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Abstract: Fine-grained visual classification is one of the essential data science tasks with enormous datasets. The studies show that species 

composition and ample distribution of fishes notably impact the fishery industry, aquaculture, and marine ecosystem. Incredible work and 

analysis are required to state fish characteristics by classification. Lately, deep learning has helped to gain exceptional development in this 

area. Be that as it may, fine-grained fish classification is more complex than primary image classification, particularly with medium quality 

(i.e., underwater images) and small-scale (i.e., limited data). But traditional convolutional neural networks (CNNs) and other popular 

models like V.G.G., RESNET, DenseNet, etc., require high-quality and high-scale datasets. This paper presents another way to enhance 

the CNN models that best fit this fine-grained fish classification problem. Real-world underwater images have several issues, including 

noise, dominant colours, light attenuation, etc. Further, it isn't easy to get a large set of images of each category of species under the sea, 

and hence an imbalanced dataset is generated. These two problems are addressed in this paper. Then the quality of the raw images was 

improved by an Underwater Image Enhanced Generative Adversarial Network (UIEGAN), that CycleGAN trains over 6128 images of the 

ImageNet dataset. Conventional data augmentation helps increase the dataset size of the dataset by random transformations of the images 

(i.e., flipping, rotation), but it cannot handle the imbalanced class problem. We generated synthetic images of every class utilizing DCGAN 

to create a balanced dataset. Further, we used the SmallerVGG and SmallerRESNET models that best fit the Croatian dataset. Moreover, 

we compared our strategy with eight popular pre-trained transfer learning models trained on the ImageNet dataset. The exploratory 

outcomes show that the proposed techniques beat well-known CNNs, with high accuracy, demonstrating their possible applications in the 

real-time underwater fish image classification. 

Keywords: Fish classification, CycleGAN, DCGAN, SmallerVGG, SmallerRESNET. 

 

1. Introduction 

In recent years, people have better explored the ocean due 

to technological advancement. Due to the continuous 

utilization of inadequate resources of the sea, biodiversity, 

mainly fish variety under the marine environment, is under 

threat. Hence, productive strategies must be proposed to 

find and estimate quantitative fish distribution. For example, 

fine-grained fish classification gives a better environment to 

fish and marine ecology [1]. There is a significant demand 

for tourists to find and observe underwater fish species in 

pond water. Besides, scientists and marine biologists need 

to keep track of different species of fish's behaviour. 

Business applications like fish cultivation rely on 

monitoring the fish species breeding similar fishes, and  

 

studying their life cycle. The classification of fish species is 

turning into a challenge for research. A few methodologies 

are employed for non-destructive sampling, automatic fish 

identification, and types characterization in underwater 

videos [2]. Nevertheless, challenges presented by variations 

regarding terrible light conditions, murkiness in water, 

occlusions, intra, and inter-species similarity, moving 

aquatic plants, and background confusion minimize 

utilization of those procedures in real-life situations because 

of low preciseness. 

 

In the literature, there exist methodologies for fish detection 

and classification. Along with this, most of the research on 

fish detection is done based on pre-trained YOLO object 

detection models. For instance, in fish detection in [3], 

researchers have introduced live fish tracking framework 

utilizing YOLO and correlation filters and added detection 

and classification in an end-to-end manner. Like this, the 

authors in [4] prepared a YOLO model to distinguish the 

fish species with multivariate datasets, acquiring an average 

precision score of 0.5392. In [5], the authors elaborated their 

work to incorporate sea mammals like fish and utilized 
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similar YOLO procedures. The common thing for these 

methodologies is that they trained their model completely. 

In [6], the authors proposed an alternate technique, 

specifically different deep learning-based methods for 

temperate fish identification and characterization. The 

authors used input images and videos captured from 

underwater cameras in typical habitats and utilized 

YOLOv3 for fish detection and squeeze-excitation networks 

(SE-net) for classification.  

 

The other fish detection and classification categories use 

deep learning models like convolutional neural networks 

(CNN). Meng et al. [7] designed an underwater drone with 

a camera, which utilized LeNet [8], AlexNet [9], and 

GoogleNet [10] for fish identification. Qin et al. [11] 

designed a model composing convolutional and pooling 

layers and a linear SVM classifier for fish detection. 

Nonetheless, the previously mentioned works neglect that 

fish image classification is a fine-grained problem, which 

requires a human-labelled and large-scale fish dataset. Fine-

grained image classification (FGIC), like fish, cat, bird, and 

flower species, remains challenging compared to 

conventional image classification due to the high intraclass 

and low inter-class similarities. In [12], the authors 

proposed another technique to improve transfer learning and 

squeeze and excitation networks to classify fine-grained fish 

images with better quality and small-scale datasets. The 

authors utilized the super-resolution reconstruction method 

for better image resolution and pre-pre trains, pre-trains 

analyzed domain knowledge and fine-tuned with some 

professional skills. 

