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Abstract-This paper gives a depth overview about the technology mobile computing. It has been discussed here how these days cloud 

computing has reached into mobile and has helped us to reduce the battery and storage related issues in mobiles. Apart from smart phones 

mobile computing has affected other areas such as homes, offices, supermarts etc. Mobile cloud computing is fast and flexible. As a result, 

mobile cloud computing makes it easy for developers to create and share mobile app resources with end-users. Therefore, mobile 

applications can be built and updated faster .Mobile cloud computing shares resources. Mobile apps that run off the cloud aren’t constrained 

by any mobile device’s processing and storage limitations. All data-intensive processes can run from the cloud. This advantage means that 

any mobile device with access to a network can use mobile cloud apps, regardless of the operating system. Thus, users can enjoy cloud 

computing with Android or OS device. Sometimes fault tolerance is an issue relating to mobile cloud computing so to provide the high 

services without any noise interconnected high speed networks are provided . Mobile Cloud Computing (MCC) is an emerging technology 

that helps us in removing the shortcomings associated with the mobile computing. There is no need to download all the software that are 

required by the user as MCC makes it readily available. With the help of distributed data storage methods and parallel processing the 

process is enhanced giving a great experience to the user. In this both the data storage and processing happens outside the device. In this 

era mobile computing has become a trend in IT.[Kori,et.al,2019]. The users can obtain the maximum benefit of mobile technology when 

it is combined with the cloud technology. Mobile cloud computing also provides access to the people who are residing in the rural areas 

the various mobile services such as navigation, entertainment, commerce, storage and so on. Mobile cloud computing uses integrated 

data.  Mobile cloud computing lets users securely and quickly collect and integrate information from many sources, no matter where the 

data is. The architecture of mobile computer with its benefits is presented in this paper. 
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1 Introduction 

These days’ mobile devices have become an integral part 

of everyones life. We cannot imagine our life without 

mobile phones. With the high usage of mobile phones 

mobile computing is the new emerging field these days. 

As every application is now available in mobile phones 

whether it is internet banking or whether it is games or 

image processing, it calls for high storage demands. Here 

comes the role of mobile cloud computing.  

We all have noticed that when many applications are 

installed on our mobile phones sometimes our phone 

becomes very slow. This occurs due to1 limited hardware 

and software issues. We cannot change the hardware as it 

has been designed in a certain way but definitely, we can 

change the software of our mobiles and enhance it. 
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1.1 Mobile Computing 

Mobile computing combines the storage and processing 

issues with each other. It basically eliminates the need of 

physical wires or cables and makes use of wireless 

technology. It  transfers data and information by the 

means of wireless devices like mobiles and laptops. 

There are various types of mobile computing: 

• Fixed with physical cable 

• Fixed without physical cable 

• Fixed  and mobile 

• Fixed and wireless 
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Fixed and physical cable: In this configuration, the 

connection is made with the help of physical links that are 

at a fixed position. 

Fixed without physical cable: In this configuration, the 

wireless links are used for connecting the devices. 

Mobile and Wired: In this, some devices are wired, and 

some are mobile. They altogether make communication 

with other devices. 

 

Mobile and Wireless: In this setup, the gadgets can speak 

with one another regardless of their situation. They can 

likewise interface with any organization without the 

utilization of any wired gadget. Massive IoT (Internet-of-

Things) applications, such as face recognition, self-

driving, smart healthcare, and virtual reality (VR), have 

emerged in recent years as microelectronic technology 

and embedded computing have advanced [1], [2]. Many 

of these applications need a large amount of compute 

power and rigorous latency assurances, resulting in high 

energy consumption on end devices. Unfortunately, most 

IoT devices have limited computation and battery 

capacity, making such complicated applications difficult 

to support. Rather than developing lightweight 

algorithms, Mobile Edge Computing (MEC) [5] [6] is a 

potential direction. Unlike typical cloud computing, MEC 

servers are located closer to mobile consumers, resulting 

in a significant reduction in communication delay [7]. 

Ultra-dense edge networks are a promising area that has 

drawn a lot of research attention in order to fully leverage 

this advantage [8] [9]. Mobile users (IoT devices) will 

benefit from the edge servers' widespread and smooth 

computation and communication support if a significant 

number of connected edge servers are deployed for the 

target mobile network [10]–[12]. Edge servers in ultra-

dense edge networks can communicate with each other 

over high-speed connections.On a mobile device, tasks 

from one application might be offloaded to several edge 

servers [13]. As a result, IoT users' computation-intensive 

and latency-critical applications can be supported 

effectively. One of the important technologies in the edge 

computing paradigm is task offloading, which determines 

when and how a work should be offloaded to edge servers. 

