

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 187–191 | 187

Multiple Query Processing with Group Filters on Data Streams

Nam Hun Park1, Kil Hong Joo2

Submitted: 06/06/2022 Accepted: 10/09/2022

Abstract-In the environment of stream data, real-time data is continuously and continuously generated, but a plurality of continuous

queries are statically registered and performed on real-time data. Therefore, it is important to find only the queries that can be processed

on the arrived data, and to quickly execute only the queries to reduce the burden of query execution on the system. In order to solve the

problems of the existing multi-query processing method, in this study, the order of attributes is determined according to the selection rate

of attribute conditions. Real-time performance can be optimized by finding the optimal attribute order in the group query. Through

experiments, it has been demonstrated that excellent performance is shown even when the number of properties is large.

Keywords: Data Stream, Group Filters, Multiple Queries

1 Anyang University, Korea

ORCID ID: 0000-0002-3716-5760
2 Gyeongin National University of Education, Korea

ORCID ID: 0000-0002-5326-8495

*Corresponding Author E-mail: khjoo@ginue.ac.kr

1. Introduction

Many existing data systems receive real-time data,

biometric information, and behavioral information from

sensors based on a real-time environment and monitor or

analyze them. In particular, most medical application

environments use simple and passive monitoring

techniques for data. However, a real-time monitoring

method for various conditions such as continuous trend

change as well as fragmentary analysis is required.

The data stream is real-time, continuous, fast, and

infinitely new data is generated. Because of this feature,

it is not a one-time query for all data, but a continuous

query format in which a query is registered in advance

and the execution result is notified whenever data is

generated or periodically[1,2]. One-time queries are

executed once and removed from the system, but

continuous queries are continuously executed each time a

data stream arrives and results are accumulated, and the

query is repeatedly processed every time a new window

starts. Since continuous queries are stored in a static state

in the data stream, performance can be improved by

creating a group query plan that shares the operation

results or by using group processing methods rather than

executing individual queries for many continuous

queries. In addition, quick judgment on the infinitely fast

influx of data also has a big impact on performance. In

this paper, we propose a method for fast real-time multi-

query processing by analyzing multiple query filters for

more efficient query search in a data stream real-time

monitoring system. In the data stream environment, it is

effective to group many selection conditions through

indexing into various data structures. Most of the group

processing is grouped by attribute, and group filters are

created as many as the attributes used in the query, and

there are many performance differences depending on the

execution order. Therefore, to determine the execution

order, we propose a method for determining the low-cost

order by considering the selectivity of the condition and

the number of queries for which attributes are used.

The composition of the thesis is as follows. Section 2

describes the related works on query processing and

optimization. Section 3 describes the method of group

filters on the query conditions and how to order the

filters. Section 4 analyzes the performance through

comparison and finally, Section 5 describes the

conclusion and future research tasks.

2. Related Works

NiagaraCQ[3] is a system for processing query results for

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 187–191 | 188

XML streams and monitoring changes in web documents

of interest. It was developed for continuous query

processing as part of the Niagara project for XML stream

processing. By analyzing the query format for multiple

queries, queries with similar expressions are grouped to

share calculations. Query conditions with the same

expression form with the same properties and operators

are created in a structure called a group constant table.

Query processing is processed in the form of a join

between the group constant table and data, in which

multiple selection conditions are stored.

In NiagaraCQ, as Figure 1, a condition with the same

grammar or expression structure in a query expressed

using a query language called XML-QL is created as a

group constant and data is joined with this table. The

processing result is shared through the split operation by

distributing the query result. When processing the

selection condition and group processing of the join

condition, the optimization method according to the

order is used, and when a query is added, the query

condition is dynamically regrouped.

(a) XML-QL

(b) Expression Signature

(c) Group Constant Table

Figure 1- Group Query Processing in NiagaraCQ

CACQ[4] is a system that dynamically changes the order

of operators continuously during execution without

executing a fixed query plan. CACQ indexes the

selection conditions in a way called a grouped filter,

which classifies the selection conditions of a query as

attributes and groups them into operations again. The

group filter is created as many as the number of attributes

appearing in the selection query and has two hash

structures and two AVL tree data structures

internally[5,6]. The comparison value of the selection

condition used in the query is separated and indexed

according to the type of operator. When a new query is

registered, if there is a group filter of the attribute used in

the selection condition, it is added to the corresponding

group filter. If not, a new group filter is created. The data

tuple is processed through the group filter, and the result

is shared by all queries using that attribute.

3. Adaptive Query Processing

Multiple continuous queries applied to the data stream

are classified into group filters based on the query

conditions. The group filter is a selection module for

real-time tuples. The real-time data tuple is routed to a

group filter composed of continuous query

conditions[7,8]. When there are multiple selection

modules, group filters can be randomly selected or filter

counting can be performed.

Random routing performs random routing as in the

term, and filter counting increases filter counting by

giving a tuple to the group filter, and decreases the

counting number again when the group filter removes the

tuple. Therefore, a large number of counting means that

many tuples have been removed, and an efficient group

filter can be selected by selecting a large number of

tuples[9].