Moreover, refined squeeze with excitation blocks is 

intended to enhance bilinear CNNs for fine-grained 

classification. In [13], the researchers provide a compound 

way by combining optical flow and the Gaussian Mixture 

Model (G.M.M.) with the YOLO model in a dynamic 

environment rather than fish detection in static images. The 

authors in [14] also worked on FGIC, using Mask-CNN. 

The method localizes the object's parts and selects the 

descriptors for fine-grained bird classification on a large 

scale and high-quality datasets. Small-scale and low-quality 

FGIC remains challenging because CNNs can't create 

proficient skills from a limited set of images. Image 

distortion happens when pictures have lousy quality. For 

example, Figure 1 is a sample image of 12 fish categories 

from the Croatian fish dataset [15].  

 

 
Fig. 1. Samples of different categories of Croatian datasets 

with high intra-class and low inter-class similarities. 

 

Henceforth, it is hard to get better classification results with 

low-quality images. Nevertheless, many FGIG tasks in the 

real world frequently experience a limited number of poor-

quality images. Not the same as the past works, this work 

introduces a strategy that ideally concentrates on addressing 

those issues. This paper primary contributes the following:  

1. High-quality dataset through generative 

adversarial network design (like UIEGAN) trained 

upon underwater image dataset. 

2. We have generated synthetic images by another 

deep convolutional GAN (DCGAN) along with 

conventional data augmentation to address a 

limited dataset. Step 2 also addresses the problem 

of class imbalance issue. 

3. Prominent models such as V.G.G. and RESNET 

are modified by reducing the layers count, which is 

suitable for datasets with poor quality and low 

scale. 

4. In addition, we have trained models from 

fundamental CNN to recent pre-trained transfer 

learning models on the Croatian dataset, and the 

results are analyzed.  

2. Methodology 

Results of the current works improved with the proposed 

methodology. The structure of our method is shown in 

Figure 2. First, 6128 underwater images were collected from 

the subset of the ImageNet dataset. Second, we have trained 

these images with the help of CycleGAN architecture to 

develop a model (i.e., UIEGAN). This UIEGAN 

architecture enhances the input images (in our case Croatian 

dataset). Second, the dataset was balanced by training 

DCGAN for creating many synthetic images (i.e., 

augmentation). We applied two GAN models to get the 

Augmented Enhanced Image dataset from the original 

dataset. Then, we trained three deep neural networks (basic 

CNN, Smaller RESNET, and SmallerVGG) on the 

Augmented Enhanced Image dataset to get classification 

results.  
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       Figure 2. The flow of our proposed methodology 

 

2.1 Image Enhancement using UIEGAN 

The algorithms resize input images before sending them to 

the CNN models. Henceforth, the critical models require a 

greater size of the input image. The linear interpolation 

techniques applied in most CNN models might yield more 

distortion from the input image, mainly when dealing with 

low-quality images, for example, in the Croatian dataset. 

Hence, to address this issue, we formulate a strategy to 

increase the data quality with a trained model (i.e., 

UIEGAN). There exist many conventional techniques for 

improving the quality. The SRGAN [16] is the popular 

technique using generative adversarial networks. In [12], the 

authors used SRGAN to increase the quality of the Croatian 

dataset, but this pre-trained SRGAN model is suitable for 

terrestrial images. It is better to use a model which is trained 

on underwater images. In this work, a model is designed 

through underwater images gathered from the ImageNet 

dataset.  

 

This model was trained using CycleGAN [17], mainly used 

to generate Zebra images from the Horse images. The 

primary objective of this UIEGAN model is to take the 

original input images and increase the quality of the images 

and call this Enhanced Image Dataset. This Enhanced Image 

Dataset is more helpful in extracting the better features in 

each layer in CNN to produce better results.  

 

The sample enhanced images generated from the UIEGAN 

model are shown in Figure 3 vividly indicates the 

differences between an enhanced image dataset with the 

original sample images shown in Figure 1. Further, the 

improved image dimensions are 256 x 256-pixel width and 

height. If the original images are resized to 256 x 256-pixel 

width and height, we get more pixelated images, leading to 

severe distortion problems. By utilizing this UIEGAN, we 

can successfully increase original image quality and 

diminish the issue of distortion.  

 

 
Figure 3. Sample images generated using the UIEGAN 

model. 