Offloading some subtasks to edge servers can potentially 

enable parallel execution at both edge servers and end 

devices in the case of a complex calculation task. The 

reliance of the sub tasks, however, might have a 

significant impact on this parallelism. Two subtasks, for 

example, can be conducted in parallel if they are 

independent of one another. If the output of one subtask is 

dependent on the output of another subtask, the two tasks 

must be completed in the order listed. Although end-

device energy consumption can be lowered, the overall 

delay may not be reduced since offloaded subtasks have a 

round-trip communication time between end-devices and 

edge servers.  

2 Related Works 

There have been some ground-breaking works on task 

offloading for edge computing. For example, Yang et al. 

[14] introduced the Potential Game based Offloading 

Algorithm (PGOA) to execute distributed compute 

offloading based on game theory, and Chen et al. [15] 

offered Software Defined Task Offloading (SDTO) to 

reduce offloading time while preserving device battery 

life. However, because most of them neglect the subtle 

relationships among the tasks, these efforts may 

underutilize the edge resources and add unnecessary delay 

to job executions. There are some existing efforts that take 

task dependencies into account. Task dependencies are 

modelled as a serial task graph by Ning et al. [17], who 

offer a heuristic technique to manage resource rivalry 

among numerous users. Task dependencies are modelled 

as a tree-structured task graph by Kao et al. [13], who 

present a lightweight offloading technique that guarantees 

performance. These studies are limited to certain job 

contexts and cannot enable edge computing task 

offloading in general. In this research, we consider the 

tasks as directed acyclic graphs (DAGs), which are more 

general in describing multiple task topologies than the 

previous efforts. DAG has been shown in several 

experiments to be capable of supporting a wide range of 

computational operations [18]. 

 
Figure 1- DAG of Navigator 

 

Table-1.  Comparison of Delay 

 Transmission Execution Overall 

Uploading 

Map 
3 ms 6 ms 7 ms 

Uploading 

Traffic 
3 ms 6.67 ms 7.67 ms 

Uploading 

application 
5 ms 6 ms 11 ms 

 

We present a joint optimization model for minimising task 

latency and energy consumption based on DAG- tasks, 

and then a heuristic approach that incorporates both 

subtask dependencies and priorities. The task dependency 

is ensured, as well as the the efficiency of execution 

between edge servers and end devices has been increased. 
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We show that task execution efficiency is vastly increased 

when compared to previous work using simulated 

experiments. The following are the key contributions: 

• We examine task offloading with general subtask 

dependencies and formalise the task dependencies as 

directed acyclic networks (DAGs). 

• To jointly optimise latency and energy usage, we 

develop a DAG-task offloading model and a heuristic 

algorithm that takes into account both subtask 

dependencies and priority. Task dependability is ensured, 

and execution efficiency is raised. 

• To test the suggested algorithm's performance, we run 

simulation tests. The results reveal that the suggested 

technique significantly reduces execution delay and 

improves energy efficiency when compared to previous 

efforts. 

 

A. Scenario of offloading 

Situations for MEC offloading fall into one of three 

categories: (1) single-server with a single user, (2) single-

server with multiple users, and (3) multi-server with 

numerous users. In the first scenario, Mao et al. [19] 

investigate the one-server MEC system with a single 

energy collecting device. The authors offer an online 

method with low complexity that is based on Lyapunov 

optimization. In the second case, Chen et al. [20] look at 

the multi-user compute offloading issue in a single-server 

MEC system. They first demonstrate the NP-hardness of 

the optimization issue before introducing a distributed 

offloading approach based on game theory that can reach 

Nash equilibrium within a limited number of iterations. In 

addition to the edge server, Guo et al. [21] provide two 

methods for cloud-MEC compute offloading via hybrid 

fiber-wireless networks. For the final and most 

complicated case, Kao et al. [13] look into multi-user 

compute offloading in multi-server networks. They 

introduce Hermes, a dynamic programming-based 

method, before demonstrating its time complexity and 

performance guarantee. With the exception of [13], none 

of the efforts mentioned above addressed edge server 

coordination, which might yield considerable advantages 

if properly utilized. This article discusses the multi-server 

and multi-user MEC scenario and takes edge server 

collaboration into account. 

