
  

 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 318–328  |  318 

 

Analytical Progression Scale for Arrhythmia Scope prediction from 

Electrocardiograms  

Sreedhar Jyothi *, 1, Geethanjali Nelluri 2 
 

Submitted: 06/06/2022 Accepted: 10/09/2022       

 

Abstract: Machine Learning (ML) techniques have exploded in popularity, especially the use of ML in automated ECG interpretation, 

which has been widely addressed in the literature. Other applications of machine learning in cardiac electrophysiology as well as 

arrhythmia are even less well recognised. Yet, the contemporary models are evincing the considerable false alarming in the process of 

arrhythmia prediction. In order to improve the arrhythmia prediction accuracy, this manuscript portrayed a novel analytical progression 

scale (APS) that learns from the given input electrocardiograms with appropriate label positive (prone to arrhythmia) or negative (not 

prone to arrhythmia). The experimental study has carried a 10-fold cross validation strategy on proposed and other contemporary models 

to scale the performance advantage of the proposed Analytical Progression Scale that compare those statistical values obtained for 

performance metrics such as precision, sensitivity, specificity, and accuracy. The results obtained from cross validation are evincing that 

the proposed model APS is outperforming the other contemporary models. 

Keywords: Analytical Progression scale, electrocardiogram, electrophysiology, cross validation, machine learning. 

 

1. Introduction 

At the time of 20th century, the analysis of ECG has been 

proposed to be basic cardiovascular pathology diagnosis. 

In this, the heart functioning would be estimated by ECG 

signals. Therefore, disorders or irregularities of rhythm in 

the heart in waveform of ECG have been considered as 

evidences for underlying cardiovascular issues like 

arrhythmias.  

The Non-invasive arrhythmia diagnosis has been 

dependent on 12-lead standard ECG that evaluates 

potentials of electricity from 10 electrodes by placing them 

at distinct parts in the surface of a body. Among 10 

electrodes, 4 have been placed in the limbs and 6 have 

been placed on the chest. To provide a productive 

treatment to the arrhythmias, the diagnosis in the early 

stage is more significant. Early recognition of definite 

types of infrequent, transient or short-term arrhythmias 

needs monitoring of heart electrical activity for a long 

period of time.  

The work [1] presents that, ECG databases are having an 

open access, which result to a development of several 

approaches and models for ECG arrhythmia classification 

of computer aided over former decades. All computer  

 

aided ECG-classification model incorporates 4 prominent 

stages called ECG signal preprocessing stage, detection of 

heart beat, feature selection and extraction phase and 

ultimately, the construction of classifier. The ECG signal 

preprocessing and detection of heartbeat are more 

prominent and both of them have been extensively  

Huge amount of classifiers have been projected for 

discrimination of arrhythmia. The projected strategies vary 

from simple form of classifiers such as decision trees as in 

[2], [3] or Linear discriminants [4] to more sophisticated 

classifiers like conventional neural networks (NN) [5-8], 

SVM [5], [9-12], conditional random-fields as in [13] and 

finally deep learning strategies as in [8], [14-16]. 

Furthermore, several contributions have been dedicated to 

identify the optimal features combination, sometimes even 

introducing complicated signal processing approaches and 

to choose the optimum subset for arrhythmia 

categorization as in [17]. In an instance, well-known 

selections for the input features are extraction of 

morphological features from amplitudes, regions [9], [10], 

[18], wavelet transforms as in [5], [6], [19], HOS (higher 

order-statistics) [2], [3], [5], difficult representations of 

heartbeat [11] and features related to frequency domain as 

in [2], [3], [11], [12], [20]. On other dimension, feature 

selection models like PCA (principal component analysis) 

[21], PSO (particle swarm optimization) [11], ICA 

(independent component analysis [21], [19] or GA-BPNN 

(genetic algorithm-back propagation NNs) have been 

utilized.  
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Regardless of whether these techniques yield improved 

performance in arrhythmia classification, several of them 

demand more computing time for classifier optimization. 

The use of preprocessing procedures or challenging 

categorization has not been suited for online computing or 

requires a greater amount of computer resources. 

