Berlin, Heidelb., pp.

689–695, 2005.

[7] J. Han, J. Pei, and Y. Yin, "Mining FrequentPatterns without

Candidate Generation,"ACM sigmod Rec., vol. 1, no. 29, pp.

1–12, 2000.

[8] Kose, O., & Oktay, T. (2022). Hexarotor Yaw Flight Control

with SPSA, PID Algorithm and Morphing. International

Journal of Intelligent Systems and Applications in

Engineering, 10(2), 216–221. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/1879

[9] Ho R. Ryang, Heungmo, Unil Yun, "Fast algorithm for high

utility pattern mining with the sum of item quantities,"Intell.

Data Anal., vol. 20, no. 2, pp. 395–415, 2016.

[10] V. Tseng, C. Wu, B. Shie, and P. Yu, "UP-Growth: an

efficient algorithm for high utility itemset mining,"Discov.

Data Min., pp. 253–262, 2010.

[11] Y. Shen, "Objective-Oriented Utility-Based Association

Mining," in In 2002 IEEE International Conference on Data

Mining, 2002. Proceedings, 2002, pp. 426–433.

[12] P. F.-V. Qu, Jun-Feng, Mengchi Liu, "Efficient Algorithms for

High Utility Itemset Mining without Candidate

Generation,"High-Utility Pattern Mining, Springer, Cham,

2019.

[13] Sally Fouad Shady. (2021). Approaches to Teaching a

Biomaterials Laboratory Course Online. Journal of Online

Engineering Education, 12(1), 01–05. Retrieved from

http://onlineengineeringeducation.com/index.php/joee/article/v

iew/43

[14] V. S. Tseng, B. Shie, C. Wu, and P. S. Yu, "Efficient

Algorithms for Mining High Utility Itemsets from

Transactional Databases,"IEEE Trans. Knowl. Data Eng., vol.

25, no. 8, pp. 1772–1786, 2012.

[15] W. Song, Y. Liu, and J. Li, "Mining high utility itemsets by

dynamically pruning the tree structure,"Springer Sci. Media

New York, pp. 29–43, 2014.

[16] Gill, D. R. . (2022). A Study of Framework of Behavioural

Driven Development: Methodologies, Advantages, and

Challenges. International Journal on Future Revolution in

Computer Science &Amp; Communication Engineering, 8(2),

09–12. https://doi.org/10.17762/ijfrcsce.v8i2.2068

[17] A. Y. Peng, Y. S. K. B, and P. Riddle, "mHUIMiner : A Fast

High Utility Itemset Mining Algorithm for Sparse

Datasets,"Pacific-Asia Conf. Knowl. Discov. Data Mining,

Springer, Cham, pp. 196–207, 2017.

[18] J. Liu, M Qu, "Mining High Utility Itemsets without

Candidate Generation Categories and Subject Descriptors," in

Proceedings of the 21st ACM international conference on

Information and knowledge management, 2012, pp. 55–64.

[19] H. Yao, H. J. Hamilton, and C. J. Butz, "A Foundational

Approach to Mining Itemset Utilities from Databases,"Proc.

2004 SIAM Int. Conf. Data Min., vol. Society fo, pp. 482–

486, 2004.

[20] Li, Yu-Chiang, Jieh-Shan Yeh, "Isolated items discarding

strategy for discovering high utility itemsets,"Data Knowl.

Eng., vol. 64, no. 1, pp. 198–217, 2008.

[21] Q. D. Philippe, F. H. Ramampiaro, and K. Nørv, "Efficient

high utility itemset mining using buffered utility-lists,"Appl.

Intell., vol. 48, no. 7, pp. 1859–1877, 2018.

[22] P. Fournier-Viger, C. W. Wu, S. Zida, and V. S. Tseng,

"FHM: Faster high-utility itemset mining using estimated

utility co-occurrence pruning,"Springer, Cham. pp. 83–92,

2014.

[23] V. Tseng, C. Wu, B. Shie, and P. Yu, "UP-Growth: an

efficient algorithm for high utility itemset mining," in

Proceedings of the 16th ACM SIGKDD international

conference on Knowledge discovery and data mining, 2010,

pp. 253–262.

[24] M. Liu and J. Qu, "Mining high utility itemsets without

candidate generation,"ACM Int. Conf. Proceeding Ser., pp.

55–64, 2012.