 

3 Methodology 

Atomic task models and divisible task models are the two 

main genres of task model literature currently available. 

The atomic task model views tasks as indivisible units, 

which necessitates the completion of a user's job in its 

entirety, either locally or on edge servers. adopt a task 

model like this and [19], [22], and [23]. The serial task 

graph, in which subtasks must be completed one at a time, 

is the subject of the majority of current research on the 

divisible task model. There are two studies [17] and [24] 

that employ the serial task model. In [13] and [25], the 

tree-structured task offloading is investigated. The 

proposed heuristic solution in [13] focuses on a tree-

structured task network and makes use of dynamic 

programming to optimize execution delay while 

remaining within the energy budget. [25] suggests 

Clonecloud, a technology that automatically offloads apps 

to the cloud. In order to establish the most effective 

method of offloading, our system first constructs a profile 

tree for each task. When it comes to the generic task 

dependence model, there is substantially less information 

accessible. The tasks are presented in [26] as a broad 

dependency network, although they are only brute-force 

solved using the ILP solver. We approach the assignments 

as a series of challenges rather than as prior endeavors. 

DAGs are a particular kind of diagram that can be used to 

represent a variety of operations. Numerous new research 

papers have been published as a result of the interest that 

Mobile Edge Computing (MEC) has aroused in both 

academia and industry. In our evaluation of the literature, 

we highlight three crucial ideas: the offloading 

circumstance, the task model, and the offloading 

approach. 

 

C. Techniques for offloading 

As was previously mentioned, task dependency has 

already been considered in a number of works. Due to task 

dependency's complexity, offloading solutions must 

consider how to handle it. [13] explores the recursive 

characteristics of a task graph that is tree-structured and 

uses dynamic programming to determine the most 

effective offloading strategy. Their heuristic approach 

may take a long time if the task graph is large, which is a 

pain in their side. Application offloading is the focus of 

Shu et al[27] .'s analysis of general subtask reliance. They 

create an adaptive distributed offloading strategy based on 

game theory that, after a limited number of iterations, 

reaches Nash equilibrium. However, this algorithm could 

only produce limited findings because of a lack of or even 

outdated global information. Additionally, this study 

ignores energy usage, a significant obstacle for edge 

devices. In contrast to other efforts, we describe in this 

research a centralized method based on subtask priorities. 

This technique minimizes execution latency and energy 

use. 

We introduce the specifics of the system model in this 

part. A code profiler, system profiler, and decision module 

make up the IoT system [28]. Determining which portion 

of the code could be offloaded is the task of the code 

profiler (depending on application type and code 

partitioned [29]). The system profiler keeps track of 

variables including wireless bandwidth, upload data size, 

and the amount of energy used to execute or transmit each 

subtask. The decision module then decides whether or not 

to offload the subtasks. Our work primarily focuses on the 
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decision module's design. Our decision module's major 

goal is to reduce application execution time while still 

ensuring that IoT device energy consumption is met. To 

be more specific, the choice to offload the work (context) 

to the edge servers is made to determine whether doing so 

will benefit IoT devices in terms of energy consumption 

and execution latency (Note that there is some non-

offloadable code part that cannot be offloaded, e.g., user 

input, camera, or acquire position that needs to be 

executed at the IoT device). We take into account a 

collection of N= [1, 2,..i,..N] IoT devices, where each user 

has an application-level task that needs to be finished with 

the aid of the edge servers. There will be a variety of edge 

servers in the multi-access edge network or ultra-dense 

IoT network, described by S= [1, 2,..k,..S]. Even though 

there are multiple edge servers available, only one of them 

can be chosen by an IoT device during task execution 

because they only have one radio. Therefore, any IoT 

device I has a maximum of two offloading options to 

complete its subtasks: local computation or offloading to 

an edge server. A set of Vi= [1, 2,..j,..Vi], I N is used to 

represent the interdependent subtasks that make up the 

computation-intensive application. As shown in Fig. 1, 

where V is the set of subtasks, we use a directed acyclic 

task graph G = (V,E) to express the dependency 

relationships between these tasks. We presume that each 

subtask will be completed in an atomic manner without 

interruption. E is the collection of directed edges that 

represent the interdependence of the subtasks. For 

instance, a directed edge(m, n) suggests that task n 

depends on task m's outcome. The predicted local 

execution time is indicated on each node's label, and the 

weight of each edge indicates how much. 