 

2.2 Distribution of the dataset 

The second issue addressed is the low-scale data for CNN 

models. The Croatian dataset contains about 794 images 

categorized into 12 classes. The data distribution of the 

original dataset is represented in Figure 4. It is clear the 

dataset is minimal, and each type is imbalanced. Each 

species category contains 500 to 1000 images for deep 

neural networks to get better accuracy. To deal with this 

class imbalance, we generated synthetic images of around 

300 images for each class using DCGAN. The data 

distribution after training the model is shown in Figure 5. 

The augmented dataset is more balanced compared with the 

original dataset. In our work, 300 synthetic images are 

generated for each class, and the number of images can still 

be increased to get more images. The area plot of the dataset 

before and after the generation of synthetic images is shown 

in Figure 6. The blue and orange colors denote the 

distributions before and after the augmentation. 
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Figure 4. Distribution of the Croatian dataset (original) 

 

2.3 Synthetic Image Generation using DCGAN 

Generative models have been analyzed in recent years and 

characterized into two classes (i.e., parametric and non-

parametric). The main aim of these GANs is to generate 

synthetic (i.e., fake) images which are perceptually nearer to 

their basic authentic originals. The images generated using 

GAN [18] experience noise and are inconceivable. An 

extension to this method [19] uses a Laplacian pyramid 

approach to render the images with the best quality. Yet, 

they experienced the objects looking unstable due to noise 

chaining numerous models. Later, DCGAN was proposed in 

[20] to bridge the gap between supervised CNNs and 

unsupervised learning. The DCGAN exhibits a strong 

candidate for unsupervised learning, and the adversarial pair 

learns a hierarchy of representations from object parts in 

both generator and discriminator [21]. For generating 

synthetic images, we included two neural networks while 

training: (1). A generator that can take a randomly 

generated noise vector as an input and yields an output 

image is the same (i.e., fake image). (2). 

 
Figure 5- Distribution of the augmented Croatian dataset 

(after generating synthetic images) 

 

 
Figure 6. Comparison of the original data distribution with 

augmented data distribution. 

 

A discriminator will try to mention that the image is "real" 

or "fake." Through training these networks at a similar 

interval, one provides feedback to the other. During training 

this GAN, the generator's objective is to improve in 

generating synthetic images. The discriminator cannot 

find the difference between real and artificial data. The steps 

involved in the training process of GAN are shown in Figure 

7.  

 
Figure 7- The steps in the training process of GANs 
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First, random noise is generated and passed through the 

generator to generate the fake image. Next, we sample the 

original images from the training data and mix them with 

the fake images. Now, the discriminator is trained to classify 

whether each image is real or fake. Once again, generate the 

noise, but we purposefully make this noise vector as a real 

image. Then, we train the noise vectors and real image labels 

to develop more synthetic images. The architecture of GAN 

creates synthetic images are represented in Figure 8. The 

sample of synthetic images generated through our GAN 

model is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

Figure 8- The architecture of GAN for generating 

synthetic images from the Enhanced Image Dataset. 

 

 
 

Figure 9- Synthetic images generated through the training 

process of GAN. All the images shown here do not exist in 

the original dataset. One sample image is shown for each 

category of 12 classes. 

 

There are two loss functions in GAN, one is for the 

discriminator, and the other is for the generator. The 

discriminator must classify the real and not real images, 

which is like binary classification. The correct loss function 

is binary cross-entropy. The discriminator loss can be 

computed using Eq. (1). 

 

𝐽𝐷 =  − 
1

𝑁
 ∑ {𝑝𝑛 log 𝑝𝑛

^𝑁
𝑛=1  + (1 - 𝑝𝑛) * log (1- 𝑝𝑛

^)} (1) 

The generator loss can be computed using Eq. (2). Freeze 

the discriminator layers so only the generator is trained. 

 

𝐽𝐺 =  − 
1

𝑁
 ∑ log 𝑝𝑛

^𝑁
𝑛=1  , 𝑝𝑛

^ = fake image, target is always 1. 

                    (2) 

𝐽𝐷 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝑙𝑜𝑠𝑠 𝑎𝑛𝑑 𝐽𝐺  𝑖𝑠 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑙𝑜𝑠𝑠 𝑝𝑛
′

, is scalar value concerning 'i'. 𝑝𝑛, is the target value. 

 

3. Results and Discussion 

This section provides our experimental study to classify fish 

instances from the given low-scale and low-resolution 

underwater image dataset (i.e., the Croatian dataset). The 

study includes three steps. First, we applied the basic 

convolutional networks (Basic-CNN), second customized 

RESNET model (SmallerRESNET), and third customized 

V.G.G. model (SmallerVGG) to the actual dataset. Further, 

we applied these three models to the augmented enhanced 

dataset to show that our proposed methodology gives better 

results after pre-processing. The difference between the 

three models concerns the architecture. The conventional 

RESNET and V.G.G. models are customized to get better 

results.  

