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Abstract- This study presents an ultrafine dust (PM2.5) prediction model using a vector error correction model, and daily time series data 

of ultrafine dust (UFD), nitrogen dioxide (NO2), and carbon monoxide (CO) observed in Jung-gu, Seoul from January 1, 2017 to October 

31, 2021. From the Granger causality test for prediction model estimation, it was found that the vector time series model can be applied, 

and the model was turned out as the VAR(2) model according to minimum information criterion. Using this, the prediction model was 

concluded as VECM(2), a model having intercept and no linear trend, as a result of performing three cointegration coefficient tests to select 

VECM(p). Therefore, the prediction model was presented by calculating the long-term parameter estimate, the error correction coefficient 

estimate, and the parameter estimate estimated by the model. And as a result of performing model diagnosis on the residual time series 

vector obtained after fitting the VECM(2) model, it was found that there was no cross-correlation until the lag 12, meaning that the 

VECM(2) prediction model in this study was a reliable model. 

 

Keywords: Vector time series analysis, VECM, Ultrafine dust (PM2.5), Cointegration coefficient tests, Multivariate Portmanteau test 

Portmanteau test 

 

1. Introduction 

Recently interest in fine dust at home and abroad is rapidly 

increasing. As the public interest and demand for 

resolving the fine dust problem increase, the Korean 

government is actively promoting related policies to 

respond to fine dust in Korea. The main sources of fine 

dust are business sites, construction machinery, power 

plants, automobiles, air conditioning, air-conditioning, 

fugitive dust, biological combustion, and the use of 

organic solvents. Ultrafine dust generated by the reaction 

of hazardous substances from factory chimneys or 

automobile exhausts with substances in the air is mainly 

generated when chemical fuels such as coal or petroleum 

are burned or when gases are emitted from factories and 
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automobiles [1]. Ultrafine dust contains substances 

harmful to the body, such as nitrate, sulfate, and 

ammonium, which are known to be more harmful than 

fine dust. (Figure 1) shows the change in the annual 

average concentration of fine dust and ultrafine dust 

(atmospheric environment information in 2020) at 52 air 

monitoring stations across the country (period: 2000 to 

2020). The fine dust concentration peaked at 64μg/m3 in 

2002 and has been steadily decreasing until recently, and 

in 2020, it showed the lowest concentration at 35μg/m3. 

Ultrafine dust started to be measured in 2015 and has been 

steadily decreasing, showing the lowest concentration of 

19μg/m3 in 2020. 
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Figure 1- Annual change of fine dust (PM10, PM2.5)  

 

Although the annual average concentration of fine and 

ultrafine dust in Korea is showing a decreasing trend 

overall, it is far below the recommended standards 

(PM10:20μg/m3, PM2.5:10μg/m3) suggested by the 

World Health Organization. Thus, people are dissatisfied 

with the government's measures against fine dust and are 

anxious about fine dust. 

 

2. Related research 

As the social and economic problems caused by fine dust 

and the seriousness of its harmful effects on the human 

body have been raised, research on fine dust is being 

actively in progress. It has been studied that fine dust is 

known to increase excess mortality and cardiovascular 

and respiratory diseases [2]. Ultrafine dust is particularly 

dangerous for respiratory and cardiovascular diseases in 

women and children [3], and it has been studied that the 

hospitalization rate for children with asthma increases by 

3.45% for every 10 ㎍ /㎥  increase in ultrafine dust 

concentration [4]. Fine dust has been shown to have a 

large impact not only on the human body but also on 

society and economy. High concentration of fine dust 

causes people to avoid going out, which can lead to a 

decrease in interaction and consumption among people, 

which can eventually weaken the vitality of the national 

economy [5]. It was also analyzed that the concentration 

of fine dust had a negative impact on sales of retail outlets 

[6]. As statistical prediction model studies, it was revealed 

that the peripheral distribution of fine dust has a thick tail 

and strong dependence [7], and Shon et al. (2016) studied 

a prediction model that applied CMAQ, a numerical 

model for air quality prediction [8]. It was found that 

factors highly correlated with fine dust include nitrogen 

dioxide and carbon monoxide, and they also generate 

secondary fine dust and have a strong correlation with fine 

dust [9]. Recently, research on prediction models using 

artificial intelligence (machine learning, deep learning) 

has been actively conducted. However, the accuracy of 

prediction models differs from statistical probability 

models to artificial intelligence models depending on the 

characteristics of each region and industry. In addition, 

there are not many studies on prediction using the vector 

time series model. Therefore, in this study, vector time 

series data (ultrafine dust (UFD), nitrogen dioxide (NO2), 

carbon monoxide (CO)) are used to estimate and predict 

the prediction model using a vector error correction 

model. 

