

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 343–347 | 343

Worst-Case Execution Time Analysis of Mixed Critical Applications on

Multicore Systems

Preeti Godabole1, G. P. Bhole2

Submitted: 06/06/2022 Accepted: 10/09/2022

Abstract: Multicore technology, which has previously been effective in general-purpose computers, is now making inroads into embedded

systems. While this improves performance, it also raises the question of how to distribute software activities to the hardware platform's

cores, because different allocations have varied added functional features. With the use of multicores, the tasks’ execution time varies in

an unpredictable fashion. Many scheduling problems in autonomous cars and avionics systems are mixed critical as they comprise tasks at

different critical levels. The primary purpose of this research is worst-case execution time analysis and system makespan evaluation of

fault-tolerant mixed critical applications. The study considers priority-based task scheduling algorithms for multicore critical systems. The

work has considered distinct parameters of evaluation namely deviation in actual execution time, system makespan, and fault- tolerance.

The experimentation on a real-time kernel indicates, that GEDF has minimal deviation of only 4.6% in the execution times as compared to

PEDF which is 15.8% when active backups of high critical tasks are added to the system. The global approach outperforms the partitioned

approach for the considered parameters in a mixed-critical application.

Keywords: Multicore Critical Systems (MCSs); Real–Time Scheduling; Partitioned Scheduling (PS); Global Scheduling (GS);

Multiprocessor (MP).

1. Introduction and Motivation

Modern multicore (MC) critical systems are getting more

performance-intensive as a result of the fact that, on the

one hand, they feature more complicated functionality

than previously, and, on the other hand, functionality that

was traditionally implemented with hardware is

progressively being shifted to software. In the design of

systems that are set in real-time, integrating components

with varied degrees of criticality into a single computing

platform is becoming an increasingly relevant topic.

Concurrently, these platforms are undergoing a transition

of hardware (HW) from single-core to multi-core to

many-core architectures in the near future. If a component

in a system requires a higher level of assurance against

failure, it is characterised as essential. “Mixed-Criticality

Systems (MCS)” are structures that have components that

fall under two or more unique crucially levels, such as

“safety-critical, mission-critical, and non-critical,”

amongst others. The timing analysis of mixed critical

systems is crucial and is essential for the system design.

1Research Scholar,

Dept. of Computer Engineering and Information Technology,

Veermata Jijabai Technological Institute, Mumbai, India.

pgodabole_p16@ce.vjti.ac.in
2Dept. of Computer Engineering and Information Technology,

Veermata Jijabai Technological Institute, Mumbai, India.

gpbhole@ce.vjti.ac.in

The resource allocation process denotes the job and

collation of the activities and their communications onto

the resources of a MC system. This is done with the

intention of optimising certain parameters, like

“makespan of the system, reliability, memory requirement

and energy usage.” The makespan can be defined as the

overall length of time required to complete the tasks on

processors. Let tf be the final completion time of tasks

executing on processor Pi, the makespan of the whole

system is then the maximum of schedule length of

processors, that is-

tf = max{tf (Pi)| i ∈ [1, 2, ··· , m]} (1)

Where m is the number of processor cores in the system.

Majority of the research in scheduling MC system is done

on single processor systems. Few of the researchers have

considered multi-processor systems for scheduling MC

systems for periodic and sporadic task models with

deadline as the constraint. Some of the work is also carried

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 343–347 | 344

on achieving fault tolerance in MC system (Hongxia Chai

et.al, 2018). This work focuses on combining two

parameters, makespan and fault tolerance as in (H.

Youness et.al, 2021). The system model and mixed critical

task model is expressed in section 2. Section 3 covers the

evaluation of the makespan and WCET analysis of the

major priority-based algorithms. The conclusion and

future work is covered in section 4. The main

contributions of the paper are –

- Computation of the worst-case execution time of

mixed critical applications on a real-time Linux-

based kernel.

- Evaluation of the priority-based both static and

dynamic scheduling algorithms are covered based

on the makespan of the system.

- Fault tolerance and Makespan used as parameters

for evaluation. The transient errors are solved

using re-execution of the active backups to make

the system fault- tolerant.