 

The basic CNN architecture includes three convolutional 

layers ((Conv2D+RELU => Max Pooling) * 3), along with 

a dense layer with a softmax layer of 12 classes. Here, "*" 

represents the same block repeated three times. The activate 

function is "Relu," and the activation function is "softmax" 

in the last layer. The pool and strides are of size (2 x 2), and 

the filters in each layer are 8, 16, and 32. Since we have three 

convolutional layers, our input size is 32 x 32 x 3. The 

architecture used for training the Basic-CNN model is 

shown in Figure 10. The purpose of taking a minimum 

number of layers is to show the effectiveness of our 

methodology. The results may vary by increasing the 

number of layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10- The architecture used for training a basic CNN 

model 

 

However, we have tried the transfer learning with eight 

different models (INCEPTIONRESNETV2, RESNET50, 

VGG16, INCEPTIONV3, XCEPTION, DENSENET, 

MOBILENET, and NASNET), but the results are poor due 

to the limited size of the data set.  
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Table 1: Training results of Transfer learning on the 

Croatian dataset with the popular pre-trained models 

Architecture Train 

Accuracy  

Train 

loss 

Validation 

Accuracy 

Validation 

Loss 

INCEPTIONRESNETV2 

[22] 

99.81 0.0086 77.38 5.5050 

RESNET50 [23] 34.13 2.4359 29.17 2.9025 

VGG16 [24] 95.38 0.1253 71.43 1.0380 

INCEPTIONV3 [25] 98.82 0.0636 73.21 10.7376 

XCEPTION [26] 97.86 0.2110 69.64 8.8683 

DENSENET [27] 99.04 0.0518 79.76 5.4835 

MOBILENET [28] 99.96 4.5862 86.90 5.6054 

NASNET [29] 99.26 0.1550 68.45 34.5343 

 

It is observed that models like INCEPTION and 

MOBILENET give ~100 % of training accuracy, but the test 

accuracy is around ~77 % only. Besides, the test loss is big, 

and it is clear that the problem of overfitting to the given 

data. The raw dataset is split into 531 training images and 

138 test images. Each transfer learning-based model is 

trained with 100 epochs—the results of these models over 

the raw dataset are presented in Table 1. 

 

Basic-CNN model is trained (train and test split as 75% and 

25%) with Adam optimizer, rather than using S.G.D., and 

the evaluation measures (i.e., precision, recall, and f1-score) 

are mentioned in Figure 11 and Figure 12. Figure 11 shows 

the measures on the original dataset, and Figure 12 shows 

the measures after our pre-processing (augmented enhanced 

dataset) method. 

 

 

Figure 11- The evaluation results of basic CNN on the 

original dataset. 

 

 
Figure 12- The evaluation results of basic CNN on the 

augmented enhanced dataset. 

 

The second architecture is custom RESNET (i.e., 

SmallerRESNET), which accepts the shape of the input 

image and the number of classes. The architecture includes 

eight blocks along with an output layer. The first block 

consists of a convolutional layer followed by batch 

normalization with max pooling and 0.25. The second block 

convolution layer is followed by batch normalization. The 

same layers are repeated till block five consecutively. Block 

6 uses a dense layer with 1024 layers followed by batch 

normalization with a drop out of 0.5. In the 7th block, the 

dense layer with 512 layers is utilized with batch 

normalization. In each block, we utilized the activation 

function as RELU and padding as the same. The filters used 

in block 1 to block 5 are 32, 64, 64, 128, and 128. We 

utilized the dense layer with 12 layers with a softmax 

activation function in the output block. 

The architecture of SmallerRESNET is shown in Figure 13 

(a). For simplicity, all blocks are shown in the diagram, and 

"*" indicates that the block's number is repeated. For 

instance, "* 2" is the block repeated two times. Further, we 

also applied RESNET50 architecture to our input dataset 

from scratch. The results of the RESNET50 model on the 

raw dataset and our enhanced dataset are shown in Figure 

14 and Figure 15. The results of our customized RESNET50 

model on the raw dataset and our enhanced dataset are 

shown in Figure 16 and Figure 17. The difference between 

the conventional RESNET and SmallerRESNET exists in 

blocks and the layers of every block.  

The third architecture is a custom V.G.G. network (i.e., a 

SmallerVGG), which accepts the shape of the input image 

and the number of classes. For our case, the input image is 

resized to 96 X 96 with a depth of three channels. The 

architecture of SmallerVGG is shown in Figure 13(b). The 

first convolutional layer has 32 filters with 3 X 3 kernels, 
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and we used 'relu' activation followed by batch 

normalization.  

