

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 234–242 | 234

Comprehensive Review and Analysis on Mobile Cloud Computing and

Users Offloading using Improved Optimization Approach for Edge

Computing

1Chiti Nigam, 2Dr. Gajanand Sharma, 3Dr. Ekta Menghani

Submitted: 06/06/2022 Accepted: 10/09/2022

Abstract-This paper gives a depth overview about the technology mobile computing. It has been discussed here how these days cloud

computing has reached into mobile and has helped us to reduce the battery and storage related issues in mobiles. Apart from smart phones

mobile computing has affected other areas such as homes, offices, supermarts etc. Mobile cloud computing is fast and flexible. As a result,

mobile cloud computing makes it easy for developers to create and share mobile app resources with end-users. Therefore, mobile

applications can be built and updated faster .Mobile cloud computing shares resources. Mobile apps that run off the cloud aren’t constrained

by any mobile device’s processing and storage limitations. All data-intensive processes can run from the cloud. This advantage means that

any mobile device with access to a network can use mobile cloud apps, regardless of the operating system. Thus, users can enjoy cloud

computing with Android or OS device. Sometimes fault tolerance is an issue relating to mobile cloud computing so to provide the high

services without any noise interconnected high speed networks are provided . Mobile Cloud Computing (MCC) is an emerging technology

that helps us in removing the shortcomings associated with the mobile computing. There is no need to download all the software that are

required by the user as MCC makes it readily available. With the help of distributed data storage methods and parallel processing the

process is enhanced giving a great experience to the user. In this both the data storage and processing happens outside the device. In this

era mobile computing has become a trend in IT.[Kori,et.al,2019]. The users can obtain the maximum benefit of mobile technology when

it is combined with the cloud technology. Mobile cloud computing also provides access to the people who are residing in the rural areas

the various mobile services such as navigation, entertainment, commerce, storage and so on. Mobile cloud computing uses integrated

data. Mobile cloud computing lets users securely and quickly collect and integrate information from many sources, no matter where the

data is. The architecture of mobile computer with its benefits is presented in this paper.

Keywords: Mobile Computing, Security, Architecture, Distributed data, Parallel processing, Peer Processing.

1 Introduction

These days’ mobile devices have become an integral part

of everyones life. We cannot imagine our life without

mobile phones. With the high usage of mobile phones

mobile computing is the new emerging field these days.

As every application is now available in mobile phones

whether it is internet banking or whether it is games or

image processing, it calls for high storage demands. Here

comes the role of mobile cloud computing.

We all have noticed that when many applications are

installed on our mobile phones sometimes our phone

becomes very slow. This occurs due to1 limited hardware

and software issues. We cannot change the hardware as it

has been designed in a certain way but definitely, we can

change the software of our mobiles and enhance it.

1,2,3 Computer Science
JECRC, Jaipur
1chiti.johri08@gmail.com
2Gajanand.sharma@jecrcu.edu.in
3ekta.menghani@jecrcu.edu.in

1.1 Mobile Computing

Mobile computing combines the storage and processing

issues with each other. It basically eliminates the need of

physical wires or cables and makes use of wireless

technology. It transfers data and information by the

means of wireless devices like mobiles and laptops.

There are various types of mobile computing:

• Fixed with physical cable

• Fixed without physical cable

• Fixed and mobile

• Fixed and wireless

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 234–242 | 235

Fixed and physical cable: In this configuration, the

connection is made with the help of physical links that are

at a fixed position.

Fixed without physical cable: In this configuration, the

wireless links are used for connecting the devices.

Mobile and Wired: In this, some devices are wired, and

some are mobile. They altogether make communication

with other devices.

Mobile and Wireless: In this setup, the gadgets can speak

with one another regardless of their situation. They can

likewise interface with any organization without the

utilization of any wired gadget. Massive IoT (Internet-of-

Things) applications, such as face recognition, self-

driving, smart healthcare, and virtual reality (VR), have

emerged in recent years as microelectronic technology

and embedded computing have advanced [1], [2]. Many

of these applications need a large amount of compute

power and rigorous latency assurances, resulting in high

energy consumption on end devices. Unfortunately, most

IoT devices have limited computation and battery

capacity, making such complicated applications difficult

to support. Rather than developing lightweight

algorithms, Mobile Edge Computing (MEC) [5] [6] is a

potential direction. Unlike typical cloud computing, MEC

servers are located closer to mobile consumers, resulting

in a significant reduction in communication delay [7].

