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Abstract: The SDN has increased its focus, and the notion of network control has offered an efficient network-oriented DDoS protection 

in addition to many DDoS assault methods. More information about the network might be influenced by the centralized SDN controller, 

and SDN framework helps in identifying DDoS assaults using various methods. The simulation dataset for this work was generated by 

constructing SDN on the Mininet emulator. To construct the dataset and train the deep learning algorithm, the unique features are logged 

into a csv file. Further, detection is done using Optimized Deep Max out classifier. In addition, the weights of Deep Max out classifier 

are chosen via Sine Map Insisted CA (SMI-CA) model. If any attack is found, Bait oriented mitigation is made for relieving from attacks. 

As last step, analysis is done to portray the effectiveness of adopted model. The model used in the paper is further evaluated using the 

newly released dataset CICDDoS2019   along with the simulation dataset. Result shows that the Deep Maxout classifier has a very low 

false alarm rate and can classify traffic with the greatest testing accuracy of 96.5% for the CICDoS2019 dataset and 95.1% for the 

simulation dataset.   
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Nomenclature 
Abbreviation Description 

CIC Canadian Institute of Cyber Security  
CA Coot Algorithm 

CNN Convolutional Neural Network 

DCNN Deep CNN  

DBN Deep Belief Network  

DMO Deep Max Out  

DDoS Distributed Denial Of Service  
IDS Intrusion Detection System  

GA Genetic Algorithm 

KPCA Kernel Principal Component Analysis  
KNN K-Nearest Neighbours  

LEDEM Learning Driven Detection Mitigation 

LP Learning Percentage 
ML Machine Learning  

RNN Recurrent Neural Network  

SSA Salp Swarm Algorithm 
SVM Support Vector Machine 

SMO Spider Monkey Optimization 
SMI-CA Sine Map Insisted CA 

SDN Software Defined Network  

TOA Teamwork Algorithm  

1. Introduction 

The services of networks with crucial industry and business data 

were spread to the manufacturing and life of contemporary 

society as a result of the ongoing development of communication 

expertise, the endless growth of internet production requirements, 

and the rapid expansion of the Online business in the Era of the 

internet [6] [7]. The beginning of DDoS assault could cause 

anomalies in the connected network services, ensuing in 

important financial loss and potentially other terrible effects. One 

of the major dangers to network security that the Internet is 

subject to is DDoS assaults. Accurate and rapid DDoS attack 

detection is a chief research area in security sector [8] [9]. “SDN 

is an emerging network innovation architecture that separates the 

network data plane and the control plane, which has the 

characteristics of network programmable, centralized 

management control, and interface opening [10] [11]”. 

In order to carry out DOS attacks, system attackers target varied 

resources [12] [13]. DDoS assaults demonstrate the rising size of 

the attack and the sophistication of the attack strategy. The 

following factors make it very hard to mark out the basis of an 

attack: (1) attack traffic characteristics that are hard to recognize; 

(2) need of cooperation among rational network node; (3) 

strengthening of attacking tool with a decreasing threshold of 

usage; (4) widely used address fraud; (5) short attack duration 

and limited response time [14] [15]. 

The two primary DDoS attack detection technologies in the 

conventional network architecture are attack identification 

depending on the traffic features and detection systems depending 

upon traffic anomaly [16] [17]. The former primarily develops a 

DDoS attack characteristics database by gathering various types 

of attack characteristic information. We can determine whether a 

network is being attacked by DDoS by analysing present network 

packet and features database. Expert systems, state transition, 

model reasoning, and characteristics matching are the primary 

implementation techniques. The purpose of the latter is primarily 

to create a traffic model and analyse variations in flow that are 

abnormal, determining if the traffic is irregular or not in order to 

identify whether the server has been attacked [18] [19] [20]. 

Section 2 and 3 reviews extant works and portrays about DDOS 

attack detection in SDN. Section 4 and 5 described about features 

and DMO based attack detection in SDN. Section 6 and 7 

describes bait process and results.  

The contributions are as follows: 

1.  Using the Mininet emulator, the SDN-specific dataset for both 

normal and attack flow was generated. 

2. DDoS detection takes place using deep max out classifier, 
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wherein, weights are optimized using SMI-CA model. 