The pooling layer uses 3 X 3 pool sizes to minimize the 

spatial dimensions instantly from 96 X 96 to 32 X 32. We 

also added drop-out in our network model. Drop-out works 

by randomly disconnecting nodes from the current layer to 

the next layer. Likewise, added (CONV => RELU) * 2 

layers are added before applying another POOL layer. 

Stacking multiple CONV and RELU layers together allows 

us to learn better features. Next (CONV => RELU) * 2 => 

POOL layer is added with dropout of 0.25. Eventually, we 

had a set of fully connected layers and a softmax activation 

function (F.C. => RELU). 

Further, we have added conventional data augmentation 

method for generating images using random 

transformations to avoid overfitting problems. A few 

changes include rotation, shift range horizontally and 

vertically, shearing, zooming, flipping, and the fill mode is 

taken as nearest. The Adam optimizer is utilized for training 

a network. The model is introduced with a batch size of 32 

for 100 epochs. The raw dataset is split into 531 samples 

(80%) for training and 138 examples (20%) for the test set. 

The augmented enhanced dataset is partitioned into 2961 

samples (80%) to train and 988 (20%) samples to test. The 

training and validation loss of the model during the initial 

dataset training is shown in Figure 18(a). The training and 

validation loss of the model during the augmented enhanced 

dataset training is shown in Figure 18(b). The graph shows 

that the training and validation accuracy is increased, and 

the training/validation loss is decreased after pre-processing 

data. In the three models, the loss is evaluated through 

categorical cross-entropy from Eq. (3). 

 

Loss = -∑ 𝑝𝑖
𝑛
𝑖=1 ∗ log 𝑝𝑖

′    (3) 

 

Here, 𝑝𝑖
′, is scalar value concerning 'i'. ′𝑝𝑖 ′ is the target value, 

and 'n' is the number of classes in the classification. 

 

The comparison results of the three models are shown in 

Table 2. Basic-CNN architecture is giving training 77.98% 

and 64.82% validation accuracy. This architecture's training 

and validation loss are 0.6455 and 1.2589, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     

 

 

 

 

                         

 

 

 

 

 

 

 

 

 

Figure 13- (a) SmallerRESNET 

 

There is a significant improvement observed in the 

augmented enhanced dataset. We tried to improve the 

accuracy with SmallerRESNET, but this architecture does 

not yield better results. We got only 41.24% training 
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accuracy and 33.12% validation accuracy. The loss is also a 

little high compared with the Basic-CNN. This model's 

training and validation loss are 1.7447 and 2.2870, 

respectively, on the original data. But we got satisfactory 

results on the augmented enhanced dataset by training the 

same model. We achieve 82.56% of training accuracy and 

96.48% of validation accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     

 

 

 

 

 

 

 

 

 

 

Figure 13- (b). SmallerVGG. 

 

 
Figure 14- Visualized results of RESNET50 on the 

original Croatian dataset after training. 

 

 
Figure 15- Visualized results of RESNET50 on the 

Augmented Enhanced Croatian dataset after training 

 

 
Figure 16- Visualized results of SmallerRESNET on the 

original Croatian dataset after training. 

 

 
Figure 17- Visualized results of SmallerRESNET on the 

Augmented Enhanced Croatian dataset after training 
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(a) 

 
(b) 

Figure 18- Experimental results of SmallerVGG model 

training and validation accuracy and training and 

validation loss on the original and augmented enhanced 

datasets. (a). SmallerVGG results on the original dataset. 

(b). SmallerVGG outcomes over the expanded enhanced 

dataset. 

 

The training and validation loss of the model are 0.5729 and 

0.0811, respectively. The other evaluation metrics, 

precision, recall, and f1-score, are also recorded and are 

shown in Figure 14 to Figure 17. The SmallerVGG 

architecture got 94.73% of training accuracy, 83.19% of 

validation accuracy and training loss is 0.1455, and 

validation loss is 0.2814 on the original dataset. The model 

gives 98.85% of accuracy in training and 97.04% of 

validation accuracy. The training loss and validation of the 

model are 0.0442 and 0.1319, respectively. After analyzing 

these experiments, the SmallerVGG network gives better 

results and gets the highest accuracy for training and 

validation data. Hence, we considered this model and 

compared the results of this architecture with and without 

using the enhancement technique. Table 3 shows the 

comparative analysis of training, validation accuracy, and 

training and validation loss. We used two data augmentation 

methods; one is a fundamental augmentation, and another is 

DCGAN. The primary augmentation (Data Generator) uses 

fundamental transformations such as flipping, rotation, 

scaling, etc. The SmallerVGG with only Data Generator and 

no augmentation techniques give 94.73% training accuracy 

and 83.19% validation accuracy. 