Ultra-dense edge networks are a promising area that has

drawn a lot of research attention in order to fully leverage

this advantage [8] [9]. Mobile users (IoT devices) will

benefit from the edge servers' widespread and smooth

computation and communication support if a significant

number of connected edge servers are deployed for the

target mobile network [10]–[12]. Edge servers in ultra-

dense edge networks can communicate with each other

over high-speed connections.On a mobile device, tasks

from one application might be offloaded to several edge

servers [13]. As a result, IoT users' computation-intensive

and latency-critical applications can be supported

effectively. One of the important technologies in the edge

computing paradigm is task offloading, which determines

when and how a work should be offloaded to edge servers.

Offloading some subtasks to edge servers can potentially

enable parallel execution at both edge servers and end

devices in the case of a complex calculation task. The

reliance of the sub tasks, however, might have a

significant impact on this parallelism. Two subtasks, for

example, can be conducted in parallel if they are

independent of one another. If the output of one subtask is

dependent on the output of another subtask, the two tasks

must be completed in the order listed. Although end-

device energy consumption can be lowered, the overall

delay may not be reduced since offloaded subtasks have a

round-trip communication time between end-devices and

edge servers.

2 Related Works

There have been some ground-breaking works on task

offloading for edge computing. For example, Yang et al.

[14] introduced the Potential Game based Offloading

Algorithm (PGOA) to execute distributed compute

offloading based on game theory, and Chen et al. [15]

offered Software Defined Task Offloading (SDTO) to

reduce offloading time while preserving device battery

life. However, because most of them neglect the subtle

relationships among the tasks, these efforts may

underutilize the edge resources and add unnecessary delay

to job executions. There are some existing efforts that take

task dependencies into account. Task dependencies are

modelled as a serial task graph by Ning et al. [17], who

offer a heuristic technique to manage resource rivalry

among numerous users. Task dependencies are modelled

as a tree-structured task graph by Kao et al. [13], who

present a lightweight offloading technique that guarantees

performance. These studies are limited to certain job

contexts and cannot enable edge computing task

offloading in general. In this research, we consider the

tasks as directed acyclic graphs (DAGs), which are more

general in describing multiple task topologies than the

previous efforts. DAG has been shown in several

experiments to be capable of supporting a wide range of

computational operations [18].

Figure 1- DAG of Navigator

Table-1. Comparison of Delay

 Transmission Execution Overall

Uploading

Map
3 ms 6 ms 7 ms

Uploading

Traffic
3 ms 6.67 ms 7.67 ms

Uploading

application
5 ms 6 ms 11 ms

We present a joint optimization model for minimising task

latency and energy consumption based on DAG- tasks,

and then a heuristic approach that incorporates both

subtask dependencies and priorities. The task dependency

is ensured, as well as the the efficiency of execution

between edge servers and end devices has been increased.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 234–242 | 236

We show that task execution efficiency is vastly increased

when compared to previous work using simulated

experiments. The following are the key contributions:

• We examine task offloading with general subtask

dependencies and formalise the task dependencies as

directed acyclic networks (DAGs).

• To jointly optimise latency and energy usage, we

develop a DAG-task offloading model and a heuristic

algorithm that takes into account both subtask

dependencies and priority. Task dependability is ensured,

and execution efficiency is raised.

• To test the suggested algorithm's performance, we run

simulation tests. The results reveal that the suggested

technique significantly reduces execution delay and

improves energy efficiency when compared to previous

efforts.

A. Scenario of offloading

Situations for MEC offloading fall into one of three

categories: (1) single-server with a single user, (2) single-

server with multiple users, and (3) multi-server with

numerous users. In the first scenario, Mao et al. [19]

investigate the one-server MEC system with a single

energy collecting device. The authors offer an online

method with low complexity that is based on Lyapunov

optimization. In the second case, Chen et al. [20] look at

the multi-user compute offloading issue in a single-server

MEC system. They first demonstrate the NP-hardness of

the optimization issue before introducing a distributed

offloading approach based on game theory that can reach

Nash equilibrium within a limited number of iterations. In

addition to the edge server, Guo et al. [21] provide two

methods for cloud-MEC compute offloading via hybrid

fiber-wireless networks. For the final and most

complicated case, Kao et al. [13] look into multi-user

compute offloading in multi-server networks. They

introduce Hermes, a dynamic programming-based

method, before demonstrating its time complexity and

performance guarantee. With the exception of [13], none

of the efforts mentioned above addressed edge server

coordination, which might yield considerable advantages

if properly utilized. This article discusses the multi-server

and multi-user MEC scenario and takes edge server

collaboration into account.

3 Methodology

Atomic task models and divisible task models are the two

main genres of task model literature currently available.