The existing multiple continuous query filter method

repeats unnecessary processing when attributes are not

used in all queries. For example, if you have queries like

follows:

Continuous Queries : select * from R where R.attr1 =

‘a’ (0.3) and R.attr2=’a’ (0.1)

select * from R where R.attr1 =

‘b’ (0.3) and R.attr2=’b’ (0.1)

select * from R where R.attr1 =

‘c’ (0.3)

If two group filters of R.attr1 and R.attr2 are made and

routing is performed to the group filter of R.attr1 first,

the R.attr1 filter will accumulate 10% counting of tuples

from a probabilistic view. Assuming that 60% of the

remaining tuples are routed to R.attr2, 48% of them are

filtered. Therefore, in the example, R.attr2 is routed

preferentially. In fact, all tuples entering the R.attr2 filter

have to go back to R.attr1 to process the condition for the

third query. Therefore, the sequence of R.attr1 and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 187–191 | 189

R.attr2 is repeated. The best order is to process R.attr1

first and then proceed to R.attr2 because all data

processed in R.attr2 should proceed to R.attr1.

If n attributes are used in the selection condition of

multiple queries, n group filters are created. The order of

n! is possible for n group filters. From now on, we

propose a method for determining how to determine the

order.

When there is one query with multiple selection

conditions, or when group processing of selection

conditions from multiple queries, processing costs are

different in different orders. When processing multiple

conditions in a single query, if the conditional selection

rate considering the interrelationship can be known, the

optimal order can be determined by applying the Greedy

algorithm. However, if the conditional selection rate is

unknown, the order is determined in the order of the

selection rate that passes the tuple with the minimum

number of unconditionally. Let's find the cost of

processing a single query with multiple selection

conditions in the selection condition processing

sequence. When a single query using n conditions

processes t tuples, if each condition has a processing cost

Ci and a condition selectivity Si, the processing cost Ct

can be obtained as follows.

Assuming that the processing cost Ci of each ith condition

is the same, it is as follows.

 Ct =

However, the group processing method that integrates the

selection conditions of multiple queries is much more

complicated than this. The possible order of n group

filters in a group filter in which the selection condition is

indexed according to an attribute is n! Among them, if

the probability of a tuple passing through the group filter

in the order Op of one order group filter is Li and the

processing cost Ci of ith attribute, the total processing

cost for t tuples is as follows, similar to a single query.

Assuming that the processing cost of the group filter is

the same, it is as follows.

In single processing, the selection rate of the condition

always has a fixed value regardless of the order, but in

the case of group processing, the probability of passing

the attribute selection varies depending on the position.

That is, the number of tuples filtered by the attribute

selector changes depending on how many queries were

made "false" by the previous attribute selectors. Since the

processing cost Ct is different for each order, if the

processing cost of the attribute selectors is assumed to be

the same, the best order is the order of checking the

minimum attribute selector. Therefore, it is the best order

to find the order in which the sum of the products of Lj is

minimized.

The order of tuples satisfying all conditions does not

matter, but when all queries are "False", various

performances are shown according to the order. In a

single query with multiple conditions connected by

“AND”, if one condition becomes “False”, the query also

becomes “False” and the corresponding data tuple can be

removed. For example, if the total number of queries is t,

even if the data tuple makes t-1 queries “False”, if the

other query is “True”, the corresponding data tuple

cannot be removed. Therefore, if a data tuple that makes

all queries “False”, that is, a data tuple that is removed

from the system makes t-1 queries “False”, if the

condition of the other query is not checked, it is not

removed and continues until the condition is checked. If

the condition that answers the single query is at the end

of the sequence, the tuple that becomes “False” will

unnecessarily check many group filters, so it is better to

select the group filter that uses the condition in as many

queries as possible first. Advantageous. The attribute

utilization means how many queries an attribute is used.

If the set with n attributes used in the query is A, then A

= { A1, A2 ,… , An}. The property utilization U of one

property Ai of property set A is determined like follows:

U(Ai) = The number of queries with conditions on

Ai / The total number of queries

Considering these characteristics, it creates a requirement

to quickly remove unnecessary data tuples by first

checking the attributes used in all queries, that is,

attributes with attribute utilization of 1. If there is no

attribute used in all queries, it finds a set of attributes that

fulfill one or more conditions of all queries, that is, a

requirement that data tuples can be discarded in

combination with other attributes. Since the number of

elements is a property that must be checked for tuples to

be filtered, the smaller the number of elements, the more

advantageous.

4. Experimental Results

In the comparison experiment, three types of data sets

were used. Each data set has all 20 attributes, and the

domain range of each attribute is 0~99. Each data set has

500,000 data tuples and has distribution characteristics as

shown in Table 1.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 187–191 | 190

Table 1. Experimental Data Sets

Data

Set
Features

#1 Each data value has a uniform distribution

#2
It has a high distribution of median values in a

form similar to a normal distribution graph.