 

3. Research model 

3.1 Vector error correction model (VECM) 

When there are several related time series data and the 

prediction value can be obtained from the related time 

series data, it will be more efficient than forecasting using 

only one time series data if. The method of analyzing 

multiple time series at the same time is called vector time 

series analysis. Vector time series analysis is intended to 

analyze the dynamic characteristics and interactions of 

multiple time series variables while simultaneously 

considering them, and does not prescribe specific 

variables as dependent variables in advance. It is not 

always a good idea to fit the model after differentiating 

the nonstationary time series data. The vector error 

correction model, which is one of vector time series 

analysis, is a useful model to analyze the relationship 

between data when nonstationary time series data are 

cointegrated. Nonstationary time series in cointegration 

relationship can be modeled by vector error correction 

model. The p-lag vector error correction model, 

VECM(p), is defined as (Equation 1) [10]. 

 

∇𝑍𝑡 = δ(t) + α𝛽′𝑍𝑡−1 + ∑ Φ𝑖∇𝑍𝑡−𝑖 + 𝜀𝑡

𝑝−1

𝑖=1

 (1) 

 

Where ∇𝑍𝑡 = 𝑍𝑡 − 𝑍𝑡−1 , 𝛼 , and 𝛽  are 𝑙 × 𝑚  matrix 

respectively, Φ𝑖  is an 𝑙 × 𝑙  matrix, 𝛿(𝑡) = 𝛿0 + 𝛿1𝑡  is a 

deterministic trend term, and 𝛿0 and 𝛿1 are 𝑙 × 1 constant 

vectors. The vector error correction model is a model that 

corrects the loss of information with the correction term 
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𝛼𝛽′𝑍𝑡−1 in the process of fitting the vector model after all 

time series variable are differentiated. 

3.2 Granger causality test 

It is to view whether vector time series data can be 

analyzed by vector time series model [11]. The 

hypotheses used in this study are shown in (Table 1). 

 

Table 1. Hypotheses 

TEST 1 
𝐻10: {𝑈𝐹𝐷}   ↚   {{𝑁𝑂2}, {𝐶𝑂}} 

𝐻11: {𝑈𝐹𝐷}   ←   {{𝑁𝑂2}, {𝐶𝑂}} 

TEST 2 
𝐻20: {𝑁𝑂2}   ↚   {{𝑈𝐹𝐷}, {𝐶𝑂}} 

𝐻21: {𝑁𝑂2}   ←   {{𝑈𝐹𝐷}, {𝐶𝑂}} 

TEST 3 
𝐻30: {𝐶𝑂}   ↚   {{𝑈𝐹𝐷}, {𝑁𝑂2}} 

𝐻31: {𝐶𝑂}   ←   {{𝑈𝐹𝐷}, {𝑁𝑂2}} 

 

3.3 Cointegration coefficient test 

If 𝑙 × 𝑙  matrix Π is a perfect coefficient matrix, namely 

𝑟𝑎𝑛𝑘(Π) = 𝑙  , then all time series of   𝑍𝑡  are 𝐼(0) 

stationary time series. If 𝑟𝑎𝑛𝑘(Π) = 0 , it means Π = 0 , 

and since the cointegration vector does not exist, the 

vector error correction model cannot be applied. In this 

case, all time series of 𝑍𝑡  are 𝐼(1)  nonstationary time 

series and are predicted by applying VAR(p) model to the 

differential time series. However, if 0 < 𝑟𝑎𝑛𝑘(Π) = 𝑚 <

𝑙 , there are 𝑚   independent linear combination equations 

that becomes stationary, and it is predicted by the vector 

error correction model. Then, the cointegration coefficient 

test means a test that determines the number of columns 

of Π = 𝛼𝛽′ that are linearly independent, that is, the value 

of the cointegration coefficient 𝑚  . Hypothesis for this 

test is as (Equation 2). 