The atomic task model views tasks as indivisible units,

which necessitates the completion of a user's job in its

entirety, either locally or on edge servers. adopt a task

model like this and [19], [22], and [23]. The serial task

graph, in which subtasks must be completed one at a time,

is the subject of the majority of current research on the

divisible task model. There are two studies [17] and [24]

that employ the serial task model. In [13] and [25], the

tree-structured task offloading is investigated. The

proposed heuristic solution in [13] focuses on a tree-

structured task network and makes use of dynamic

programming to optimize execution delay while

remaining within the energy budget. [25] suggests

Clonecloud, a technology that automatically offloads apps

to the cloud. In order to establish the most effective

method of offloading, our system first constructs a profile

tree for each task. When it comes to the generic task

dependence model, there is substantially less information

accessible. The tasks are presented in [26] as a broad

dependency network, although they are only brute-force

solved using the ILP solver. We approach the assignments

as a series of challenges rather than as prior endeavors.

DAGs are a particular kind of diagram that can be used to

represent a variety of operations. Numerous new research

papers have been published as a result of the interest that

Mobile Edge Computing (MEC) has aroused in both

academia and industry. In our evaluation of the literature,

we highlight three crucial ideas: the offloading

circumstance, the task model, and the offloading

approach.

C. Techniques for offloading

As was previously mentioned, task dependency has

already been considered in a number of works. Due to task

dependency's complexity, offloading solutions must

consider how to handle it. [13] explores the recursive

characteristics of a task graph that is tree-structured and

uses dynamic programming to determine the most

effective offloading strategy. Their heuristic approach

may take a long time if the task graph is large, which is a

pain in their side. Application offloading is the focus of

Shu et al[27] .'s analysis of general subtask reliance. They

create an adaptive distributed offloading strategy based on

game theory that, after a limited number of iterations,

reaches Nash equilibrium. However, this algorithm could

only produce limited findings because of a lack of or even

outdated global information. Additionally, this study

ignores energy usage, a significant obstacle for edge

devices. In contrast to other efforts, we describe in this

research a centralized method based on subtask priorities.

This technique minimizes execution latency and energy

use.

We introduce the specifics of the system model in this

part. A code profiler, system profiler, and decision module

make up the IoT system [28]. Determining which portion

of the code could be offloaded is the task of the code

profiler (depending on application type and code

partitioned [29]). The system profiler keeps track of

variables including wireless bandwidth, upload data size,

and the amount of energy used to execute or transmit each

subtask. The decision module then decides whether or not

to offload the subtasks. Our work primarily focuses on the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 234–242 | 237

decision module's design. Our decision module's major

goal is to reduce application execution time while still

ensuring that IoT device energy consumption is met. To

be more specific, the choice to offload the work (context)

to the edge servers is made to determine whether doing so

will benefit IoT devices in terms of energy consumption

and execution latency (Note that there is some non-

offloadable code part that cannot be offloaded, e.g., user

input, camera, or acquire position that needs to be

executed at the IoT device). We take into account a

collection of N= [1, 2,..i,..N] IoT devices, where each user

has an application-level task that needs to be finished with

the aid of the edge servers. There will be a variety of edge

servers in the multi-access edge network or ultra-dense

IoT network, described by S= [1, 2,..k,..S]. Even though

there are multiple edge servers available, only one of them

can be chosen by an IoT device during task execution

because they only have one radio. Therefore, any IoT

device I has a maximum of two offloading options to

complete its subtasks: local computation or offloading to

an edge server. A set of Vi= [1, 2,..j,..Vi], I N is used to

represent the interdependent subtasks that make up the

computation-intensive application. As shown in Fig. 1,

where V is the set of subtasks, we use a directed acyclic

task graph G = (V,E) to express the dependency

relationships between these tasks. We presume that each

subtask will be completed in an atomic manner without

interruption. E is the collection of directed edges that

represent the interdependence of the subtasks. For

instance, a directed edge(m, n) suggests that task n

depends on task m's outcome. The predicted local

execution time is indicated on each node's label, and the

weight of each edge indicates how much.

Figure 2- Example of DAG Task Scheduling

In this part, we outline an effective task offloading

strategy based on the Eq. optimization issue (11). The

EFO (Earliest-Finish time Offloading) technique, which

depends on both the compute burden of the subtask and

the dependencies between subtasks in DAGs, is the first

thing we put forth for the single-user MEC system with

only one edge server. With the intention of coordinating

the competition of communication and computation

among numerous users, we further extend the

aforementioned EFO method to the multi-user MEC

systems with heterogeneous servers. Additionally, we

discuss a distributed computation offloading technique to

carry out offloading judgments in a lightweight manner in

order to increase the effectiveness of offloading decisions.

The EFO Algorithm, first Scheduling subtasks to meet the

task dependency criterion while minimizing latency is

crucial for single-user MEC systems with a single server.