2. Literature Review

Deploying applications in real-time on MC is difficult as

concurrent operations can intervene with collective

resources, confounding worst-case timing analyses

(Giannopoulou, et al. 2017). Researchers suggest

Isolation Scheduling (IS) to solve this problem. It provides

an outline to arrange jobs for multicore applications in

real-time. IS enforces mutually exclusive task class

execution, preventing inter-class interference. This cited

paper proposes and analyses two unique IS approaches: a

universal method based on a partitioned approach as well

as fluid scheduling and on hierarchical server scheduling.

(Sneha Chattopadhyay et.al; 2011) measurement-based

analysis to estimate worst-case execution time (WCET).

The periodic tasks were emulated to estimate the WCET

of the program. The technique is independent of the

program semantics. (Saifullah, et al. 2013) points out that

MC processors outperform single-core processors. They

can enable real-time applications that require a lot of

processing power and must adhere to rigorous deadlines

that single-core processors can't meet. Old-style MP real-

time scheduling uses models of sequential programming

and ignores parallelism within tasks. The authors extend

their study to a “directed acyclic graph (DAG)” task

model with unit implementation requirements. These can

be changed into synchronic tasks with the similar

decomposition and extension bounds. Synthetic workload

recreations show safe and sufficient resource

augmentation bounds. (Sanjoy Baruah et.al; 2016)

analysed the workload on homogeneous multiprocessor

system for a simple mixed critical application. The pre-

emptive and non-pre-emptive scheduling algorithms are

used to minimize the makespan of the system.

(AntoninNovak et.al; 2019) proposed a linear integer

programming-based approach to reduce the uncertainty of

the processing times in mixed critical applications. The

approximation algorithm minimizes the makespan of the

system. The work carried out by (Sanjoy Baruah et.al,

2016 and AntoninNovak et.al; 2019) forms the basis of

this study to evaluate the global and partitioned

scheduling algorithms based on the makespan of the

system and the execution time of the tasks. (Hongxia Chai,

2018) explored the mixed critical systems and has

identified that fault tolerance is ignored by many of the

researchers as a design requirement. So, this study

considers transient faults occurring at the end of execution

of the tasks while finding the makespan of the system.

Cluster-based Scheduling has become increasingly

important for using real-time MC systems on multicore

processor platforms. In these approaches, the cores are

divided into clusters, and each cluster of the global

scheduler schedules the partitioned tasks among different

clusters (N.KIM et.al, 2016). Cluster-based scheduling

can be used when there are a large number of cores. (H.

Youness et.al; 2021) proposed a new parameter,

“weighted average makespan” to evaluate the mixed

critical applications. The optimization of the schedule

length and system reliability was done using the newly

introduced measuring parameter.

Summary of the Review and Gaps identified

- Worst-case Execution Time analysis becomes

unpredictable when multicores are used in MC

systems.

- Fault-Tolerance as a design parameter is ignored

and needs attention on multicore MC systems

- Makespan of the system is an important parameter

that can be combined with fault tolerance to meet

the timing constraints of MC system.

3. System Model

This section describes the semantics of the MC system and

the problem that the work is trying to solve. Also,

highlights the priority based scheduling algorithms used

in the study.

1. A collection of mixed critical jobs J = {J1, J2…Jn}

is characterised by the following parameters {CL,

Ci, Ti}, with CL ∈ {LOW, High} representing the

critical levels of the jobs, Ci is the worst-case

execution time of the task and Ti is the time

period.

2. A homogeneous quad-core system with real-time

Linux-based kernel is used for recording the

actual execution times (ACET) of the task, which

eventually is used to calculate the makespan of the

tasks and the system makespan as in equation 1.

3. The transient faults are temporarily assumed to be

occurring at the end of the execution of the job.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 343–347 | 345

To make the system fault-tolerant many

mechanisms exist in the review like the use of

specialised hardware, backups, re-execution and

rollback ((E. A. Rambo and R. Ernst, 2017); (S.

Barauah, 2017)). The strategy of active backups

of high critical tasks is used to achieve fault

tolerance in the MC system. Two copies of the

backups are assumed to be running along with the

primary copy at any instance of time. Two copies

are maintained as per the triple redundancy model

to achieve fault tolerance.