#3

A distribution similar to the shape of a pulse, with

the first half having low data values and the next

half having high data values.

Figure 2 is a performance test for the minimum attribute

cover set. The selection rate and utilization of the

attribute condition of each attribute were applied in

various ways. The order was determined by performing

the properties of the minimum property cover set with the

highest priority and arranging the rest in alphabetical

order. In the series, the worst case is the worst case as a

result of executing all possible sequences, the best case is

the best case, and the max utilization means the

performance by selecting attributes of higher utilizations

values first.

Figure 2- Performance Comparisons by Data Sets

Figure 3 shows the experimental results when the

minimum attribute cover set is applied while increasing

the number of attributes to 20. Since it takes too much

time to perform all sequences from 10 or more attributes,

after randomly performing 2000 times, the worst case is

set as the maximum processing order and the best case is

set as the minimum processing order. The more attributes,

the more queries and more conditions, so the difference

in performance according to the order becomes clear.

The data set was #1. As can be seen from the

experiments in Figure 2 and Figure 3, it can be seen that

the processing cost can be significantly reduced just by

finding the minimum attribute cover set and starting the

sequence.

Figure 3- Performance Comparisons with the number of

attributes

5. Conclusion

As science and technology advances in the future, the

types of sensors constituting the sensor network will

increase, the amount of data that the server needs to

process instantaneously to provide real-time services will

gradually increase, and the queries that users request

from the system will also become more complex.

Therefore, in this paper, we propose a property selection

method that shows excellent performance for a large

number of query searches in a real-time environment.

The goal of this study is to effectively perform real-time

continuous processing for smart medical application

services with fast performance in a real-time WBAN

environment. Therefore, future research is to develop a

complete application prototype by integrating the stream

data real-time monitoring technique as an application

layer implemented in this paper with the physical layer

and upper layer of communication, and to optimize it by

performing performance analysis.

References

[1]. Wahab, Raja Azhan Syah Raja, et al., A Method for

Processing Top-k Continuous Query on Uncertain

Data Stream in Sliding Window Model. WSEAS

Transactions on Systems and Control, 16 (2021),

261-269.

[2]. Metre, K. V, Location based Continuous Query

Processing over Geo-streaming Data. Turkish

Journal of Computer and Mathematics Education

(TURCOMAT), 12.1S (2021): 106-114.

[3]. Avhankar, M. S. ., D. J. A. . Pawar, S. . Majalekar,

and S. . Kedari. “Mobile Ad Hoc Network Routing

Protocols – Using OPNET Simulator”. International

Journal on Recent and Innovation Trends in

Computing and Communication, vol. 10, no. 1, Jan.

2022, pp. 01-07, doi:10.17762/ijritcc.v10i1.5513.

[4]. Chen, Jianjun, et al., NiagaraCQ: A scalable

continuous query system for internet

databases. Proceedings of the 2000 ACM SIGMOD

international conference on Management of data,

(2000).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 187–191 | 191

[5]. Madden, Samuel, et al., Continuously adaptive

continuous queries over streams. , (2002).

[6]. Le-Phuoc, Danh., Adaptive optimisation for

continuous multi-way joins over rdf

streams. Companion Proceedings of the The Web

Conference, (2018).

[7]. Katsipoulakis, Nikos R., Alexandros Labrinidis, and

Panos K. Chrysanthis, Concept-driven load shedding:

Reducing size and error of voluminous and variable

data streams. 2018 IEEE International Conference

on Big Data (Big Data), (2018).

[8]. Kose, O., & Oktay, T. (2022). Hexarotor Yaw Flight

Control with SPSA, PID Algorithm and Morphing.

International Journal of Intelligent Systems and

Applications in Engineering, 10(2), 216–221.

Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/1879

[9]. Liao, Zhining, Hui Wang, and Gongde Guo, The

optimal query plan selection based on the network

and remote server analysis. 2004 IEEE International

Conference on Systems, Man and Cybernetics (IEEE

Cat. No. 04CH37583), Vol. 7, (2004).

[10]. Rosemaro, E. . (2022). Understanding the Concept of

Entrepreneurship Management and Its Contribution

in Organization. International Journal of New

Practices in Management and Engineering, 11(01),

24–30. https://doi.org/10.17762/ijnpme.v11i01.159

[11]. Liang, Y., Lee, J., Hong, B., & Kim, W. C., Real-

time Processing of Rule-based Complex Event

Queries for Tactical Moving Objects.

In COMPLEXIS, pp. 67-74), (2019).

[12]. K, S., & srinivasulu, T. (2022). Design and

Development of Novel Hybrid Precoder for

Millimeter-Wave MIMO System. International

Journal of Communication Networks and

Information Security (IJCNIS), 13(3).

https://doi.org/10.17762/ijcnis.v13i3.5096

[13]. Babu, Shivnath, and Jennifer Widom, Continuous

queries over data streams. ACM Sigmod

Record, 30.3 (2001), 109-120.