 

Using multi-layer perceptron using multi-scale fusion to 

enhance the dataset and the primary augmentation gives 

95.43% of training accuracy and 85.39% validation 

accuracy. Then we used the primary augmentation and 

enhanced the images using UIEGAN. The training and 

validation loss is increased to 97.68% and 85.53%. The loss 

is also reduced compared with M.L.P. using a Multi-scale 

fusion strategy. Further, our method (DCGAN for 

augmentation and UIEGAN for improvement) gives 

98.85% training accuracy and 97.04% validation accuracy. 

Hence, we consider this model and test it on the ignored 

images during the training and validation dataset. The model 

gives an average of 95.64% classification accuracy over test 

data. The comparison results are shown in Table 4. 

 

Table 2, Summarizes the training results of three 

architectures (Basic CNN, Smaller RESNET, and 

SmallerVGG) on the original and augmented enhanced 

datasets. 

Data Architecture Train 

Accura

cy  

Trai

n loss 

Validati

on 

Accurac

y 

Validati

on Loss 

 

Original 

dataset 

Basic CNN 77.98 0.645

5 

64.82 1.2589 

SmallerRESN

ET 

41.24 1.744

7 

33.12 2.2870 

SmallerVGG 94.73 0.145

5 

83.19 0.2814 

Augment

ed 

Enhanced 

dataset 

Basic CNN 91.35 0.422

5 

90.42 0.4421 

SmallerRESN

ET 

82.56 0.572

9 

96.48 0.0811 

SmallerVGG 98.85 0.044

2 

97.04 0.1319 

 

Table 3. Comparison of results of SmallerVGG 

architecture before and after the pre-processing using data 

augmentation and image enhancement. 

Model Augmentation Enhancement Train 

Accuracy 

Train 

loss 

Validation 

Accuracy  

Test 

loss 

 

 

 

SmallerVGG 

Data Generator - 94.73 0.1455 83.19 0.2814 

 

Data Generator 

MLP using 

Multiscale 

fusion [30]  

95.43 0.1528 85.39 0.9603 

Data Generator UIEGAN  97.68 0.0842 85.53 0.5896 

DCGAN +  

Data Generator 

UIEGAN 98.85 0.0442 97.04 0.1319 
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Table 4. Comparison of results of the proposed work with 

related works 

Author(s) Model/Architecture Accuracy 

Jaeger et.al [15] CNNs + SVM  66.78% 

Alex Krizevsky et 

al. [31] 

AlexNet 62.35% 

K. Simonyan et al. 

[24] 

VGG-16 72.07% 

Christian Szegedy 

[32] 

Inception-v4 78.25% 

K. He et.al. [23] RESNET-50 80.15% 

Baseline [33] Baseline 66.78% 

 

QIU et.al [12] 

B-CNNs [34] 83.52% 

B-CNNs + S.E. blocks [35] 83.78% 

BCNNs + refined S.E. blocks  83.92% 

Our method UIEGAN + DCGAN + 

SmallerVGG 

95.64% 

4. Conclusion 

Applying recently trained deep neural network architectures 

gives research and the community many advantages. 

Transfer learning provides less work in preparing large 

models for a particular classification task. VGG16 is a 

prominent model developed but could not classify the fish 

categories with limited data with low quality. We proposed 

a model SmallerVGG (minimized version of V.G.G.) that 

gives better results than traditional CNN models in this 

work. The model is customized because of the poor quality 

of data since the CNN models require high-quality images. 

We disclosed two issues, such as handling the quality and 

imbalanced distribution of the data. The first issue is 

addressed by enhancing the images using UIEGAN, trained 

on a subset ImageNet dataset using CycleGAN. The second 

issue is addressed by generating the synthetic data using 

DCGAN to get a more balanced distribution. This will 

empower the network to analyze the features from the 

dataset more accurately to achieve better classification 

results. The exploratory outcomes show that our strategy 

gives excellent results compared with the other popular 

CNN models, with a classification accuracy of 95.64%. 

However, the accuracy can improve further by fine-tuning 

the CNN architecture. In future works, we will combine this 

method with other recently developed architectures and 

work with other fine-grained fish classification datasets. 

Further, we intend to work on fish identification and 

classification and fish tracking in real-time underwater 

videos 

 

References 

[1] Zhuang, Peixian, Chongyi Li, and Jiamin Wu. 

"Bayesian retinex underwater image 

enhancement." Engineering Applications of 

Artificial Intelligence 101 (2021): 104171. 