 

𝐻0: 𝑚 = 𝑚0  𝑣𝑠.  𝐻1: 𝑚 > 𝑚0 (2) 

 

Where 𝑚 = 𝑟𝑎𝑛𝑘(Π)  is the number of cointegration 

relations. When constructing the VECM(p) model from 

the VAR(p) model, various models can be considered 

depending on the decisive factors included in the model. 

For the cointegration test used in this study, the vector 

error correction model was determined by considering 

three models. Trace statistics were used to determine the 

presence or absence of the cointegration vector, and the 

models considered are as follows [12], [13]. The first 

model considered is the case where there is no intercept in 

the VECM(p) term, as shown in (Equation 3), 

 

∇𝑍𝑡 = α𝛽′𝑍𝑡−1 + ∑ Φ𝑖∇𝑍𝑡−𝑖 + 𝜀𝑡

𝑝−1

𝑖=1

 (3) 

 

The second model considered is the case where the error 

correction term has intercept, as shown in (Equation 4), 

 

∇𝑍𝑡 = α(𝛽0 + 𝛽′𝑍𝑡−1) + ∑ Φ𝑖∇𝑍𝑡−𝑖 + 𝜀𝑡

𝑝−1

𝑖=1

 (4) 

 

The third model considered is the case where the 

VECM(p) term has intercept and there is no linear trend, 

as shown in (Equation 5). 

 

∇𝑍𝑡 = 𝛿0 + α𝛽′𝑍𝑡−1 + ∑ Φ𝑖∇𝑍𝑡−𝑖 + 𝜀𝑡

𝑝−1

𝑖=1

 (5) 

 

And the trace statistics for testing the null hypothesis that 

there are   cointegration vectors are as shown in (Equation 

6). 

 

𝜆𝑡𝑟𝑎𝑐𝑒 =  −𝑛 ∑ log (1 − 𝜆𝑖)

𝑘

𝑖=𝑟+1

 (6) 

 

where 𝑛  is the number of observations, and 𝜆𝑖  are the 

eigenvalues. 

 

3.4 Model diagnostic test 

After fitting the vector error correction model, the 

multivariate Portmanteau test statistic to test whether the 

correlation remains in the residual time series vector is as 

shown in (Equation 7) [14]. 

 

𝑄(𝑘)

= 𝑛2 ∑(𝑛 − 𝑘)−1

𝐾

𝑘=1

𝑡𝑟{𝜌̂𝑘(𝑒)𝛴𝜀
−1̂ [𝜌𝑘 ̂(𝑒)]′} 

(7) 

 

where 𝜌𝑘̂(𝑒)  is the 𝑘  lag sample cross autocorrelation 

matrix of the residual time series vector 𝑒𝑡  , ∑𝜀̂  is the 

estimator of ∑𝜀  , which is the covariance matrix of the 

multivariate white noise process, 𝑛 is the size of the time 

series data, 𝑘  is the appropriate time lag, and 𝑙  is the 

number of univariate time series constituting the 

multivariate time series. Hypothesis for this is as 

(Equation 8). 

 

𝐻0: 𝜌1(𝑒) = 𝜌2(𝑒) = ⋯ = 𝜌𝑘(𝑒) = 0  

 

𝐻1: 𝑁𝑜𝑡 𝐻0 

(8) 

 

where 𝜌𝑘(𝑒) , 𝑘 = 1,2, ⋯ , 𝐾  

 

4. Results 

4.1 Stationary time series transformation and unit root 

test 

In order to convert the multivariate time series data 

(ultrafine dust, nitrogen dioxide, carbon monoxide) used 

in this study to stationary time series data, a power 

transformation was performed to stabilize the variance. As 
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shown in Figure 2, the time series data showed a trend.  