There are two key issues that need to be fixed: 1) Sorting

subtasks according to priorities In our work, each

application is made up of a number of smaller jobs that are

frequently characterized by DAGs. It's important to know

how to prioritize the subtasks. Where there exist task

dependency linkages, we cannot reverse the execution

order. Additionally, altering the sequence in which

parallel subtasks execute can have an effect on the overall

latency. For instance, if the subtask Map is executed

before the subtask Traffic, the computation time for the

navigator will increase to 7.67ms (Note that we still keep

the capability proportion of edge server and local CPU).

2) Processor selection issue: After determining the

priority of each subtask, we must schedule each chosen

task on its "best" processor in order to minimize the

overall delay (local CPU or the edge server). As seen in

Fig. 1(c), if we choose the subtask Traffic as the first one

but improperly upload it to the edge server, the subtask

Map will be executed locally. As a result, navigator's

computation time will likewise rise to 7.67 ms.

As was previously mentioned, an IoT application is

represented by a directed acyclic graph, G= (V,E).

Assume that Data is a matrix of communication data, and

that data a (j',j) represents the volume of information that

needs to be sent from subtask j' to subtask j. Additionally,

the edge (j',jcommunication)'s cost is determined

by:𝑐𝑗′,𝑗 = {
0 if 𝑎𝑖,𝑗 = 𝑎𝑖,𝑗′

 data 𝑗′,𝑗/𝑟𝑖,𝑘 (a) otherwise

when both subtask 𝑗 and 𝑗′ are scheduled on the same

processor, 𝑐𝑗,𝑗′ becomes zero since we assume that the

intraprocessor communication cost is negligible. The

average communication cost of edge (𝑗, 𝑗′) is defined by

𝑐𝑗,𝑗′̅̅ ̅̅ ̅ = data 𝑗′,𝑗/(2𝑟𝑖,𝑘(𝐚))

In this part, we outline an effective task offloading

strategy based on the Eq. optimization issue (11). The

EFO (Earliest-Finish time Offloading) technique, which

depends on both the compute burden of the subtask and

the dependencies between subtasks in DAGs, is the first

thing we put forth for the single-user MEC system with

only one edge server. With the intention of coordinating

the competition of communication and computation

among numerous users, we further extend the

aforementioned EFO method to the multi-user MEC

systems with heterogeneous servers. Additionally, we

discuss a distributed computation offloading technique to

carry out offloading judgments in a lightweight manner in

order to increase the effectiveness of offloading decisions.

The EFO Algorithm, first Scheduling subtasks to meet the

task dependency criterion while minimizing latency is

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 234–242 | 238

crucial for single-user MEC systems with a single server.

There are two key issues that need to be fixed: 1) Sorting

subtasks according to priorities In our work, each

application is made up of a number of smaller jobs that are

frequently characterized by DAGs. It's important to know

how to prioritize the subtasks. Where there exist task

dependency linkages, we cannot reverse the execution

order. Additionally, altering the sequence in which

parallel subtasks execute can have an effect on the overall

latency. For instance, if the subtask Map is executed

before the subtask Traffic, the computation time for the

navigator will increase to 7.67ms (Note that we still keep

the capability proportion of edge server and local CPU).

Processor selection issue: After determining the priority

of each subtask, we must schedule each chosen task on its

"best" processor in order to minimize the overall delay

(local CPU or the edge server). As seen in Fig, if we

choose the subtask Traffic as the first one but improperly

upload it to the edge server, the subtask Map will be

executed locally. As a result, navigator's computation time

will likewise rise to 7.67 ms. As was previously

mentioned, an IoT application is represented by a directed

acyclic graph, G = (V,E). Dataj ,j is the quantity of data

needed to be communicated from subtask j_ to subtask j,

therefore let Data be a matrix of communication data.

As a result, we expand the EFO algorithm to the multi-

user case with several servers in this subsection. Since

various users do not have access to one another's

offloading techniques, they have limited knowledge of the

wireless channel conditions and the computation load on

the edge servers when they offload their computing duties.

The information about the strategy comprises the servers

they select, the number of subtasks they upload, and the

task scheduling in edge servers. Although it hasn't been

fully edited, this article has been accepted for publication

in a subsequent edition of this magazine. Before the final

publishing, the content may change. The scattered IoT

devices can be logically controlled from a central location

using the SDWN (Software Defined Wireless Network)

[31]. Each IoT device uses the SDWN technology to

initially upload its task-related DAGs and local processing

capabilities to the controller. The SDWN controller will

then choose which server (different server) and what time

(task scheduling) these subtasks, which belong to various

users, should be executed on.