Furthermore, in this research, we provide an overall speedy 

and automated arrhythmias classifier that can be deployed 

online and effectively evaluate ECG records. With the 

release of feature extraction criteria, we present a 

fundamental or basic application based on heart rates, raw 

signals, and individual lead data that attempts to reduce 

computation time while obtaining the lowest classification 

mistakes.  

Many of the cardiologists use raw ECG for the purpose of 

diagnosis. The fastest and easiest model of feature 

extraction is extracting the sampled points from signal 

curve of ECG. Nevertheless, one needs to be aware of 

reality that, quantity of extracted features, which have been 

utilized for heartbeat characterization might be a load to 

classification-algorithm. Many of the contributions, for this 

reason utilize raw signal for performing waveform down 

sampling some selection of feature to lower the 

computation time as in [10]. To evade this problem, the 

simple ML (machine learning) model has been elected for 

arrhythmias classification. One of the benefits of projected 

model is that amount of features affects classification 

speed as the aspects of classifier associated to input remain 

random and are not optimized. Hence, raw waveform of 

heart beat might be utilized for classification without 

negotiating in terms of speed. Moreover, this simple ML 

model enables rapid retraining of classifier when novel 

data from ECG become available.    

The organization of this paper contains an Introduction 

related to analytical progression scale for arrhythmia scope 

prediction from electrocardiograms has been discussed. In 

section 2, related work and several models for arrhythmia 

scope prediction from electrocardiograms have been 

explored. In section 3, methods and materials related to the 

proposed model have been discussed. In section 4, an 

experimental study has been carried out, and the proposed 

model has been compared with other contemporary 

models. In section 5, the conclusion of this article has been 

explained, followed by references 

2. Related Research 

Several researchers utilized ML algorithms, incorporating 

recurrent NN and multi-task Gaussian procedure 

approaches for estimating the variability of patient data, 

onset heart failure, and mortality of patient and further 

prescriptions. Moreover, their contribution has covered the 

way through (a) exhibiting the value of ML algorithms in 

medical domain (b) by showing that definite ML 

algorithms might be suitable for definite datasets & (c) by 

recommending that incorporating trend and temporal data 

enhances the approaches. Their outcomes strongly 

impacted the design of this contribution and also motivated 

us to utilize random forest a ML algorithm, which has been 

mainly applicable to our dataset. Also, work [22] utilized 

RNN (recurrent NN) approaches for identifying the 

commencement of heart failure. They utilized data from 

3884 cases of heart failure among 28903 cases from 16th 

may 2000 to 23rd may 2013. Furthermore, RNN approach 

has been adapted for identifying relations among 

prescriptions, process, and time-stamped diagnosis for 

overall instances. They finalized that utilization of time-

stamped data enhanced the deep-learning approaches 

performance for early identification of heart-failure at the 

time of observation from 12-18 months.  

Later, the work [23] proposed Doctor AI. The doctor AI 

utilized time stamped and RNN electronic health records 

from 2, 60,000 and among them there are 2128 physicians 

over 8 years of time for predicting the diagnoses and 

medications for the following visit relying on administered 

treatments at the time of earlier visits.  

Also, data utilized for Doctor AI has been extracted from 

MIMIC (medical information mart for intensive care) 

database. Moreover, they attained a recall of 79.58 and 

also exhibited adaptability of Doctor AI s by testing the 

approach on other company database without losing 

required accuracy. They have mentioned that Doctor AI 

drawback is that their false positives or inexact diagnoses 

might be damaging severely towards healthy patients when 

acted upon and hence Doctor AI must not be utilized 

without supervision of human.  

The contribution [24] utilized MIMIC database for 

gathering incomplete, heterogeneous, sparse, and noisy and 

irregularly sampled clinical data, by incorporating both 

clinical notes and physiological signals. They utilized 

multi-task Gaussian procedure approaches for estimating 

and evaluating the acuity of patient that is measuring the 

nursing care intensity needed by a patient. Most of acuity 

ranks depends on patient’s information and could not 

include clinical developed data such as lab values, events 

of chart or doctors’ notes. Furthermore, they endeavored 

for refining the acuity patients score by incorporating 

developing clinical data into estimation. Initially, they 

endeavored to predict the reactivity of cerebrovascular 

pressure that often signifies the scope of secondary brain 

loss like altered cerebral flow of blood or cerebral edema 

in brain traumatic injury patients. Also, they endeavored to 

utilize clinical progressing notes for estimating the 

mortality of patient.  