Problem Statement

Given a task set J with n mixed critical jobs along with the

active backup of high critical jobs, identify a schedule that

minimizes the makespan of the schedule on a

homogeneous quad-core system. On an m processor

system, the lower bound of the makespan of the system is

given by (S. K. Baruah et.al, 2016) where Ci is the actual

execution time of the job Ji -

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑀𝐴𝑋
{∑ 𝐶𝑖 (𝐿𝑂𝑊)

𝐽𝑖∈J ∑ 𝐶𝑖 (𝐻𝑖𝑔ℎ)}

𝑚
 (2)

The upper bound is –

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑀𝑎𝑥 ∑ 𝐶𝑖𝐽𝑖 ∈J (3)

Scheduling Algorithms

The scheduling algorithms used in MC systems are

majorly classified into two categories-

Global Scheduling (GS) - Tasks are distributed evenly

across all processors in a system using global scheduling.

Every task is stored in a single priority queue, from which

it may migrate to any of the available processors. One of

the most significant benefits of using global scheduling is

that it eliminates the challenge presented by the issue of

task assignment in PS. This is because all of the tasks are

distributed evenly across all of the system's processors.

Partitioned Scheduling (PS) – In the partitioned approach,

migration of tasks is not permitted method because each

task is allocated to a dedicated processor. Every processor

has its scheduler, each with their own distinct task run

queue, and there is no room for relocation while the

system is active. The primary advantage of utilising

partitioned scheduling is that once a task has been

assigned to a specific processor, the prevailing algorithms

for uniprocessor scheduling can be used to schedule the

task onto the processor. The second advantage of using PS

is that there is no migration overhead associated with it.

This makes queue management much simpler. Under the

partitioned scheduling method, the utilisation of the

system is low, and whether the overall utilisation of the

task set ranges a little higher than fifty percent, then it is

possible that the deadline will not be met (Akram, N.,

Zhang et.al, 2019).

Cluster scheduling (CS) – It is a mixture of PS and GS.

Tasks are first partitioned into groups, then allocated to

clusters, which are collections of processors, and finally

scheduled universally within the cluster.

The scheduling mechanisms are also categorized based on

the way priorities are assigned to the tasks. The priorities

may be assigned statically which remains fixed as in rate

monotonic or fixed priority scheduling. The priorities vary

dynamically based on their deadlines as in the earliest

deadline first (EDF). In this work, we cover three

algorithms Partitioned EDF (PEDF), Global EDF(GEDF),

and Partitioned fixed-priority(PFP) to evaluate on the

basis of makespan and worst-case execution time.

4. Results and Discussions

The mixed critical applications are scheduled with three

different policies PEDF, GEDF and PFP to identify the

actual execution time of the jobs. The simulation is carried

on a real-time Ubuntu kernel on a quad-core platform with

all identical processors.

Experiment 1 – The main objective of this experiment is

to identify the deviation in the ACET when active back-

ups are to be maintained. The MC application consists of

six tasks with three tasks at a high critical level and three

tasks at a low critical level are all released at time 0; is

simulated to find the actual execution time. First, the

simulation is carried out with only primary tasks and

ACET is measured as in figure 1a. Two backups of the

high critical jobs are maintained to achieve fault tolerance,

so in all there are 12 tasks (6 primary and 6 backups of

high critical jobs with two backups for each high critical

job). Now, the measurement of ACET is shown in Figure

1b.

Figure 1a- ACET of tasks without backups

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 343–347 | 346

Figure 1b- ACET with active backups of high critical

jobs

Though the worst-case execution time is considered while

simulating the MC tasks, there is variation in the

execution times when active backups of high critical tasks

are considered to achieve fault tolerance. The actual

execution time of the tasks is same as assumed WCET

when the backups of the tasks are not considered as in

figure 1a in all three algorithms. But, with the presence of

the active backups of the high critical tasks, the actual

execution time is changing drastically in PEDF and PFP.

The deviation in the ACET of the jobs of the synthetic task

set is shown in Table I. Column 3, 5, and 7 in the table

gives the worst-case ACET of each of the task including

the six active backups for three different algorithms.

Column 4, 6 and column 8 gives the deviation of the actual

execution time when active backups along with primary

tasks are considered w.r.t to only the primary tasks. The

average deviation of the tasks ACET when active backups

are introduced with PEDF scheduling is around 15.8%,

with GEDF is 4.6% and with PFP it is 37.66%. The

allocation of tasks to processors in partitioned scheduling

is based on the utilization factor of the tasks. Global

approach is better as compared to partitioned approaches.

If the allocation of the tasks in PEDF is based on other

parameters along with utilization factor, the deviations

can be reduced. Optimization of task allocation to

minimize the deviations in ACET can be the future

direction of work.