The centralized EFO algorithm starts by listing all the

possible optional offloading options. Let ai represent the

only offloading option that is available to all users. We

use the EFO algorithm to determine the overall

computation time of each offloading scheme by treating

the task graphs of the users who offload to the same server

as an integrated DAG by the union of the graph. Now that

we are aware of the delay for each unique offloading

strategy. In the end, the offloading approach that has the

least latency is chosen. Theorem 2 states that as the

number of servers and users grows, so will the algorithm

2's convergence time. Then, in order to increase the

effectiveness of the offloading decisions, we will talk

about and construct a distributed computing offloading

algorithm. It may be difficult to execute the centralized

computational offloading technique in extremely dense

IoT and edge networks since it would result in significant

overhead as users and servers increased. Even worse, if

the controller experiences a hardware breakdown, it can

result in system failures. Additionally, it is challenging to

develop the same standard for a variety of products

because different IoT devices are typically held by

different suppliers. We are motivated by these elements to

create a distributed computation offloading technique.

Using dispersed approaches, each IoT device can decide

locally depending on the data it gathers (e.g., the channel

conditions broadcasted by the edge servers). In our work,

we apply a game-theoretic strategy to manage rivalry

between numerous users. A potent tool for creating

distributed systems with little complexity is game theory.

A rational user responds to other players' actions in the

preceding phases at each step of a multi-user, multi-server

offloading method based on game theory and makes a

locally optimal choice. All users have the ability to self-

organize into the Nash equilibrium after a finite number

of steps. In such a situation, no user can unilaterally alter

its strategy to further reduce its delay. With the exception

of user I let ai represent the computation offloading

choices made by all other users. In light of the tactics used

by other users, user I would like to make a locally

optimum offloading decision for each of its subtasks,

hence reducing its overall delay: The system finally

reaches Nash equilibrium after a finite number of

iterations, and we may then obtain offloading solutions for

all IoT devices. We use an example from Fig. 2 to try to

demonstrate our DEFO technique. In the network, there

are two edge servers and three IoT devices. Every device

calls the EFO algorithm during the first iteration to

compute AFT in accordance with a different target server

for offloading.It should be noted that every device at this

point expects that the wireless channel is free of

interference and that there aren't any other subtasks

running on the edge server. The controller will then decide

that user 3 should offload their subtask to server 1 because

it results in the greatest delay reduction relative to the

local execution time (line 10). User3 applies the EFO

method in lines 14–16 and transfers tasks 2 and 4 to

server1. The IoT devices will then be broadcasted by

server server1 with the scheduling results and its wireless

channel rates ri,k(a), enabling the users to make additional

decisions in the subsequent iteration.

4 Results

In this section, we assess the offloading algorithm's

performance that was suggested in Section IV. Several

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 234–242 | 239

mobile end devices are randomly positioned in our

simulation scenario's area that is covered by extremely

dense edge networks, with the edge servers connected to

one another over high-speed fiber networks. The edge

servers' computing and communication skills are diverse.

A single DAG-task is randomly allocated to each device.

The computational and communication burden of each

DAG task is distributed at random. The end-to-end

performance of task offloading is significantly influenced

by both the number of servers and the number of end

devices. We concentrate on the impact of the quantity of

servers and end devices as a result. Performance of the

offloading algorithm as a function of the number of

servers The first thing is how many servers there are.

Figure. 3- Average Delay for Different Network Scales

Figure. 4- Average Delay for Different User Scales

Figure 5- Offloading Users for Different User Scales

Figure 6- The convergence of DEFO algorithm

 We fix things. Increase the number of devices to 100 and

the number of edge servers from 1 to 50 in order to

monitor mobile device latency and energy usage. As seen

in Figure 3. The average latency of mobile devices

decreases as the number of edge servers rises. Subtasks

can be more parallelized because more servers give

mobile users more offloading possibilities. Additionally,

our method is contrasted with two already-in-use

offloading schemes: the single-server DAG-task

offloading algorithm and the PGOA presented in . The

DEFO is unable to take advantage of DAG parallelism

because it views the tasks performed by mobile users as

being inseparable. The DEFO is a modification to our

offloading technique that prevents it from using edge-

server networks by requiring all subtasks on a single

device to be offloaded to the same edge server (if they

choose to be offloaded). Additionally, we found that as the

number of servers increases, the latency difference

between DEFO and our offloading technique widens,

suggesting that our offloading algorithm is better able to

take advantage of parallel processing. Fig. Figure 4

displays the algorithms' energy use. Because this method

offloads an entire operation to the server for execution,

which decreases local processing but results in greater

latency, it should be noted that we are not comparing

PGOA's energy consumption. Combining Figures 1 and 2

Figures 2 and 3 Figures 1 and 2. We can see that our

algorithm responds more quickly while using less energy.