The work [25] presents that how accumulation of patient’s 

active sign trends for patients preceding measured 

momentary critical signs enlarged the predictive power 

approach. Moreover, they utilized the information on 

critical sign trends from 5 of the hospitals over the span of 

5 years in order to predict the transfer of hospital, death 
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and cardiac arrest. Ultimately, they defined that including 

the trends improved the accuracy while compared with 

approach comprising only momentary critical signs AUC 

of 0.78 vs 0.74.   

The study [26] projected 3-layer DGEC (deep genetic 

ensemble classifiers) for identification of cardiac 

arrhythmia by utilizing ECG signal. Furthermore, 744 

segments of imbalanced data from the 29 people ECG 

signal have been used, which are achieved from MIT-BIH 

arrhythmia database. 99.37% of accuracy has been 

achieved by this model with 0.8736 single samples 

classification time in identification of entire 17 kinds of 

arrhythmias.  

The work [27] proposed minimal complex and simple 

novel hexadecimal-ternary-pattern model for cardiac 

arrhythmia identification automatically. Moreover, they 

used multi-level feature extraction wavelet for 17 kinds of 

ECG arrhythmia & attained 95% of classification accuracy 

on signal of ECG attained from database MIT-BIH. The 

study [28] presents a nonlinear morphological feature 

based automatic heartbeat classification and higher voting-

based strategy known as ICEEMED, by utilizing 

arrhythmia database called MIT-BIH. In this approach, 

they extracted significant ECG signals features, where they 

utilized for classifying distinct arrhythmia types. Their 

approach attained 90.4% of classification accuracy & 

100% on unknown and fusion classes. Regardless of these 

prominent outcomes of this model, some of the heartbeat’s 

performance such as aberrated atrial, junctional premature-

beats, supra-ventricular and atrial-premature contraction 

has been low still and requires to be enhanced when 

compared with other classes. Also, they carried out that, 

their approach might be utilized for monitoring the system 

in real-time in healthcare.   

The study [29] presented new evolutionary neural model 

by utilizing SVM classifier. Moreover, in this contribution, 

they examined longer ECG signal fragments for 

categorizing 17 ECG arrhythmia classes on arrhythmia 

database called MIT-BIH.  

The contribution [30] utilized arrhythmia database called 

MIT-BIH for signal classification of ECG of 17 kinds of 

arrhythmia by using novel genetic-ensemble classifiers 

model depending on SVM. Furthermore, their approach 

attained maximal classification accuracy as 98.99%, 

sensitivity as 91.40% and specificity as 99.46%. Moreover, 

it is possible for applying this approach on mobile-devices 

because of their minimal computational complexity. 

Nevertheless, because of inadequate appropriate signals in 

database called MIT-BIH, this approach has been tested 

with minimal amount of ECG signal fragments such as 

[29].  

The study [31] presented a new technique for effective 

classification of 17 cardiac arrhythmia types by utilizing 

1000 fragments from ECG signals from a database called 

MIT-BIH for 1 lead, MLII, from 45 patients. Moreover, 

their approach attained maximal classification, where 

specificity is 99.93%, accuracy is 98.85%, sensitivity is 

90.20% and classification time for 1 sample is 0.0023. 

Nevertheless, because of inadequate suitable signals in 

database MIT-BIH, this approach has been examined with 

minimal amount of ECG-signals fragments identical to 

projected approaches of [30] [29].  

The models in the contributions [32] [33] presented the 

heartbeats classification as negative or positive. The 

former study ESCPF stated in [32] depicted regression-

heuristics.  Nevertheless, the model confines to train only 

internal-subjects, & accuracy has been offensive when the 

specified training data is having higher dimensionality. 

Also, similar confines have occurred in other existing 

methods, which categorizes the heartbeat called ARTM 

(Automated real-time model) [33], [34]. 