Table I: Deviation in ACET for different scheduling

algorithms for synthetic task set with 6 tasks and around

600 jobs

Ta

sk

C

i

AC

ET-

PE

DF

Devia

tion

AC

ET-

GE

DF

Devia

tion

AC

ET-

PFP

Devia

tion

T1 1 2.33

90.50

% 1.37

22.44

% 3.20

169.8

4%

T2 2 2.14

0.00

% 2.04

0.00

% 2.14

0.00

%

T3 3 2.98

0.00

% 3.01

0.00

% 3.12

0.00

%

T4 1 1.16

0.00

% 1.05

0.00

% 1.28

9.52

%

T5 2 2.13

0.00

% 2.09

0.00

% 2.31

0.00

%

T6 1 1.10

4.45

% 1.09

5.24

% 1.66

46.60

%

Experiment 2-

The main aim is to evaluate the scheduling algorithm

based on the system makespan. The makespan of the job

is the overall length of time required to complete the tasks

on processors. The makespan of the whole system is the

maximum of schedule length of processors. The ACET of

each task is used to evaluate the makespan of the system

when the schedule is made using both global and

partitioned approaches. The system makespan is evaluated

based on the upper bound as in equation 2. The aim is to

identify the scheduling strategy that minimizes the

makespan when the system has both primary and active

backups of high critical tasks. The experimentation is

carried out on a homogeneous quad-core platform and the

results of the makespan for all three algorithms is shown

in table II. All the values are in milliseconds and P0-P3

represent processor cores. The allocation of tasks to

different processors is done based on the first-fit

decreasing utilization algorithm.

GEDF

m=4

PEDF

m=4

PFP

m=4

GEDF

m=2

P0 Core 4.21 8.55 8.74 9.09

P1 Core 6.53 6.62 8.34 7.29

P2 Core 5.22 3.40 5.46 -

P3 Core 1.04 0 0 -

System

Makespan 6.53 8.55 8.74

9.09

Table II: System Makespan on a quad core platform

The results indicate the global approach outperforms the

partitioned approach when the makespan of the system

has to be minimized. This indicates the need to improve

the task allocation mechanism in partitioned approaches.

Also, the number of processor cores is minimized to check

the system makespan in case of a global approach. This

acts as a system design parameter. The partitioned

approaches are unable to schedule the task set with only

two processors as all the tasks are unable to meet the

deadlines. Hence, the system makespan is calculated only

for GEDF on a two-processor platform. The system

makespan where GEDF schedules the task set with two

cores is mentioned in the last column of Table II. There is

a rise of around 39% in the system makespan when the

number of processor cores are reduced to 2.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 343–347 | 347

Conclusion

The study evaluated partitioned and global scheduling

algorithms based on some distinctive parameters like

deviation of actual execution times and system makespan

in a fault-tolerant environment. Partitioned scheduling

wastes resource capacity and causes work splitting

problems. Global scheduling has a high overhead for task

migration and queue management. Though, the global

approach has a high overhead it gives a minimal deviation

of only 4.6% in the execution times of the synthetic

mixed-critical task set when the active backups of the high

critical tasks are added to achieve fault tolerance. Also,

the system makespan is minimal when global scheduling

is used. The experimentation indicates that multi-core

real-time scheduling is needed to minimize the system

makespan. The PEDF has a higher deviation in worst-case

execution times as compared to GEDF when the system

has to be fault-tolerant. This may be due to the allocation

strategy used in task partitioning. As GEDF has a high

overhead cost, this study gives the future direction to

optimize the task allocation mechanism in a partitioned

approach which aims at minimizing the system makespan,

reducing the deviation in the execution times and also

make the system fault-tolerant.

References

[1]. H. Youness, A. Omar and M. Moness, "An Optimized

Weighted Average Makespan in Fault-Tolerant

Heterogeneous MPSoCs," in IEEE Transactions on Parallel

and Distributed Systems, vol. 32, no. 8, pp. 1933-1946, 1

Aug. 2021, doi: 10.1109/TPDS.2021.3053150.

[2]. N. Kim, B. C. Ward, M. Chisholm, C. Y. Fu, J. H.

Anderson, and F. D. Smith, “Attacking the one-out-of-m

multicore problem by combining hardware management

with mixed-criticality provisioning,” IEEE Real-Time and

Embedded Technology and Applications Symposium

(RTAS), pp. 1-12, 2016.