Performance of the offloading method on different mobile

platforms. Next, it is looked into how many mobile

devices there are. The results are shown in Figures 4 and

5. The number of mobile devices is increased from one to

one hundred, but the number of edge servers remains

constant at 20. We uniformized the DAG-task for every

device in order to isolate the impact of the number of

devices. As seen in Figure 4, Our offloading approach

offers the lowest latency performance among the three

methods. It's important to note that the PGOA and DEFO

average latency do not change when there are fewer than

20 devices. There is no resource contention among them

because there are more servers than devices, which is the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 234–242 | 240

cause of this. These two techniques can only partially

utilize several servers because a device can only offload

to one server.Contrarily, our approach lacks this

restriction, enabling it to efficiently utilize edge resources.

It is important to note that the latency difference between

PGOA and DEFO expands as the number of devices

increases. This conclusion explains the benefits of work

splitting. As the number of devices increases, there are

greater advantages since more devices increase

parallelism. Fig. Figure 5 displays the energy utilization

of several algorithms. Similar to the earlier finding, our

method uses less energy while providing superior latency

performance.

5. Conclusions

In this paper, we study task offloading in ultra-dense edge

networks. We first develop the DAG-task offloading

problem, which optimizes task delay and energy

consumption, and then employ directed acyclic graphs

(DAGs) to describe the general task dependency of mobile

apps. In view of the problem's complexity, we then

propose a heuristic priority-based DAG-task offloading

approach. The method effectively offloads jobs while

preserving task dependency structures. The evaluation

results show that our approach can decrease latency and

energy consumption in extremely dense edge networks.

Our performance gain in this job is primarily due toend-

to-end parallelism between end devices and edge servers

is maximised. In the future, we'll concentrate on assessing

the degree of parallelism among subtasks, confirming the

performance of our algorithm under various levels of

parallelism, and explicitly implementing parallelism into

our offloading method.

REFERENCES

1. Badea, Gheorghe, Raluca-Andreea Felseghi, Mihai

Varlam, Constantin Filote, Mihai Culcer, Mariana

Iliescu, and Maria Simona Răboacă. "Design and

simulation of romanian solar energy charging station for

electric vehicles." Energies 12, no. 1, 2019.

2. Singh, Dushyant, and Baldev Singh. "Secure Chess-

Based Data Exchange and User Validation." Journal of

Cases on Information Technology (JCIT) 24.4 (2022): 1-

10.

3. Singh, Dushyant. "A Review on Deep Learning

Models." Integrated Emerging Methods of Artificial

Intelligence & Cloud Computing (2022): 223-229.

4. Rai, S. K. ., Rana, D. P. ., & Kashif, D. M. . (2022). Hotel

Personnel Retention In Uttar Pradesh: A Study of

HYATT Hotels. International Journal of New Practices

in Management and Engineering, 11(01), 47–52.

https://doi.org/10.17762/ijnpme.v11i01.173

5. Jadaun, A., Alaria, S.K. and Saini, Y. 2021.

Comparative Study and Design Light Weight Data

Security System for Secure Data Transmission in

Internet of Things. International Journal on Recent and

Innovation Trends in Computing and Communication. 9,

3 (Mar. 2021), 28–32.

DOI:https://doi.org/10.17762/ijritcc.v9i3.5476.

6. Ashish, Vijay Kumar, Satish Kumar Alaria, Vivesk

Sharma “Design Simulation and Assessment of

Prediction of Mortality in Intensive Care Unit Using

Intelligent Algorithms”, Mathematical Statistician and

Engineering Applications. 71, 2 (May 2022), 355–367.

DOI:https://doi.org/10.17762/msea.v71i2.9

7. Satish Kumar Alaria and Abha Jadaun, “Design and

Performance Assessment of Light Weight Data Security

System for Secure Data Transmission in IoT”, Journal of

Network Security, Vol.: 9, Issue: 1, (2021) PP: 29-41.

8. Khandelwal, Ravi, Manish Kumar Mukhija, and Satish

Kumar Alaria. "Numerical Simulation and Performance

Assessment of Improved Particle Swarm Optimization

Based Request Scheduling in Edge Computing for IOT

Applications." New Arch-International Journal Of

Contemporary Architecture 8, no. 2 (2021): 155-169.

9. S. Hu and G. Li, "Dynamic Request Scheduling

Optimization in Mobile Edge Computing for IoT

Applications," in IEEE Internet of Things Journal, vol.

7, no. 2, pp. 1426-1437, Feb. 2020, doi:

10.1109/JIOT.2019.2955311.