3. Materials and Methods 

The projected model of detecting the scope of arrhythmia 

from ECG has been described in this section. Moreover, 

this section, we have divided into several subsections that 

covers information regarding the data along with their 

framework utilized in the projected approach, the adopted 

approach is to detect the optimum features for training the 

classifier, which has been elaborated in other subsection 

Dataset and Records format 

Let dataset  ECG   represents reports set of ECG of 

subjects in digital format that have been labeled as either 

positive or negative. The ECG has been an input corpus 

should divide into 2 sets ,E E
+ −   that comprises the 

records as positive as well as negative labeled respectively. 

The order or ECG elements should be divided into tuples 

of  n  size. Every tuple t   of each ECG depicts the order 

of elements of   n  size of corresponding 

electrocardiogram. Each electrocardiogram reflects the set 

of tuples of size n . 

Further, for each label{ , }positive negative for 

each electrocardiogram{ , }
i i

ecg ecg
+ −

, for each tuple

    , , ,
j j i i j j i i

t t ecg ecg E t t ecg ecg E
+ + + + − − − −

+ −
     

, find the status-indicators{ , , , }o h l e representing the 

“open”, “high”, “low”, and “end” value of the 

corresponding tuple in respective order. 

Moving averages of the status-indicators of the given 

electrocardiogram signals of both positive and negative 

classes will be calculated using the obtained values of each 

status-indicator of each tuple of each electrocardiogram, 

where coefficient represents the sequence of the values 

considered to assess moving averages. For each status-

indicator of the metric, the moving averages will be 

evaluated as follows: 

These set of status-indicators of each electrocardiogram 

shall be considered as features to train the model that 
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predicts the arrhythmia scope from the given unlabeled 

records.  

Further, the resultant moving averages of status-

indicators of electrocardiograms of both positive and 

negative labels shall present as two-dimensional matrices

,M M
+ − . Each of these matrices reflects the moving 

averages of status-indicators of electrocardiograms of 

positive and negative label in respective order. 

Each 
th

i row of these matrices presents the moving 

averages of status-indicators of the 
th

i record 

(electrocardiogram) of the set E E
+ − label 

represented by corresponding matrix M M
+ − . Each 

th
j column of the matrix represents the 

th
j  status 

indicators’ moving averages of the all records 

(electrocardiograms) of the set E E
+ − label 

represented by corresponding matrix M M
+ − . 

Matrix template is figure 1 

 

Concerning to the proposed model, the features are the 

status indicators’ moving averages (open, high, low, and 

end) of the n-tuples of the input electrocardiograms of both 

positive and negative labels. The status indicators of 
th

i

tuple of all electrocardiograms of both positive label and 

negative label shall be considered as optimal if and only if 

the corresponding status indicators of positive label and 

negative label reflects distribution diversity. 

 

The proposed model discovers the optimal features, which 

are the status-indicators of the column having diversity 

between matrices ,M M
+ − . The 

th
j column of the 

matrices is said to be optimal, if and only if the 
th

j column 

of the matrix M
+ and the

th
j column of the matrix M

−

shall have diversity in distribution. The proposed approach 

discovers optimal features (status indicators) of the both 

labels using distribution diversity measure called Wilcoxon 

Rank Sum Test (WRS-Test) 

 

 

 

 

 

 

 

 

 

 

 

 

( )find moving averages sM− −   Begin //discovers moving averages for all status-indicators sM of 

electrocardiogram signal ecg   

( )

( ) 
| |

1

sM mac mac
o

sM j
p

j i

ma sM o
−

=
=

 
=   

 
  

// status-indicator open-value’s Moving average of the 

electrocardiogram 

( )

( ) 
| |

1

sM mac mac
h

sM j
p

j i

ma sM h
−

=
=

 
=   

 
  

// status-indicator high-value’s Moving average of the 

electrocardiogram 

( )

( ) 
| |

1

sM mac mac
l

sM j
p

j i

ma sM l
−

=
=

 
=   

 
  

// status-indicator low-value’s moving average of the 

electrocardiogram 

( )

( ) 
| |

1

sM mac mac
e

sM j
p

j i

ma sM e
−

=
=

 
=   

 
  