 
Figure 2- Example of DAG Task Scheduling 

 

In this part, we outline an effective task offloading 

strategy based on the Eq. optimization issue (11). The 

EFO (Earliest-Finish time Offloading) technique, which 

depends on both the compute burden of the subtask and 

the dependencies between subtasks in DAGs, is the first 

thing we put forth for the single-user MEC system with 

only one edge server. With the intention of coordinating 

the competition of communication and computation 

among numerous users, we further extend the 

aforementioned EFO method to the multi-user MEC 

systems with heterogeneous servers. Additionally, we 

discuss a distributed computation offloading technique to 

carry out offloading judgments in a lightweight manner in 

order to increase the effectiveness of offloading decisions. 

The EFO Algorithm, first Scheduling subtasks to meet the 

task dependency criterion while minimizing latency is 

crucial for single-user MEC systems with a single server. 

There are two key issues that need to be fixed: 1) Sorting 

subtasks according to priorities In our work, each 

application is made up of a number of smaller jobs that are 

frequently characterized by DAGs. It's important to know 

how to prioritize the subtasks. Where there exist task 

dependency linkages, we cannot reverse the execution 

order. Additionally, altering the sequence in which 

parallel subtasks execute can have an effect on the overall 

latency. For instance, if the subtask Map is executed 

before the subtask Traffic, the computation time for the 

navigator will increase to 7.67ms (Note that we still keep 

the capability proportion of edge server and local CPU). 

2) Processor selection issue: After determining the 

priority of each subtask, we must schedule each chosen 

task on its "best" processor in order to minimize the 

overall delay (local CPU or the edge server). As seen in 

Fig. 1(c), if we choose the subtask Traffic as the first one 

but improperly upload it to the edge server, the subtask 

Map will be executed locally. As a result, navigator's 

computation time will likewise rise to 7.67 ms. 

As was previously mentioned, an IoT application is 

represented by a directed acyclic graph, G= (V,E). 

Assume that Data is a matrix of communication data, and 

that data a (j',j) represents the volume of information that 

needs to be sent from subtask j' to subtask j. Additionally, 

the edge (j',jcommunication )'s cost is determined 

by:𝑐𝑗′,𝑗 = {
0  if 𝑎𝑖,𝑗 = 𝑎𝑖,𝑗′

 data 𝑗′,𝑗/𝑟𝑖,𝑘 (a)  otherwise 
 

when both subtask 𝑗 and 𝑗′ are scheduled on the same 

processor, 𝑐𝑗,𝑗′ becomes zero since we assume that the 

intraprocessor communication cost is negligible. The 

average communication cost of edge (𝑗, 𝑗′) is defined by 

𝑐𝑗,𝑗′̅̅ ̅̅ ̅ =  data 𝑗′,𝑗/(2𝑟𝑖,𝑘(𝐚)) 

In this part, we outline an effective task offloading 

strategy based on the Eq. optimization issue (11). The 

EFO (Earliest-Finish time Offloading) technique, which 

depends on both the compute burden of the subtask and 

the dependencies between subtasks in DAGs, is the first 

thing we put forth for the single-user MEC system with 

only one edge server. With the intention of coordinating 

the competition of communication and computation 

among numerous users, we further extend the 

aforementioned EFO method to the multi-user MEC 

systems with heterogeneous servers. Additionally, we 

discuss a distributed computation offloading technique to 

carry out offloading judgments in a lightweight manner in 

order to increase the effectiveness of offloading decisions. 

The EFO Algorithm, first Scheduling subtasks to meet the 

task dependency criterion while minimizing latency is 
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crucial for single-user MEC systems with a single server. 

There are two key issues that need to be fixed: 1) Sorting 

subtasks according to priorities In our work, each 

application is made up of a number of smaller jobs that are 

frequently characterized by DAGs. It's important to know 

how to prioritize the subtasks. Where there exist task 

dependency linkages, we cannot reverse the execution 

order. Additionally, altering the sequence in which 

parallel subtasks execute can have an effect on the overall 

latency. For instance, if the subtask Map is executed 

before the subtask Traffic, the computation time for the 

navigator will increase to 7.67ms (Note that we still keep 

the capability proportion of edge server and local CPU). 