10. Sehirli, E., & Alesmaeil, A. (2022). Detecting Face-

Touch Hand Moves Using Smartwatch Inertial

Sensors and Convolutional Neural Networks.

International Journal of Intelligent Systems and

Applications in Engineering, 10(1), 122–128.

https://doi.org/10.18201/ijisae.2022.275

11. M. Smith, A. Maiti, A. D. Maxwell, and A. A. Kist,

“Object detection resource usage within a remote real-

time video stream,” in Online Engineering & Internet of

Things, Cham, Switzerland: Springer, 2018, pp. 266–

277.

12. P. Mach and Z. Becvar, “Mobile edge computing: A

survey on architecture and computation offloading,”

IEEE Commun. Surveys Tut., vol. 19, no. 3, pp. 1628–

1656, 3rd Quart., 2017.

13. Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief,

“A survey on mobile edge computing: The

communication perspective,” IEEE Commun. Surveys

Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

14. H. A. Alameddine, S. Sharafeddine, S. Sebbah, S.

Ayoubi, and C. Assi, “Dynamic task offloading and

scheduling for low-latency IoT services in multi-access

edge computing,” IEEE J. Sel. Areas Commun., vol. 37,

no. 3, pp. 668–682, Mar. 2019.

15. M. Chen and Y. Hao, “Task offloading for mobile edge

computing in software defined ultra-dense network,”

IEEE J. Sel. Areas Commun., vol. 36, no. 3, pp. 587–

597, Mar. 2018.

16. X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser

joint task offloading and resources optimization in

proximate clouds,” IEEE Trans. Veh. Technol., vol. 66,

no. 4, pp. 3435–3447, Apr. 2017.

17. Q. Wang, S. Guo, J. Liu, and Y. Yang, “Energy-efficient

computation offloading and resource allocation for

delay-sensitive mobile edge computing,” Sustain.

Comput. Informat. Syst., vol. 21, pp. 154–164, Mar.

2019.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 234–242 | 241

18. T. X. Tran and D. Pompili, “Joint task offloading and

resource allocation for multi-server mobile-edge

computing networks,” IEEE Trans. Veh. Technol., vol.

68, no. 1, pp. 856–868, Jan. 2019.

19. M. Shojafar, N. Cordeschi, and E. Baccarelli, “Energy-

efficient adaptive resource management for real-time

vehicular cloud services,” IEEE Trans. Cloud Comput.,

vol. 7, no. 1, pp. 196–209, Jan.–Mar. 2019.

20. S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-S.

Kwak, “Powerdomain non-orthogonal multiple access

(NOMA) in 5G systems: Potentials and challenges,”

IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721–

742, 2nd Quart., 2017.

21. M. Kamel, W. Hamouda, and A. Youssef, “Ultra-dense

networks: A survey,” IEEE Commun. Surveys Tuts.,

vol. 18, no. 4, pp. 2522–2545, 4th Quart., 2016.

22. Gill, D. R. . (2022). A Study of Framework of

Behavioural Driven Development: Methodologies,

Advantages, and Challenges. International Journal on

Future Revolution in Computer Science &Amp;

Communication Engineering, 8(2), 09–12.

https://doi.org/10.17762/ijfrcsce.v8i2.2068

23. D. López-Pérez, M. Ding, H. Claussen, and A. H. Jafari,

“Towards 1 Gbps/UE in cellular systems: Understanding

ultra-dense small cell deployments,” IEEE Commun.

Surveys Tuts., vol. 17, no. 4, pp. 2078–2101, 4th Quart.,

2015.

24. B. Yu, L. Pu, Q. Xie, and J. Xu, “Energy efficient

scheduling for IoT applications with offloading, user

association and BS sleeping in ultra dense networks,” in

Proc. 16th Int. Symp. Model. Optim. Mobile Ad Hoc

Wireless Netw. (WiOpt), Shanghai, China, 2018, pp. 1–

6.

25. C. Ma, F. Liu, Z. Zeng, and S. Zhao, “An energy-

efficient user association scheme based on robust

optimization in ultra-dense networks,” in Proc.

IEEE/CIC Int. Conf. Commun. China (ICCC

Workshops), Beijing, China, 2018, pp. 222–226.

26. X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user

computation offloading for mobile-edge cloud

computing,” IEEE/ACM Trans. Netw., vol. 24, no. 5,

pp. 2795–2808, Oct. 2016.

27. T. V. Do, N. H. Do, H. T. Nguyen, C. Rotter, A. Hegyi,

and P. Hegyi, “Comparison of scheduling algorithms for

multiple mobile computing edge clouds,” Simulat.

Model. Pract. Theory, vol. 93, pp. 104–118, May 2019.