2. Related Work 

 Nagarathna et al. [1] focused to prevent DDoS attacks in 

2020 that were brought on by malevolent wireless IoT servers. To 

lessen assault on IoT servers, our security scheme deployed cloud 

and SDN concept. Also, we have suggested LEDEM, which 

identifies DDoS and mitigates it. We emulated topology and 

evaluated LEDEM in the test bed, and then we compared the 

outcomes to cutting-edge approaches. Our increased DDoS attack 

detection accuracy rate was 96.28 percent. 

A modularized framework that enables recognition and 

prevention of LR-DDoS threats in SDN environments was 

presented by Pérez et al. in 2020 [2]. We specifically use six ML 

models to train the IDS in our design utilising CIC DoS database 

to assess their efficacy. The threat detection system in our 

experimental design mitigates any threats that have already been 

picked up by the IDS system. This shows how effective our 

architecture is in detecting and thwarting LR-DDoS assaults. 

Dong et al. [3] suggested two techniques in 2020 for detecting 

DDoS attack in SDN. One approach uses the DDoS attack's 

intensity to determine its level. The alternative technique finds 

the DDoS assault using the enhanced KNN scheme depending 

upon ML. Theoretical analytical findings and experimental 

findings from datasets demonstrated that the suggested 

techniques can well identify the DDoS attack distinguished when 

other techniques. 

SVM using KPCA and GA was suggested by Sahoo et al. in 

2020[4]. KPCA is utilised in the suggested SVM model to 

decrease the dimension of the feature vectors, while GA is 

employed to optimise various SVM parameters. An enhanced 

kernel function is suggested in order to lessen the noise brought 

on by feature discrepancies. According on the experimental 

findings, the suggested model gives more precise classification 

with greater generalisation when compared to single-SVM. 

A DCNN ensemble approach for effective DDoS attack 

detection in SDNs was suggested by Haider et al. in 2020[5]. A 

conventional Flow oriented dataset is used to assess the proposed 

system against predetermined standards. Improved accuracy is 

shown in comparison to current relevant detection methods. 

3. Explanation on DDoS Attack Recognition in 
SDN System 

3.1. Architecture 

Figure 1 shows the picture of proposed detection model. The 

adopted DDoS attack recognition in SDN comprises following 

steps.  

• Primarily, “features like flow-based features and 

statistical features (mean, median, standard deviation, 

variance, skewness and kurtosis) are derived”.  

• Further, detection takes place via Deep Max out 

classifier. 

• To enhance the performance of detection, the weights 

of Deep Maxout classifier are chosen via SMI-CA 

model. 

• Once the presence of attacks is determined, Bait 

oriented mitigation is used to mitigate the 

corresponding attacker from the network. 

 

 

 
Fig.1 Demonstration of adopted DDoS attack detection in SDN   

 

4. Feature Extraction: Statistical and Flow Based 
Features 

The considered features are on detecting the attacks is as follows: 

• Flow based features 

• Statistical features 

4.1 Flow based Features 

These include “source-destination IP addresses and ports as 
well as protocol types, in addition to the transactional features 
that includes flow data like data lengths. For DDoS attacks, the 
features namely, Source IP address (srcip), Source port number 
(port), Destination IP address (dstip), Destination port number 
(dsport), Protocol type (proto) and Last time of connection 
(ltime)” are derived. 

4.2 Statistical Features 

These include mean, median, variance; kurtosis, standard 

deviation and skewness are derived.  

4.2.1 Skewness [21]: Skewness is a distortion or lack of 

symmetry which deviates from the symmetric curve or 

normal distortion in a set of data. The data is mentioned as 

skewness, when the curve is shifted to right or left of the 

centre point.  It is modelled in Eq. (1). 

( )
3
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3

.devstd

kZ
skewness

k

i i =
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   (1) 

In Eq. (1), 1ZZi = , 2Z , ..., kZ ,   →mean value and k  → 

data point count.  

4.2.2  Kurtosis [21]: Kurtosis is a statistical measure of the 

tailedness of a distribution. Excess kurtosis is the tailedness 

of a distribution relative to a normal distribution. It is 

modelled in Eq. (2). 
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The derived features are DMO for choosing the best features. 

5. Optimized DMO Based Attack Detection in 
SDN 

This work exploits DMO for attack detection in SDN. 

 

5.1 Optimized DMO 

In the "max out" layer, the activation function acts as the layer's 

maximum input. Any function may be approximated by an MLP 

with two maxima out units. They offer a lot of explanations for 

why max out is effective, but the one that follows is the most 

important [22]. 