// status-indicator end-value’s moving average of the 

electrocardiogram 

End  

 , , ,
o h l e

SM sM sM sM sM
ma ma ma ma ma  // moving average coefficients of status-indicators 

  

Return sM
ma   

End  
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Figure 1- Two-dimensional matrix representation of the status-indicators 

 

Feature Optimization by distribution diversity measure 

The distribution state diversity of the specified 2 datasets 

might represent through a distance metric known as WRS-

test (Wilcoxon rank sum) as stated in [34]. This test does 

not need information regarding the distribution type of the 

data, which is a conventional need of the data stream 

concepts. The description of the WRS-Test implementation 

process is as follows: 

Let the 2 vectors values be 1 2
,v v  . Also, the 

above stated test might implement in order to evaluate 

these 2 vectors distributions are same or different in the 

following way:Initially, all the entries of vectors 1 2
,v v are 

moved to new vector v . Further, sort the vector v  in 

ascending order of the values and let the indices of the 

ordered values of the vector v as corresponding ranks R

.The average of the indices assigned to the identical values 

will be the rank of all the respective identical values. 

Further description denotes the ranks assigned to the 

values of the vector 1
v  as set 1

R and the ranks assigned to 

the values in vector 2
v as set 2

R . Later the process finds 

the aggregate of the entries in set 1
R as 1

RS , which is 

further used to determine the rank sum threshold 1
RST  of 

the vector 1
v  as follows: 

 

 

 

1 2
( , )wrs test v v−  Begin The function of Wilcoxon rank sum test 

1 1

1 1

| | (| | 1)

2

v v
RST RS

 +
= −   

// the notation 1
| |v  denotes the size of the vector 1

v . 

Similarly, the rank sum threshold 2
RST  of the vector 2

v  will be determined as follows 

2 2

2 2

| | (| | 1)

2

v v
RST RS

 +
= −   

// the notation 2
| |v  denotes the size of the vector 2

v , and 

the notation 2
RS  denotes the sum of the ranks of the 

entries in vector 2
v  those listed in set 2

R . 

1 2
RST RST RST= +  Then the rank sum threshold RST of the entries in both 

vectors 1 2
,v v is the sum of rank sum thresholds 

1 2
,RST RST  of the vectors 1 2

,v v . 

Then find the z-score [35]: 

2
RST

RST
m =   

Initially, find the mean RST
m  
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( )

1 2

3

1 2

1

| | * | | *(| | 1)

| |

| | * | |
| | 1

| | | | *(| | 1)

RST
k

i i

i

v v v

v
d

t tv v
v

v v v=

 +
− 

 
=  

 − + −  −  


 

//find and standard deviation RST
d , the notation k  

denotes the number of distinct ranks, i
t  denotes the 

number of entries sharing the same rank i  

RST

RST

RST m
z

d

−
=  

z-core assessed 

( )(if pValue p return true else  return false Then find the p-value pValue of the depicted z score in 

z-table [36]. If the p-value found to be greater than the 

given probability threshold (usually 0.01, 0.05, or 0.1) then 

the distribution of the vectors 1 2
,v v  found to be 

diversified, else the distribution is similar. 

 

Analytical Progression Scale 

The analytical progression scale that proposed to predict 

the arrhythmia scope in electrocardiogram is detailed in 

this section. The APS, initially partitions the given training 

dataset ECG of electrocardiograms having positive label 

as one set E
+  and the electrocardiograms labeled as 

negative as other set. Further, for each dataset ||E E
+ − , 

for each electrocardiogram{ || }ecg ecg
+ − , partitions in to 

set of tuples, and finds status indicators open, high, low, 

and end{ , , , }o h l e for each tuple{ }t t eT  of the set

eT contains all the partitioned tuples of the corresponding 

electrocardiogram{ || }ecg ecg
+ − . Further, for each 

electrocardiogram { || }ecg ecg
+ − discovers the status 

indicators’ moving averages of the corresponding 

partitioned tuples eT . Afterwards, the resultant status 

indicators’ moving averages discovered from the 

electrocardiograms of the set E
+ shall be projected as 

matrix M
+ with two dimensions, and projects a two 

dimensional matrix M
− represents the status indicators’ 

moving averages discovered from the electrocardiogram 

signals of the set E
− . These projected matrices ,M M

+ −

shall be used further as input to determine the optimal 

features using distributed diversity measuring method 

WRS-Test. The resultant columns of the matrix, those 

representing optimal features of both labels shall be used 

further to derive analytical progression scale. The 

algorithmic model of the APS follows. 