[3]. Sai, M. P. ., V. A. . Rao, K. . Vani, and P. . Poul. “Prediction

of Housing Price and Forest Cover Using Mosaics With

Uncertain Satellite Imagery”. International Journal on

Recent and Innovation Trends in Computing and

Communication, vol. 10, no. 8, Aug. 2022, pp. 36-46,

doi:10.17762/ijritcc.v10i8.5666.

[4]. Robert I. Davis and Alan Burns. 2011. A survey of hard

real-time scheduling for multiprocessor systems. ACM

Comput. Surv. 43, 4, Article 35 (October 2011), 44 pages.

https://doi.org/10.1145/1978802.1978814.

[5]. M. J. Traum, J. Fiorentine. (2021). Rapid Evaluation On-

Line Assessment of Student Learning Gains for Just-In-

Time Course Modification. Journal of Online Engineering

Education, 12(1), 06–13. Retrieved from

http://onlineengineeringeducation.com/index.php/joee/arti

cle/view/45

[6]. Sneha Chattopadhyay, M.J. Tresina, Shankar Narayan,

“Worst Case Execution Time Analysis of Automotive

Software”, Procedia Engineering,Volume 30,2012,Pages

983-988,ISSN 1877-

7058,https://doi.org/10.1016/j.proeng.2012.01.954.

(https://www.sciencedirect.com/science/article/pii/S18777

05812009642)

[7]. S. Baruah, “Schedulability Analysis for a General Model of

Mixed-Criticality Recurrent Real-Time Tasks,” Proc. -

Real-Time Syst. Symp., pp. 25–34, 2017.

[8]. Harsh, S. ., Singh , D., & Pathak , S. (2022). Efficient and

Cost-effective Drone – NDVI system for Precision

Farming. International Journal of New Practices in

Management and Engineering, 10(04), 14–19.

https://doi.org/10.17762/ijnpme.v10i04.126

[9]. E. A. Rambo and R. Ernst, “Replica-Aware Co-Scheduling

for Mixed-Criticality Systems,” pp. 1–20, ECRTS, 2017.

[10]. Antonin Novak, Premysl Sucha, Zdenek Hanzalek,

“Scheduling with Uncertain Processing Times in Mixed-

Criticality Systems”, European Journal of Operational

Research (2019), DOI:

https://doi.org/10.1016/j.ejor.2019.05.038

[11]. S. K. Baruah et al., "Mixed-Criticality Scheduling to

Minimize Makespan," Leibniz International Proceedings in

Informatics, LIPIcs, vol. 65, pp. 7.1-7.13, Dagstuhl

Research Online Publication Server, Dec 2016. The

definitive version is available at

https://doi.org/10.4230/LIPIcs.FSTTCS.2016.7

[12]. Gupta, D. J. . (2022). A Study on Various Cloud Computing

Technologies, Implementation Process, Categories and

Application Use in Organisation. International Journal on

Future Revolution in Computer Science &Amp;

Communication Engineering, 8(1), 09–12.

https://doi.org/10.17762/ijfrcsce.v8i1.2064

[13]. Akram, N., Zhang, Y., Ali, S., & Amjad, H. M. (2019,

January). Efficient task allocation for real-time partitioned

scheduling on multi-core systems. In 2019 16th

International Bhurban Conference on Applied Sciences and

Technology (IBCAST) (pp. 492-499). IEEE.

[14]. Kose, O., & Oktay, T. (2022). Hexarotor Yaw Flight

Control with SPSA, PID Algorithm and Morphing.

International Journal of Intelligent Systems and

Applications in Engineering, 10(2), 216–221. Retrieved

from https://ijisae.org/index.php/IJISAE/article/view/1879

[15]. Guoqi Xie, Gang Zeng, Liangjiao Liu, Renfa Li, Keqin Li,

“High performance real-time scheduling of multiple mixed-

criticality functions in heterogeneous distributed embedded

systems”, Journal of Systems Architecture, Volume 70,

2016, Pages 3-14, ISSN 1383-7621,

https://doi.org/10.1016/j.sysarc.2016.04.008.

[16]. Katuk, N., & Chiadighikaobi, I. R. (2022). An Enhanced

Block Pre-processing of PRESENT Algorithm for

Fingerprint Template Encryption in the Internet of Things

Environment. International Journal of Communication

Networks and Information Security (IJCNIS), 13(3).

https://doi.org/10.17762/ijcnis.v13i3.5101