 
Figure 2- Time series plot after power transformation  

As a result of removing the trend by first differentiating 

the multivariate time series data (ultrafine dust, nitrogen 

dioxide, carbon monoxide) subjected to power 

transformation, and checking the autocorrelation analysis 

diagram, it was shown truncated to 0 after p = 2 lag in the 

sample partial autocorrelation function (SPACF). After 

checking the sample partial autoregression matrix 

(SPAM) and the sample cross-correlation matrix (SCCM) 

between time series data to determine p in the initial 

model VAR(p) model, which is the previous stage of the 

cointegration test, p = 4 and q = 2 have been identified. As 

a result of confirming the AICC statistic value, which is 

the minimum information criterion (MINIC) method, by 

competing models including these two models, the 

minimum AICC value was identified as the VAR(2) 

model with p=2 as shown in Table 2. 

 

Table 2. Model identification by MINIC 

Lag MA0 MA1 MA2 

AR0 -11.3225 -11.5434 -11.8132 

AR1 -12.3812 -12.6355 -12.6683 

AR2 -12.8735 -12.6893 -12.6549 

AR3 -12.4947 -12.6377 -12.6102 

AR4 -12.5339 -12.7292 -12.5486 

 

Therefore, as a result of performing the unit root test 

with p = 2, the p-value of the Tau test was less than the 

significance level (0.05) as shown in Table 3, and all of 

them were confirmed as stationary time series data. 

 

Table 3. ADF unit root test 

Variable Type Tau Pr < Tau 

∇tUFD 

Zero Mean -35.32 <.0001 

Single 

Mean 
-35.31 <.0001 

Trend -35.30 <.0001 

∇tNO2 

Zero Mean -38.00 <.0001 

Single 

Mean 
-37.99 <.0001 

Trend -37.98 <.0001 

∇tCO 

Zero Mean -36.16 <.0001 

Single 

Mean 
-36.15 <.0001 

Trend -36.14 <.0001 

 

4.2 Granger causality test 

To test if stationary time series data can be analyzed by 

the vector time series model, the Granger causality test 

was done with VAR(2) model with 𝛼 = 0.05. As a result, 

(Table 4) show that all of p-values from chi-square test 

appear smaller than the significance level, so each time 

series data can be explained by its own and the past values 

of the other two time series, respectively. 

 

Table 4. Granger causality test 

Test DF Chi-Square Pr > ChiSq 

Test 1 4 34.70 0.0001 

Test 2 4 9.88 0.0225 

Test 3 4 57.22 0.0001 

 

4.3 Cointegration coefficient test and model 

identification 

The trace statistic of the cointegration coefficient test 

proposed by Johansen was used. The model was identified 

by testing three cases in order to select an appropriate 

VECM(p) out of VAR(p) model; VECM(p) term has no 

intercept (Case 1), the error correction term has intercept 

(Case 2), and the VECM(p) term with intercept and no 

linear trend (Case 3). The result of the cointegration test 

with no intercept in VECM(p) term is as shown in (Table 

5), and in this case, the cointegration relationship does not 

exist. That is, it can be seen that rank=0 because 𝐻0  is 

adopted as trace=35.5668 < 5% and Critical Value=42.35, 

where 𝐻0: 𝑚 = 0  𝑣𝑠.  𝐻1: 𝑚 > 0 . 

 

Table 5. Cointegration coefficient test (Case 1) 

H0 : 

Rank=

r 

H1 : 

Ran

k > r 

Trace 

5% 

Critica

l 

Value 

Drift 

in 

ECM 

Drift in 

Process 
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0 0 35.566

8 

42.35 NOIN

T 

Consta

nt 

1 1 12.434

2 

13.64 
  

2 2 2.5904 3.84 
  

 

When the error correction term has intercept, the result of 

the cointegration test is as shown in (Table 6), and in this 

case, it can be seen that there is one cointegration 

relationship. That is, it can be seen that rank=1 because 

𝐻0  is adopted as trace=10.6371 < 5% and Critical 

Value=13.36, where 𝐻0: 𝑚 = 1  𝑣𝑠.  𝐻1: 𝑚 > 1 . 