//for electrocardiograms with positive label// 

 
| |

1

E

i
e e E

+

+
=
    Begin // for each electrocardiogram e of 

the set E
+  

 

   
| |

1

j ne

x
j x j

eT et y j j n
+

= =

 
     = + 

 
 

//partitioning the y-coordinates of the given 

electrocardiogram e in to multiple tuples 

    
| |

1
, , , , , ,

eT

j
j

sM o h l e o h l e t
=

   

 //collects status-indicators { , , , }o h l e of each 

tuple j
t of the given electrocardiogram e  

[ ] ( )M i find moving averages sM
+

 − −  

End 

//for electrocardiograms of the negative label// 

 
| |

1

E

i
e e E

−

−
=
    Begin // for each electrocardiogram e of 

the set E
−  

 

   
| |

1

j ne

x
j x j

eT et y j j n
+

= =

 
     = + 

 
 //partitioning the y-coordinates of the given 

electrocardiogram e in to multiple tuples 

    
| |

1
, , , , , ,

eT

j
j

sM o h l e o h l e t
=

   

 //collects status-indicators { , , , }o h l e of each 

tuple j
t of the given electrocardiogram e  

[ ] ( )M i find moving averages sM
−

 − −  

End 

// optimal feature selection// 

 1,2,3, ...,foreach j n=  Begin // 

 [ , ]

1

m
i j

i
c M
+ +

=
   // collecting all the values of the 

th
j column of the matrix M

+  

 [ , ]

1

m
i j

i
c M
− −

=
   // collecting all the values of the 

th
j column of the matrix M

−  
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( ) 
| |

1

1
*4

c

k k k k
k

v o h l e
+

−

+
=

  + + +  //finding the 

average of each set of status indicators listed in c
+  

( ) 
| |

1

1
*4

c

k k k k
k

v o h l e
−

−

−
=

  + + +  //finding the 

average of each set of status indicators listed in c
−  

( ( , ))if wrs test v v
+ −

−  Begin // find the diversity 

between two vectors ,v v
+ − is true or false 

oF v
+ +
  // preparing a matrix oF

+ representing 

the optimal features of the positive label 

oF v
− −
  // preparing a matrix oF

− representing 

the optimal features of the negative label 

End 

// discovering analytical progression scale measures for 

negative label// 

 1,2,3, ...,foreach j n=  Begin // 

[ , ]

1

1 m
j i j

i

oF
m


− −

=

=   // finding the mean
j
−  of the 

th
j column of the matrix oF

−  

2

[ , ]

1

m
j i j

jj

oF

m




− −

=

−

 −
 

=


 // finding the deviation

j
−  of the 

th
j column of the matrix oF

−  

j j j

j j j

l

u

 

 

− − −

− − −

= − 


= + 

 // finding lower and upper bound of the 

th
j column of the matrix oF

−  

End 

// discovering analytical progression scale measures for 

positive label// 

 1,2,3, ...,foreach j n=  Begin // 

[ , ]

1

1 m
j i j

i

oF
m


+ +

=

=   // finding the mean
j
+  of the 

th
j column of the matrix oF

+  

2

[ , ]

1

m
j i j

jj

oF

m




+ +

=

+

 −
 

=


 // finding the deviation

j
+  of the 

th
j column of the matrix oF

+  

j j j

j j j

l

u

 

 

+ + +

+ + +

= − 


= + 

 // finding lower and upper bound of the 

th
j column of the matrix oF

+  

End 

Label prediction by APS 

For a given electrocardiogram ecg , the label shall be 

predicted using APS as follows 

 

   
| |

1

j necg

x
j x j

eT et y j j n
+

= =

 
     = + 

 
 