The dropout model averaging method trains a random sub 

network for all iterations, and the weights of all the networks are 

then summed. Since it is challenging to accurately average the 

weights, an approximation is utilised. For a linear network, this 

approximation is accurate. In max out, the input to a layer is not 

dropped. Here, the weights are tuned optimally by a new SMI-CA 

algorithm during the training process. The algorithm introduced 

is given in the subsequent section. The model results the 

classification outcomes. As per the datasets used, the 

categorization takes place. For Dataset 1: Benign, LDAP, 

MSSQL, NetBIOS, UDP gets classified. For Dataset 2, the 

presence or absence of attacks will be determined. 

 

5.2 Proposed SMI-CA Model for weight Tuning 

The objective   is to reduce the error as in Eq. (3). The DMO 

weights are chosen with SMI-CA scheme optimally as in Fig. 2. 

)min(errorObj =        (3) 

 

1Gu  SMI-CA 2Gu
 3Gu  nuGu  

  ... 

 
Fig.2. Solution Encoding 

The new CA [23] paradigm provided varied benefits; 

however, special modifications are needed as a result, and SMI-

CA is set up. “Usually, conservative optimization techniques are 

capable of self-enhancements” [24] [25] [26] [27] [28] [29] [30] 

[31].  

In CA, the leaders are measured as % of whole 

presumed coots “populations, poM ” and the residual are 

followers of coots. The follower’s positions ( 0ctpos ) and 

leaders ( leapos ) are initialized randomly as in Eq. (4), and (5), 

where, ub  and lb signifies upper and lower limits. In SMI-CA, 

the random integers ctra , leara  and r  are generated chaotically 

using sine map.  

( ) lblbubrapos ctct +−= .0    (4)
 

( ) lblbubrapos lealea +−= .    (5)
 

The fitness of coot’s followers cootfit is computed as 

( )obfof  in Eq. (6). The best global score scogbe and its 

position posgbe is in Eq. (7). leaM → coot leader count = % of 

poM and cootM → coot follower count = poM - leaM . 
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Also, the fitness of all coots’ leaders via OF is in Eq. 

(8). The scogbe  & posgbe  is shown in (9). 

( ) ( )( )lealeaoblea Miipfifit = ,,1    (8) 
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leasco

,1

,1

    (9) 

Every coot’s follower is allocated to coot’s leaders 

beginning from iteration 2 to maximal iterations ( maxt ) as in Eq. 

(10) and (11). Conventionally, followers’ position is updated as 

shown in Eq. (11). As per SMI-CA, followers’ position is 

updated based upon Brownian motion ( )BM  as shown in Eq. 

(12). Also, arithmetic crossover is carried out to make sure on 

better rate of convergence. 

cootrr .21+=      (10) 

      (11)

 

                           (12) 

Here cootr  and lear  implies randomly generated 

coot’s followers and leaders. 

If the follower fitness > corresponding leader, the 

follower and leader interchange their position as in (13). 

If 
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The leader’s positions are improved as in Eq. (14), and 

(15). The scogbe and posgbe are in (16),
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Algorithm: SMI-CA 

Start 

Initialize the coot parameters poM  and maxt  

Initialize the COOT’s followers cootpos and leaders’ position 

leapos via Eq. (4) and Eq. (5) → Novelty (sine map) 

Evaluate the fitness of each COOT’s follower via Eq. (6) 

 Update the best position cootpos and its best solution 

via Eq. (7) 

Evaluate the fitness of each COOT’s leader via Eq. (8) 

 Update the best position leapos and its best solution 

via Eq. (9) 

For max:2 tt =  
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 Update the position of COOT’s follower cootpos  via 

Eq. (12) → Novelty (Brownian Motion) 

 Compare cootfit and cootfit  

 If leacoot fitfit   

  
cootlea fitfit =  

 else 

  No updating in cootfit and leafit   

 end 

 Update the position of COOT’S leader leapos via Eq. 