Processor selection issue: After determining the priority 

of each subtask, we must schedule each chosen task on its 

"best" processor in order to minimize the overall delay 

(local CPU or the edge server). As seen in Fig, if we 

choose the subtask Traffic as the first one but improperly 

upload it to the edge server, the subtask Map will be 

executed locally. As a result, navigator's computation time 

will likewise rise to 7.67 ms. As was previously 

mentioned, an IoT application is represented by a directed 

acyclic graph, G = (V,E). Dataj ,j is the quantity of data 

needed to be communicated from subtask j_ to subtask j, 

therefore let Data be a matrix of communication data. 

As a result, we expand the EFO algorithm to the multi-

user case with several servers in this subsection. Since 

various users do not have access to one another's 

offloading techniques, they have limited knowledge of the 

wireless channel conditions and the computation load on 

the edge servers when they offload their computing duties. 

The information about the strategy comprises the servers 

they select, the number of subtasks they upload, and the 

task scheduling in edge servers. Although it hasn't been 

fully edited, this article has been accepted for publication 

in a subsequent edition of this magazine. Before the final 

publishing, the content may change. The scattered IoT 

devices can be logically controlled from a central location 

using the SDWN (Software Defined Wireless Network) 

[31]. Each IoT device uses the SDWN technology to 

initially upload its task-related DAGs and local processing 

capabilities to the controller. The SDWN controller will 

then choose which server (different server) and what time 

(task scheduling) these subtasks, which belong to various 

users, should be executed on.  

The centralized EFO algorithm starts by listing all the 

possible optional offloading options. Let ai represent the 

only offloading option that is available to all users. We 

use the EFO algorithm to determine the overall 

computation time of each offloading scheme by treating 

the task graphs of the users who offload to the same server 

as an integrated DAG by the union of the graph. Now that 

we are aware of the delay for each unique offloading 

strategy. In the end, the offloading approach that has the 

least latency is chosen. Theorem 2 states that as the 

number of servers and users grows, so will the algorithm 

2's convergence time. Then, in order to increase the 

effectiveness of the offloading decisions, we will talk 

about and construct a distributed computing offloading 

algorithm. It may be difficult to execute the centralized 

computational offloading technique in extremely dense 

IoT and edge networks since it would result in significant 

overhead as users and servers increased. Even worse, if 

the controller experiences a hardware breakdown, it can 

result in system failures. Additionally, it is challenging to 

develop the same standard for a variety of products 

because different IoT devices are typically held by 

different suppliers. We are motivated by these elements to 

create a distributed computation offloading technique. 

Using dispersed approaches, each IoT device can decide 

locally depending on the data it gathers (e.g., the channel 

conditions broadcasted by the edge servers). In our work, 

we apply a game-theoretic strategy to manage rivalry 

between numerous users. A potent tool for creating 

distributed systems with little complexity is game theory. 

A rational user responds to other players' actions in the 

preceding phases at each step of a multi-user, multi-server 

offloading method based on game theory and makes a 

locally optimal choice. All users have the ability to self-

organize into the Nash equilibrium after a finite number 

of steps. In such a situation, no user can unilaterally alter 

its strategy to further reduce its delay. With the exception 

of user I let ai represent the computation offloading 

choices made by all other users. In light of the tactics used 

by other users, user I would like to make a locally 

optimum offloading decision for each of its subtasks, 

hence reducing its overall delay: The system finally 

reaches Nash equilibrium after a finite number of 

iterations, and we may then obtain offloading solutions for 

all IoT devices. We use an example from Fig. 2 to try to 

demonstrate our DEFO technique. In the network, there 

are two edge servers and three IoT devices. Every device 

calls the EFO algorithm during the first iteration to 

compute AFT in accordance with a different target server 

for offloading.It should be noted that every device at this 

point expects that the wireless channel is free of 

interference and that there aren't any other subtasks 

running on the edge server. The controller will then decide 

that user 3 should offload their subtask to server 1 because 

it results in the greatest delay reduction relative to the 

local execution time (line 10). User3 applies the EFO 

method in lines 14–16 and transfers tasks 2 and 4 to 

server1. The IoT devices will then be broadcasted by 

server server1 with the scheduling results and its wireless 

channel rates ri,k(a), enabling the users to make additional 

decisions in the subsequent iteration. 