//partitioning the y-coordinates of the given 

electrocardiogram ecg in to multiple tuples 

    
| |

1
, , , , , ,

eT

j
j

sM o h l e o h l e t
=

   

 //collects status-indicators { , , , }o h l e of each 

tuple j
t of the given electrocardiogram ecg  

( , , , ) ( )ma o h l e find moving averages sM − −  

( )
4

ecg

ma

o h l e


+ + +
=   //finding average of the status-

indicators of the electrocardiogram ecg  

Find the weight of the mean
ecg

ma
 towards positive and 

negative label as follows 

 
1

1
1

n
ecg j j j

ma

j

aps l u
n


+ + +

=

=     // finding weight

ecg
aps

+  of the mean
ecg

ma
 towards positive label 

 
1

1
1

n
ecg j j j

ma

j

aps l u
n


− − −

=

=     // finding weight

ecg
aps

−  of the mean
ecg

ma
 towards negative label 

( )ecg ecg
if aps aps

+ −
  Label the given 

electrocardiogram as positive (prone to arrhythmia) 

else  Label the given electrocardiogram as negative 

(benign) 

4. Experimental study 

The focus is on examining the effectiveness of projected 

approach as well as other contemporary relative trend 

approaches that have been utilized in standard datasets. 

Also, the prominence of the approaches has been measured 

significantly by concentrating on outcomes noticed for the 

important metrics such as Sensitivity, F-measure, 

specificity, accuracy, matthews correlation coefficient 

(MCC) and precision. The suggested model APS has been 

compared with other contemporary models ARTM [33], 

[34], [35] and ESCPF [32], [36] in order to forecast the 

arrhythmia scope in ECG.  

The dataset  

In this, the dataset used in the simulation is ECG heart beat 

classification dataset (EHCD) [37], [38], [39], [40], [41] 

which have been significantly utilized in existing research 

contributions for assuring the responsibility of 

experimental analysis of projected and other existing 

approaches. Moreover, the digital depiction of ECG 
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waveforms, which have been gathered from database 

EHCD is bee utilized for examining the proposed and 

existing models’ performance.  

 

Table 1: standard deviation mean values of the 

performance metrics has been listed  

METRICS APS ESCPF ARTM 

ACCURACY 0.97±0.003

3 

0.92±0.005

5 

0.88±0.010

4 

FMEASURE 0.97±0.003

8 

0.95±0.002

9 

0.91±0.007

0 

MCC 0.92±0.007

7 

0.82±0.011

2 

0.73±0.022

1 

PRECISION 0.98±0.002

0 

0.97±0.001

6 

0.95±0.004

1 

SENSITIVIT

Y 

0.97±0.004

3 

0.92±0.008

0 

0.88±0.012

1 

SPECIFICIT

Y 

0.97±0.005

6 

0.93±0.004

1 

0.88±0.009

5 

 

Precision 

 
Figure 2- Value of precision perceived for the suggested 

model APS and other contemporary models ARTM and 

ESCPF over the 10 folds 

The precision metric reflects on diversified rations noticed 

as positive for the cumulative false records set that have 

been signified as positive result. Graph is depicted for 

tenfold cross validation values of the metric precision 

estimated for the suggested model APS and comparison 

contemporary models ARTM and ESCPF as shown in 

figure 2. The average weight of precision of the APS, 

ARTM, and ESCPF are 0.98±0.0020, 0.95±0.0041 and 

0.97±0.0016 respectively. It has been finally concluded 

that, the performance of APS in terms of precision is more 

effective and added an advantage while compared to other 

contemporary models used in the study ARTM and 

ESCPF.  

Specificity 

The specificity metric has been used in order measure the 

performance of suggested model and contemporary models 

of this contribution. Specificity is defined as ratio of 

correctly selected labeled records that are negative when 

compared to actual number of negative records specified as 

input in phase of testing. Graph is depicted for tenfold 

cross validation values of the metric specificity estimated 

for the suggested model APS and comparison 

contemporary models ARTM and ESCPF as shown in 

figure 3. The average standard means deviation of 

specificity for the APS, ARTM, and ESCPF are 

0.97±0.0056, 0.88±0.0095 and 0.93±0.0041 respectively. It 

has been finally concluded that, the performance of APS in 

terms of specificity added an advantage while compared to 

other contemporary models used in the study ARTM and 

ESCPF. 