[2] Shortis, M., Abdo, E.H.D., 2016. A review of 

underwater stereo-image measurement for marine 

biology and ecology applications. In: 

Oceanography and Marine Biology. C.R.C. Press, 

pp. 269–304. 

[3] Liu, Shasha, et al. "Embedded online fish 

detection and tracking system via YOLOv3 and 

parallel correlation filter." OCEANS 2018 

MTS/IEEE Charleston. IEEE, 2018. 

[4] Xu, Wenwei, and Shari Matzner. "Underwater 

fish detection using deep learning for water power 

applications." 2018 International Conference on 

Computational Science and Computational 

Intelligence (CSCI). IEEE, 2018. 

[5] Gupta, D. J. . (2022). A Study on Various Cloud 

Computing Technologies, Implementation 

Process, Categories and Application Use in 

Organisation. International Journal on Future 

Revolution in Computer Science &Amp; 

Communication Engineering, 8(1), 09–12. 

https://doi.org/10.17762/ijfrcsce.v8i1.2064 

[6] Yadav, P. ., S. . Kumar, and D. K. J. . Saini. “A 

Novel Method of Butterfly Optimization 

Algorithm for Load Balancing in Cloud 

Computing”. International Journal on Recent and 

Innovation Trends in Computing and 

Communication, vol. 10, no. 8, Aug. 2022, pp. 

110-5, doi:10.17762/ijritcc.v10i8.5683. 

[7] Pedersen, Malte, et al. “3D-ZEF: A 3D zebrafish 

tracking benchmark dataset.” Proceedings of the 

IEEE/CVF Conference on Computer Vision and 

Pattern Recognition. 2020. 

[8] Knausgård, Kristian Muri, et al. "Temperate fish 

detection and classification: A deep learning-

based approach." Applied Intelligence (2021): 1-

14. 

[9] L. Meng, T. Hirayama, and S. Oyanagi, 

"Underwater-drone with panoramic camera for 

automatic fish recognition based on deep 

learning," IEEE Access, vol. 6, pp. 17880–17886, 

2018. 

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 

"Gradient-based learning applied to document 

recognition," Proc. IEEE, Vol. 86, no. 11, pp. 

2278–2324, Nov. 1998. 

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 

"ImageNet classification with deep convolutional 

neural networks," in Proc. Adv. Neural Inf. 

Process. Syst., 2012, pp. 1097–1105. 

[12] C. Szegedy et al., "Going deeper with 

convolutions," in Proc. IEEE Int. Conf. Comput. 

Vis. Pattern Recognit., Jun. 2015, pp. 1–9. 

[13] H. Qin, X. Li, J. Liang, Y. Peng, and C. Zhang, 

"DeepFish: Accurate underwater live fish 

recognition with a deep architecture," 

Neurocomputing, vol. 187, pp. 49–58, Apr. 2016. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 282–293  |  292 

[14] Qiu, Chenchen, et al. "Improving transfer learning 

and squeeze-and-excitation networks for small-

scale fine-grained fish image 

classification." IEEE Access 6 (2018): 78503-

78512. 

[15] Zhao, Zhenxi, et al. "Composited FishNet: Fish 

Detection and Species Recognition from Low-

quality Underwater Videos." IEEE Transactions 

on Image Processing (2021). 

[16] X.-S. Wei, C.-W. Xie, J. Wu, and C. Shen, "Mask-

CNN: Localizing parts and selecting descriptors 

for fine-grained bird species categorization," 

Pattern Recognit., vol. 76, pp. 704–714, Apr. 

2018. 

[17] J. Jaeger, M. Simon, J. Denzler, V. Wolff, K. 

Fricke-Neuderth, and C. Kruschel, "Croatian fish 

dataset: Fine-grained classification of fish species 

in their natural habitat," in Proc. Mach. Vis. 

Animals Behav., 2015, pp. 1–7. 

[18] C. Ledig et al. (Sep. 2016). "Photo-realistic single 

image super-resolution using a generative 

adversarial network." [Online]. Available: 

https://arxiv. org/abs/1609.04802. 

[19] Cho, Se Woon, et al. "Semantic segmentation with 

low light images by modified CycleGAN-based 

image enhancement." IEEE Access 8 (2020): 

93561-93585. 

[20] Goodfellow, Ian J., Jean Pouget-Abadie, Mehdi 

Mirza, Bing Xu, David Warde-Farley, Sherjil 

Ozair, Aaron Courville, and Yoshua Bengio. 

"Generative adversarial networks." arXiv preprint 

arXiv:1406.2661 (2014). 

[21] Denton, Emily, Chintala, Soumith, Szlam, Arthur, 

and Fergus, Rob. Deep generative image models 

using a laplacian pyramid of adversarial networks. 

arXiv preprint arXiv:1506.05751, 2015. 