 

4 Results 

In this section, we assess the offloading algorithm's 

performance that was suggested in Section IV. Several 
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mobile end devices are randomly positioned in our 

simulation scenario's area that is covered by extremely 

dense edge networks, with the edge servers connected to 

one another over high-speed fiber networks. The edge 

servers' computing and communication skills are diverse. 

A single DAG-task is randomly allocated to each device. 

The computational and communication burden of each 

DAG task is distributed at random. The end-to-end 

performance of task offloading is significantly influenced 

by both the number of servers and the number of end 

devices. We concentrate on the impact of the quantity of 

servers and end devices as a result. Performance of the 

offloading algorithm as a function of the number of 

servers The first thing is how many servers there are. 

 
Figure. 3- Average Delay for Different Network Scales 

 
Figure. 4- Average Delay for Different User Scales 

 
Figure 5- Offloading Users for Different User Scales 

 
Figure 6- The convergence of DEFO algorithm 

 

 We fix things. Increase the number of devices to 100 and 

the number of edge servers from 1 to 50 in order to 

monitor mobile device latency and energy usage. As seen 

in Figure 3. The average latency of mobile devices 

decreases as the number of edge servers rises. Subtasks 

can be more parallelized because more servers give 

mobile users more offloading possibilities. Additionally, 

our method is contrasted with two already-in-use 

offloading schemes: the single-server DAG-task 

offloading algorithm and the PGOA presented in . The 

DEFO is unable to take advantage of DAG parallelism 

because it views the tasks performed by mobile users as 

being inseparable. The DEFO is a modification to our 

offloading technique that prevents it from using edge-

server networks by requiring all subtasks on a single 

device to be offloaded to the same edge server (if they 

choose to be offloaded). Additionally, we found that as the 

number of servers increases, the latency difference 

between DEFO and our offloading technique widens, 

suggesting that our offloading algorithm is better able to 

take advantage of parallel processing. Fig. Figure 4 

displays the algorithms' energy use. Because this method 

offloads an entire operation to the server for execution, 

which decreases local processing but results in greater 

latency, it should be noted that we are not comparing 

PGOA's energy consumption. Combining Figures 1 and 2 

Figures 2 and 3 Figures 1 and 2. We can see that our 

algorithm responds more quickly while using less energy. 

Performance of the offloading method on different mobile 

platforms. Next, it is looked into how many mobile 

devices there are. The results are shown in Figures 4 and 

5. The number of mobile devices is increased from one to 

one hundred, but the number of edge servers remains 

constant at 20. We uniformized the DAG-task for every 

device in order to isolate the impact of the number of 

devices. As seen in Figure 4, Our offloading approach 

offers the lowest latency performance among the three 

methods. It's important to note that the PGOA and DEFO 

average latency do not change when there are fewer than 

20 devices. There is no resource contention among them 

because there are more servers than devices, which is the 
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cause of this. These two techniques can only partially 

utilize several servers because a device can only offload 

to one server.Contrarily, our approach lacks this 

restriction, enabling it to efficiently utilize edge resources. 

It is important to note that the latency difference between 

PGOA and DEFO expands as the number of devices 

increases. This conclusion explains the benefits of work 

splitting. As the number of devices increases, there are 

greater advantages since more devices increase 

parallelism. Fig. Figure 5 displays the energy utilization 

of several algorithms. Similar to the earlier finding, our 

method uses less energy while providing superior latency 

performance.  

  

5. Conclusions 

In this paper, we study task offloading in ultra-dense edge 

networks. We first develop the DAG-task offloading 

problem, which optimizes task delay and energy 

consumption, and then employ directed acyclic graphs 

(DAGs) to describe the general task dependency of mobile 

apps. In view of the problem's complexity, we then 

propose a heuristic priority-based DAG-task offloading 

approach. The method effectively offloads jobs while 

preserving task dependency structures. The evaluation 

results show that our approach can decrease latency and 

energy consumption in extremely dense edge networks. 

Our performance gain in this job is primarily due toend-

to-end parallelism between end devices and edge servers 

is maximised. In the future, we'll concentrate on assessing 

the degree of parallelism among subtasks, confirming the 

performance of our algorithm under various levels of 

parallelism, and explicitly implementing parallelism into 

our offloading method. 
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