(15) 

 Evaluate the fitness of new leader scogbe  

 For leaMi :1=  

  If scolea gbefit   

   
scolea gbefit =  

   
poslea gbepos =  

  else 

   No updating in scogbe and 

leapos  

  end 

 end 

 1+= tt  

end 

Return best solution 

End  
 

6. Bait Based Mitigation Process 

Once the attacks are determined in the network, it is 

very important to mitigate it from the network. For this, BAIT 

based mitigation is followed in this work. As source nodes 

attempt to broadcast an RREQ (Route Request) to the 

neighbouring nodes and the neighbouring nodes acknowledge the 

source node as RREP (Route Reply). Thus, the source node 

collates its RREQ with RREP to identify the attacking nodes. Let 

the neighbouring node, chosen at random by the source nodes, be 

na . The source node first sends out a request message RREQ  

with information like “destination ID as dID , source ID as sID  

and path length pl ” as in Eq. (17). 

 plIDIDRREQ ds ,,=    (17) 

The pl offer data related to hop count to transmit the 

requests. Nodes sends feedback after receiving the request as in 

Eq. (18) that shows the request efficiently arrived at the last node. 

 plIDIDRREP ds ,,=    (18) 

   If RREP  arrives source, it is evaluated 

with RREQ . As destination and pl  is accumulated in RREQ , it 

distinguishes the attacker nodes without difficulty and abolish 

those nodes 

7. Results and Discussion 

7.1. Simulation Setup 

The developed model was implemented in “Python using two 

datasets, where dataset 1 is downloaded from [32] and dataset 2 is 

synthetically generated via simulating SDN in Mininet, and the 

description is given below”. The DMO + SMI-CA was assessed 

over DMO + TOA, DMO + SSA, DMO + SMO and DMO + CA 

on miscellaneous metrics. In addition, measurement was done 

with SVM, DBN, CNN and RNN.  

Dataset description: CICDDOS 2019: Distributed Denial of 

Service (DDoS) attack is a menace to network security that aims 

at exhausting the target networks with malicious traffic. Although 

many statistical methods have been designed for DDoS attack 

detection, designing a real-time detector with low computational 

overhead is still one of the main concerns. On the other hand, the 

evaluation of new detection algorithms and techniques heavily 

relies on the existence of well-designed datasets. 

Mininet Environment Specifications: A DELL Inc. 

Inspiron15 5000 computer with the following specs was utilised 

for all testing and experiments: Intel Core (TM) i5-10th Gen 

processor clocked at 1.00GHz, 8 GB of RAM, Windows 10 64-

bit operating system, and VirtualBox Oracle VM version 6.0.18. 

On this machine, under the control of VirtualBox, is installed the 

guest operating system: MININET Emulator version 2.3.1b1 on 

Linux operating system Ubuntu 14.0432bits with 4096 MB of 

RAM and RYU Controller. 

SDN Simulation Dataset: This dataset is manually generated 

by simulating SDN in Mininet. The customized topology was 

created with four hosts, three switches, two servers and one RYU 

controller. The attributes included are flow duration, ip_proto, 

srcport, byte count, packet count, type. 

 

7.2 Performance Study 

The inspection on DMO + SMI-CA is done over existing 

optimizing schemes such as DMO + TOA, DMO + SSA, DMO + 

SMO, DMO + CA and DMO+SI-MFO on disparate metrics. 

Consequently, the inspection on DMO + SMI-CA is done over 

existing classifiers like SVM, DBN, CNN and RNN. The 

assessment of DMO + SMI-CA done over DMO + TOA, DMO + 

SSA, DMO + SMO, DMO + CA and DMO+SI-MFO models is 

exposed in Fig. 3- 4. The analysis on FPR and FNR is shown in 

Fig. 5 and 6 for datasets 1 and 2, whereas, MCC, NPV and F-

measure is shown in Fig. 7 and 8 for datasets 1 and 2. The MCC, 

NPV and F-measures are high for all LPs than evaluated 

methods, particularly; it is high at 90th LP. The FPR and FNR 

metrics are low for DMO + SMI-CA technique. Table 1 

described the estimation of DMO + SMI-CA over conventional 

SVM, DBN, CNN and RNN. Here, DMO + SMI-CA was found 

to have best results at 90th LP over other LPs for dataset 1. For 

dataset 2, a high specificity is gained at 90th LP. The precision is 

high at 90th LP. In Table 1, DMO + SMI-CA has gained best 

specificity of 0.93. Furthermore, DBN was established to be most 

excellent next to DMO + SMI-CA. Thus, DMO + SMI-CA is 

confirmed over DMO + TOA, DMO + SSA, DMO + SMO and 

DMO + CA, DMO+SI-MFO, SVM, DBN, CNN and RNN. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
Fig. 3. Analysis via DMO + SMI-CA over other schemes for “(a) 