[22] Radford, Alec, Luke Metz, and Soumith Chintala. 

"Unsupervised representation learning with deep 

convolutional generative adversarial 

networks." arXiv preprint 

arXiv:1511.06434 (2015). 

[23] Yu, Yang, et al. "Unsupervised representation 

learning with deep convolutional neural network 

for remote sensing images." International 

Conference on Image and Graphics. Springer, 

Cham, 2017. 

[24] Szegedy, Christian, et al. "Inception-v4, 

inception-resnet and the impact of residual 

connections on learning." Proceedings of the 

AAAI Conference on Artificial Intelligence. Vol. 

31. No. 1. 2017. 

[25] He, Kaiming, et al. "Deep residual learning for 

image recognition." Proceedings of the IEEE 

conference on computer vision and pattern 

recognition. 2016. 

[26] M. J. Traum, J. Fiorentine. (2021). Rapid 

Evaluation On-Line Assessment of Student 

Learning Gains for Just-In-Time Course 

Modification. Journal of Online Engineering 

Education, 12(1), 06–13. Retrieved from 

http://onlineengineeringeducation.com/index.php

/joee/article/view/45 

[27] Simonyan, Karen, and Andrew Zisserman. "Very 

deep convolutional networks for large-scale 

image recognition." arXiv preprint 

arXiv:1409.1556 (2014). 

[28] Szegedy, Christian, et al. "Rethinking the 

inception architecture for computer 

vision." Proceedings of the IEEE conference on 

computer vision and pattern recognition. 2016. 

[29] Chollet, François. "Xception: Deep learning with 

depthwise separable convolutions." Proceedings 

of the IEEE conference on computer vision and 

pattern recognition. 2017. 

[30] Kumar, S., Gornale, S. S., Siddalingappa, R., & 

Mane, A. (2022). Gender Classification Based on 

Online Signature Features using Machine 

Learning Techniques. International Journal of 

Intelligent Systems and Applications in 

Engineering, 10(2), 260–268. Retrieved from 

https://ijisae.org/index.php/IJISAE/article/view/2

020 

[31] Huang, Gao, et al. "Densely connected 

convolutional networks." Proceedings of the 

IEEE conference on computer vision and pattern 

recognition. 2017. 

[32] Howard, Andrew G., et al. "Mobilenets: Efficient 

convolutional neural networks for mobile vision 

applications." arXiv preprint 

arXiv:1704.04861 (2017). 

[33] Saraireh, J., & Joudeh, H. (2022). An Efficient 

Authentication Scheme for Internet of Things. 

International Journal of Communication 

Networks and Information Security (IJCNIS), 

13(3). https://doi.org/10.17762/ijcnis.v13i3.3422  

[34] Zoph, Barret, et al. "Learning transferable 

architectures for scalable image 

recognition." Proceedings of the IEEE conference 

on computer vision and pattern recognition. 2018. 

[35] M. Sudhakara and M. Janaki Meena, "Multi-scale 

fusion for underwater image enhancement using 

multi-layer perceptron," IAES International 

Journal of Artificial Intelligence (IJ-AI), Vol. 10, 

No. 2, June 2021, pp. 389~397. DOI: 

10.11591/ijai.v10.i2.pp389-397. 

[36] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. 

Hinton. "Imagenet classification with deep 

convolutional neural networks." Advances in 

neural information processing systems 25 (2012): 

1097-1105. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 282–293  |  293 

[37] Szegedy, Christian, et al. "Inception-v4, 

inception-resnet and the impact of residual 

connections on learning." Proceedings of the 

AAAI Conference on Artificial Intelligence. Vol. 

31. No. 1. 2017. 

[38] Singh, S. ., Wable, S. ., & Kharose, P. . (2022). A 

Review Of E-Voting System Based on 

Blockchain Technology. International Journal of 

New Practices in Management and Engineering, 

10(04), 09–13. 

https://doi.org/10.17762/ijnpme.v10i04.125 

[39] K. Anantharajah et al., "Local inter-session 

variability modelling for object classification," in 

Proc. IEEE Winter Conf. Appl. Comput. Vis., 

Mar. 2014, pp. 309–316 

[40] T.-Y. Lin, A. RoyChowdhury, and S. Maji, 

"Bilinear CNN models for fine-grained visual 

recognition," in Proc. IEEE Int. Conf. Comput. 

Vis., Dec. 2015, pp. 1449–1457. 

[41] J. Hu, E. Wu, L. Shen, and G. Sun. (Sep. 2017). 

"Squeeze-and-excitation networks." [Online]. 

Available: https://arxiv.org/abs/1709.01507. 

 