28. L. Gu, J. Cai, D. Zeng, Y. Zhang, H. Jin, and W. Dai,

“Energy efficient task allocation and energy scheduling

in green energy powered edge computing,” Future

Gener. Comput. Syst., vol. 95, pp. 89–99, Jun. 2019.

29. Y. Jie, X. Tang, K.-K. R. Choo, S. Su, M. Li, and C.

Guo, “Online task scheduling for edge computing based

on repeated Stackelberg game,” J. Parallel Distrib.

Comput., vol. 122, pp. 159–172, Dec. 2018.

A. Kiani and N. Ansari, “Toward hierarchical mobile edge

computing: An auction-based profit maximization

approach,” IEEE Internet Things J., vol. 4, no. 6, pp.

2082–2091, Dec. 2017.

30. K. Lin, S. Pankaj, and D. Wang, “Task offloading and

resource allocation for edge-of-things computing on

smart healthcare systems,” Comput. Elect. Eng., vol. 72,

pp. 348–360, Nov. 2018.

31. T. Wang, G. Zhang, A. Liu, M. Z. A. Bhuiyan, and Q.

Jin, “A secure IoT service architecture with an efficient

balance dynamics based on cloud and edge computing,”

IEEE Internet Things J., vol. 6, no. 3, pp. 4831–4843,

Jun. 2019.

32. T. Bahreini, H. Badri, and D. Grosu, “An envy-free

auction mechanism for resource allocation in edge

computing systems,” in Proc. IEEE/ACM Symp. Edge

Comput. (SEC), Seattle, WA, USA, 2018, pp. 313–322.

33. S. Misra and N. Saha, “Detour: Dynamic task offloading

in softwaredefined fog for IoT applications,” IEEE J.

Sel. Areas Commun., vol. 37, no. 5, pp. 1159–1166, May

2019.

34. Chiba, Z., El Kasmi Alaoui, M. S., Abghour, N., &

Moussaid, K. (2022). Automatic Building of a Powerful

IDS for The Cloud Based on Deep Neural Network by

Using a Novel Combination of Simulated Annealing

Algorithm and Improved Self- Adaptive Genetic

Algorithm. International Journal of Communication

Networks and Information Security (IJCNIS), 14(1).

https://doi.org/10.17762/ijcnis.v14i1.5264

35. H. Guo, J. Liu, and J. Zhang, “Computation offloading

for multi-access mobile edge computing in ultra-dense

networks,” IEEE Commun. Mag., vol. 56, no. 8, pp. 14–

19, Aug. 2018.

36. H. Guo, J. Zhang, J. Liu, H. Zhang, and W. Sun,

“Energy-efficient task offloading and transmit power

allocation for ultra-dense edge computing,” in Proc.

IEEE Global Commun. Conf. (GLOBECOM), 2018, pp.

1–6.

37. S. Jeong, O. Simeone, and J. Kang, “Mobile edge

computing via a UAVmounted cloudlet: Optimization of

bit allocation and path planning,” IEEE Trans. Veh.

Technol., vol. 67, no. 3, pp. 2049–2063, Mar. 2018.

38. Y. Nakamura, T. Mizumoto, H. Suwa, Y. Arakawa, H.

Yamaguchi, and K. Yasumoto, “In-situ resource

provisioning with adaptive scale-out for regional IoT

services,” in Proc. IEEE/ACM Symp. Edge Comput.

(SEC), Seattle, WA, USA, 2018, pp. 203–213.

39. M. Kumar and C. Guria, “The elitist non-dominated

sorting genetic algorithm with inheritance (i-NSGA-II)

and its jumping gene adaptations for multi-objective

optimization,” Inf. Sci., vols. 382–383, pp. 15–37, Mar.

2017.

40. Singh, Pooja, Manish Kumar Mukhija, and Satish

Kumar Alaria. "An Approach for Cloud Security Using

TPA-and Role-Based Hybrid Concept." In Proceedings

of Third International Conference on Computing,

Communications, and Cyber-Security, pp. 153-162.

Springer, Singapore, 2023.

41. S. K. A. S. D. “Reducing the Packets Loss Using New

MAC Protocol”. International Journal on Recent and

Innovation Trends in Computing and Communication,

vol. 1, no. 9, Sept. 2013, pp. 747-51,

doi:10.17762/ijritcc.v1i9.2856.

42. Mishra, P. ., S. K. . Alaria, and P. . Dangi. “Design and

Comparison of LEACH and Improved Centralized

LEACH in Wireless Sensor Network”. International

Journal on Recent and Innovation Trends in Computing

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 234–242 | 242

and Communication, vol. 9, no. 5, May 2021, pp. 34-39,

doi:10.17762/ijritcc.v9i5.5478