 

Table 6. Cointegration coefficient test (Case 2) 

H0 : 

Rank=

r 

H1 : 

Ran

k > 

r 

Trace 

5% 

Critic

al 

Value 

Drift in 

ECM 

Drift in 

Process 

0 0 56.533

9 
28.83 

Consta

nt 

Consta

nt 

1 1 10.637

1 
13.64   

2 2 3.2656 4.72   

 

When the VECM(p) term has intercept and there is no 

linear trend, the result of the cointegration test is as shown 

in (Table 7), and it can be seen that there is one 

cointegration relationship in this case as well. That is, it 

can be seen that rank=1 because 𝐻0  is adopted as 

trace=8.1736 < 5% and Critical Value=10.46, where  

𝐻0: 𝑚 = 1  𝑣𝑠.  𝐻1: 𝑚 > 1 . 

 

Table 7. Cointegration coefficient test (Case 3) 

H0 : 

Rank=

r 

H1 : 

Ran

k > r 

Trace 

5% 

Critica

l 

Value 

Drift in 

ECM 

Drift 

in 

Proces

s 

0 0 52.391

5 
21.57 

Consta

nt 
Linear 

1 1 8.1736 10.46   

2 2 2.1206 3.48   

 

Since there is one cointegration relationship in the 

models of Case 2 and Case 3, chi-square test for 

hypothesis 𝐻0: 𝐶𝑎𝑠𝑒 2  𝑣𝑠.  𝐻1: 𝐶𝑎𝑠𝑒 3 for proper model 

identification was performed. And the result is shown in 

(Table 8). That is, in the 𝜒2 test of Rank=1, the p-value is 

0.0172, which is less than 0.05, so 𝐻0 is rejected and 𝐻1 

is adopted. Therefore, the vector error correction model 

was identified as VECM(2), as shown in (Equation 9). 

 

∇𝑍𝑡 = 𝛿0 + α𝛽′𝑍𝑡−1 + Φ1∇𝑍𝑡−1 + 𝜀𝑡 (9) 

 

 
 

 

Table 8. Model identification 

Rank DF Chi-Square Pr > ChiSq 

0 3 9.28 0.0924 

1 2 8.14 0.0172 

2 1 5.12 0.0153 

 

4.4 Model estimation 

The VECM(2) model estimated above is obtained as 

(Equation 10) from the long-term parameter estimate and 

error correction coefficient estimate (Table 9), and 

parameter estimate value (Table 10). 

 

∇𝑍𝑡 = (
0.01528
1.77266
0.11603

) 

+

(
0.02185 −0.00566 0.01010
2.54796 −0.66000 1.17784
0.16652 −0.04613 0.07694

) (

𝑈𝐹𝐷1,𝑡−1

𝑁𝑂22,𝑡−1

𝐶𝑂3,𝑡−1

) 

+

(
−0.22985 0.00881 0.02402
−1.38103 0.17534 −0.95302
−0.01421 0.05531 −0.39752

) (

∇𝑈𝐹𝐷𝑡−1

∇𝑁𝑂2𝑡−1

∇𝐶𝑂𝑡−1

) 

(10) 

 

Table 9. Estimation of long-term parameters and error 

correction coefficients 

Beta Estimates 

Variable 1 2 3 

UFD 1.00000 1.00000 1.00000 

NO2 -0.25903 -0.01123 0.06666 

CO 0.46227 -0.02650 -1.02715 

Alpha Estimates 

Variable 1 2 3 

UFD 0.02185 -0.43958 0.00338 

NO2 2.54795 -3.06491 0.77527 

CO 0.16652 -0.62181 0.39373 

 

Table 10. Parameter estimation 

Equation Parameter Estimate Variable 

D_UDF 

CONST1 0.01528 1 

AR1_1_1 0.02185 UFD(t-1) 

AR1_1_2 -0.00566 NO2(t-1) 

AR1_1_3 0.01010 CO(t-1) 

AR2_1_1 
-0.22985 

D_UFD(t-

1) 

AR2_1_2 0.00881 D_NO2(t-1) 

AR2_1_3 0.02402 D_CO(t-1) 

D_NO2 

CONST2 1.77216 1 

AR1_2_1 2.54795 UFD(t-1) 