Precision (b) Accuracy (c) Specificity and (d) Sensitivity” for dataset 1 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 4. Analysis via DMO + SMI-CA over other schemes for “(a) 

Precision (b) Accuracy (c) Specificity and (d) Sensitivity” for dataset 2 

 
(a) 
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(b) 

 
(c) 

 
 

Fig.5. Analysis via DMO + SMI-CA over other schemes for “(a) FPR (b) 

FNR and (c) FDR” for dataset 1 
 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 6. Analysis via DMO + SMI-CA over other schemes for “(a) FPR (b) 

FNR and (c) FDR” for dataset 2 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 

 

Fig.7. Analysis via DMO + SMI-CA over other schemes for “(a) MCC 
(b) NPV (c) F-measure and (d) Recall” for dataset 1 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig.8. Analysis via DMO + SMI-CA over other schemes for “(a) MCC 
(b) NPV (c) F-measure and (d) Recall” for dataset 2 

 

Table 1. Analysis via DMO + SMI-CA over other classifier schemes 

Dataset 1 

Metrics SVM DBN CNN RNN 

DMO + 

SMI-CA 

Accuracy 
0.85113

8 
0.92759

4 
0.90154

9 0.77875 
0.94103

5 

Sensitivity 0.84 

0.91971

2 

0.91332

5 

0.70240

5 

0.94748

9 

Specificity 

0.85981

3 

0.93597

5 0.89038 

0.82830

4 

0.93409

2 

Precision 
0.82352

9 
0.93855

1 
0.88767

8 
0.72642

5 
0.93926

8 

F_measur

e 

0.83168

3 

0.92903

6 

0.90031

9 

0.71421

3 

0.94336

1 

MCC 

0.69837

9 

0.85532

7 

0.80342

5 

0.53400

6 0.88191 

NPV 
0.87341

8 
0.91641

7 
0.91546

8 0.8109 
0.94297

1 

Recall 0.84 

0.91971

2 

0.91332

5 

0.70240

5 

0.94748

9 

FDR 

0.17647

1 

0.06144

9 

0.11232

2 

0.27357

5 

0.06073

2 

FPR 
0.14018

7 
0.06402

5 0.10962 
0.17169

6 
0.06590

8 

FNR 0.16 

0.08028

8 

0.08667

5 

0.29759

5 

0.05251

1 

Dataset 2 

Accuracy 

0.78906

2 

0.84436

2 

0.84495

6 0.864 

0.89613

1 

Sensitivity 
0.84125

4 
0.86356

2 
0.89448

7 
0.88888

9 
0.92571

6 

Specificity 

0.70196

2 

0.80841

3 

0.76071

1 

0.81818

2 

0.84229

2 

Precision 

0.82488

6 

0.89405

8 

0.86409

5 0.9 

0.91439

6 

F_measur
e 0.83299 

0.87854
6 

0.87902
8 0.89441 

0.92002
1 

MCC 0.54704 

0.66289

8 

0.66414

3 

0.70352

6 

0.77204

4 

NPV 

0.72600

4 

0.75988

5 

0.80911

4 0.8 

0.86170

6 

Recall 
0.84125

4 
0.86356

2 
0.89448

7 
0.88888

9 
0.92571

6 

FDR 

0.17511

4 

0.10594

2 

0.13590

5 0.1 

0.08560

4 

FPR 

0.29803

8 

0.19158

7 

0.23928

9 

0.18181

8 

0.15770

8 

FNR 
0.15874

6 
0.13643

8 
0.10551

3 
0.11111

1 
0.07428

4 

 

7.3 ROC Analysis 

Fig. 9(a) and (b) shows the ROC analysis done via deployed 

DMO + TOA, DMO + SSA, DMO + SMO, DMO + CA, and 

DMO+SI-MFO SVM, DBN, CNN and RNN. The ROC is 

analysed for TPR and FPR. For both datasets, a high ROC of 1.0 

is obtained for DMO + SMI-CA. Also, a high area of 0.94 is 
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obtained for DMO + SMI-CA for dataset 2. Thus, with increase 

in FPR, a high TPR is attained for developed scheme 

 
(a) 

 
(b) 

 

Fig.9. ROC curve for varied methods using dataset (a) 1 and 

(b) 2 

 