 

 
Figure 3- Value of specificity perceived for the suggested 

model APS and other contemporary models ARTM and 

ESCPF over the 10 folds 

Sensitivity 

Graph is depicted for tenfold cross validation values of the 

metric sensitivity estimated for the suggested model APS 

and comparison contemporary models ARTM and ESCPF 

as shown in figure 4. The average standard means 

deviation of specificity for the APS, ARTM, and ESCPF 

are 0.97±0.0043, 0.88±0.0121 and 0.92±0.0080 

respectively. From the statistics, it has been concluded that, 

the performance of APS in terms of sensitivity is more 

superior while compared to other contemporary models 

used in the study ARTM and ESCPF.  
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Figure 4-  Value of sensitivity perceived for the suggested 

model APS and other contemporary models ARTM and 

ESCPF over the 10 folds 

Accuracy 

 

Figure 5: Value of accuracy perceived for the suggested 

model APS and other contemporary models ARTM and 

ESCPF over the 10 folds 

Graph is depicted for tenfold cross validation values of the 

metric accuracy estimated for the suggested model APS 

and comparison contemporary models ARTM and ESCPF 

as shown in figure 5. The average standard means 

deviation of accuracy for the APS, ARTM, and ESCPF are 

0.97±0.0033, 0.88±0.0104 and 0.92±0.0055 respectively. 

From the statistics, it has been concluded that, the 

performance of APS in terms of accuracy is more superior 

while compared to other contemporary models used in the 

study ARTM and ESCPF.  

F-Measure 

The metric F-measure reflects the relation among recall 

and precision considered for the system accuracy. Graph is 

depicted for tenfold cross validation values of the metric F-

measure estimated for the suggested model APS and 

comparison contemporary models ARTM and ESCPF as 

shown in figure 6. The average standard means deviation 

of F-measure for the APS, ARTM, and ESCPF are 

0.97±0.0038, 0.91±0.0070 and 0.95±0.0029 respectively. 

From the statistics, it has been concluded that, the 

performance of APS in terms of F-measure is more 

effective while compared to other contemporary models 

used in the study ARTM and ESCPF. 

 

Figure 6: Values of F-measure perceived for the suggested 

model APS and other contemporary models ARTM and 

ESCPF over the 10 folds 

MCC 

 

Figure 7- Values of MCC perceived for the suggested 

model APS and other contemporary models ARTM and 

ESCPF over the 10 folds 

The MCC metric considers often for evaluating the quality 

all over the binary classifications that has been utilized for 

measuring the overall 3 approaches performance. Graph is 

depicted for tenfold cross validation values of the metric 

MCC estimated for the suggested model APS and 

comparison contemporary models ARTM and ESCPF as 

shown in figure 7. The average standard mean deviation of 

MCC for the APS, ARTM, and ESCPF are 0.92±0.0077, 

0.73±0.0221 and 0.82±0.0112 respectively. From the 

statistics, it has been concluded that, the performance of 

APS in terms of MCC is higher marginally while 

compared to other contemporary models used in the study 

ARTM and ESCPF. 

5. Conclusion 

Reducing false alarming in arrhythmia prediction from 

electrocardiograms using machine learning is the objective 

of this contribution. Concerning this, a novel Analytical 

progression Scale (APS) has been proposed in this 

manuscript. The given labeled electrocardiograms have 

been used to define the scales those reflect the prediction 

of arrhythmia scope in given electrocardiogram. Moving 

averages of the open, low, close, and end of each tuple of 

the electrocardiogram shall be taken as features, which 

represents in matrix format. Further discovers optimal 

features to by using diversity measures. Further derives 

Analytical progression scales for both positive and 

negative label. The results obtained for statistical 

assessment metrics of the 10-fold cross validation have 
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compared with the other contemporary methods, which 

concluding that the proposed model outperforming the 

contemporary models with minimal false alarming. The 

future research shall consider the pattern of features 

introduced in this manuscript to define a appropriate 

fitness method for soft computing models 
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