AR1_2_2 -0.66001 NO2(t-1) 

AR1_2_3 1.17784 CO(t-1) 

AR2_2_1 
-1.38103 

D_UFD(t-

1) 

AR2_2_2 0.17534 D_NO2(t-1) 

AR2_2_3 -0.95302 D_CO(t-1) 

D_CO CONST3 0.11603 1 
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AR1_2_1 0.16652 UFD(t-1) 

AR1_3_2 -0.04313 NO2(t-1) 

AR1_3_3 0.07698 CO(t-1) 

AR2_3_1 
-0.01421 

D_UFD(t-

1) 

AR2_3_2 0.05531 D_NO2(t-1) 

AR2_3_3 -0.39752 D_CO(t-1) 

 

4.5 Model diagnosis and prediction 

As a result of the significance test of the cross-correlation 

matrix for the residual time series vector obtained after 

fitting the VECM(2) model (Equation 10), it was found to 

follow the white noise process, and as shown in the 

multivariate Portmanteau test (Table 11), cross-

correlation did not exist until the maximum lag of 12. That 

is, the p-values of the chi-square statistics are greater than 

the significance level of 0.05 at all lags, indicating that 

there is no cross-correlation. 

 

 

 

 

Table 11. Model diagnostic test 

Up To Lag Chi-Square Pr > ChiSq 

3 13.46 0.0762 

4 20.03 0.2230 

5 27.72 0.2964 

6 33.75 0.1853 

7 48.76 0.1512 

8 61.21 0.3204 

9 67.54 0.2527 

10 76.64 0.2459 

11 82.59 0.1992 

12 94.71 0.3937 

Using the VECM(2) model (Equation 10), the predicted 

values after the 1-lag of the fitting period, the predicted 

values after the multi-lag of the forecast period (6 

months), and the 95% confidence interval are presented 

graphically. (Figure 3) is a prediction for ultrafine dust 

(PM2.5), (Figure 4) is a prediction for nitrogen dioxide 

(NO2), and (Figure 5) is a prediction for carbon monoxide 

(CO). The prediction results of ultrafine dust, nitrogen 

dioxide, and carbon monoxide were found to decrease 

overall. 

 
Figure 3- PM2.5 prediction by VECM(2) 

 

 
Figure 4- NO2 prediction by VECM(2) 
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Figure 5- CO prediction by VECM(2) 

5. Conclusion 

The public's interest in air pollution has increased with the 

advancement of industry, rapid changes in weather 

conditions such as climate change, and the rise of public 

awareness and sensibility levels. In particular, fine dust 

can be seen to have a wider range of effects than other 

pollution because it is easy to be exposed to an unspecified 

number of people. Exposure to fine dust can cause or 

aggravate heart and lung-related diseases, which in turn 

can affect the increase in death. In addition, the risk of 

cardiovascular disease, respiratory disease, and lung 

cancer increases when exposed for a long time to a place 

with a high concentration of fine dust. In Korea, the 

severity of air pollution is rising to the extent that there is 

a report confirming that the concentration of ultrafine dust 

is the second highest among OECD member countries. In 

fact, as a result of the 2018 National Environmental 

Awareness Survey published by the Korea Environmental 

Policy Evaluation Institute, it was confirmed that more 

than 3 out of 10 people think that air quality improvement 

such as fine dust is the most urgent among environmental 

problems. Various research groups around the world, 

including Korea, have established and implemented many 

countermeasures to solve the problem of fine dust through 

various studies. In this study, using data of ultrafine dust, 

nitrogen dioxide, and carbon monoxide in Jung-gu, Seoul, 

the causal relationship between variables was reviewed, 

and a prediction model was presented. As a result of 

prediction using the model presented, ultrafine dust, 

nitrogen dioxide, and carbon monoxide are predicted to 

decrease. Fine dust has been studied to have many 

negative effects on the human body, ecosystem, industry, 

and society. Fine dust generation factors are greatly 

affected by weather factors (temperature, humidity, wind 

direction, wind speed, precipitation, etc.) and external 

inflows. In order to solve the fine dust problem, research 

on the generation factors and prediction modeling should 

be continuously conducted. 
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