7.4 Convergence Analysis 

The convergence of SMI-CA scheme over DMO + TOA, 

DMO + SSA, DMO + SMO, DMO + CA and DMO+SI-

MFO for varied iterations (0-50) is shown in Fig. 10 (a) and 

(b) for both datasets. The cost has to be less as attained by 

SMI-CA from 16th to 50th iteration. From Fig. 10 (b), a 

lesser cost of 1.053 is gained by SMI-CA over DMO + 

TOA, DMO + SSA, DMO + SMO, DMO + CA and 

DMO+SI-MFO. Thus, enhanced results are gained using 

SMI-CA scheme. 

 
(a) 

 
(b) 

 
Fig. 10. Convergence analysis of SMI-CA over others using dataset 

(a) 1 and (b) 2 

7.5. Statistical Analysis 

The statistical analysis of developed DMO+SMI-CA with 

existing methods is illustrated in Table 2 respectively. And, on 

noticing the mean of the proposed model DMO+SMI-CA is 

1.043777 where the existing DMO+TOA=1.049583, 

DMO+SSA=1.061707, DMO+SMO=1.057901 and 

DMO+CA=1.046439 for dataset 1. And, it is observed that the 

developed model attains best mean value than the traditional 

methods. Moreover, on observing Table 2 for dataset 2 the 

developed model holds 1.054037 mean which is 0.82%, 0.99%, 

3.35% and 0.55% superior than DMO+TOA, DMO+SSA, 

DMO+SMO, and DMO+CA respectively. 

 

Table 2: Statistical Analysis via DMO + SMI-CA over other 

schemes 
Dataset 1 

Metrics 

Standar

d 

deviatio

n Mean 

Media

n 

Maximu

m 

Minimu

m 

DMO+TOA 

0.00362

7 

1.0495

83 

1.0475

25 1.056776 

1.04708

6 

DMO+SSA 0.00918 

1.0617

07 

1.0619

45 1.08093 

1.05237

9 

DMO+SMO 
0.01482

6 
1.0579

01 
1.0693

98 1.072776 
1.04205

4 

DMO+CA 

0.00516

4 

1.0464

39 

1.0426

77 1.055081 

1.04230

8 
DMO+SI_M

FO 

0.00419

3 

1.0462

43 

1.0441

24 1.061449 

1.04412

4 

DMO+SMI-
CA 0.00502 

1.0437
77 

1.0417
34 1.066122 

1.04173
4 

Dataset 2 

Metrics 

Standar

d 

deviatio

n Mean 

Media

n 

Maximu

m 

Minimu

m 

DMO+TOA 
0.00636

2 
1.0628

57 
1.0618

28 1.087671 
1.06056

2 

DMO+SSA 

0.00976

2 

1.0646

36 

1.0589

54 1.081717 

1.05883

2 

DMO+SMO 

0.01485

5 

1.0906

1 

1.0961

04 1.115564 

1.06827

6 

DMO+CA 
0.00517

1 
1.0599

62 
1.0580

01 1.092643 
1.05800

1 

DMO+SI_M

FO 

0.00708

9 

1.0584

47 

1.0567

7 1.086159 

1.05613

7 
DMO+SMI-

CA 

0.00782

3 

1.0540

37 

1.0517

12 1.084647 

1.05171

2 
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8. Conclusion and Future Work  

  This paper suggested a new DDOS attack recognition 
model in SDN, where, primarily, “features like flow based 
and statistical features (mean, median, standard deviation, 
variance, skewness and kurtosis)” were derived. Further, 
detection was done using Deep Max out classifier, whose 
weights were chosen via SMI-CA model. If any attack was 
found, Bait oriented mitigation was made for relieving from 
attacks. Here, DMO + SMI-CA was found to have best 
results at 90th LP over other LPs for dataset 1. For dataset 2, 
a high specificity is gained at 90th LP. The accuracy was 
elevated at 90th LP. Also, DMO + SMI-CA has gained best 
specificity of 0.93. Furthermore, DBN was established to be 
most excellent next to DMO + SMI-CA. 

  For the future work, in order to increase the 
performance of Deep Learning classifiers against attacks 
from the CIC attack dataset as well as with simulated datasets 
other than DDoS attack, the suggested work will be extended 
to include newer hybrid metaheuristic optimization 
techniques. 
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