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Abstract: Multicore technology, which has previously been effective in general-purpose computers, is now making inroads into embedded 

systems. While this improves performance, it also raises the question of how to distribute software activities to the hardware platform's 

cores, because different allocations have varied added functional features. With the use of multicores, the tasks’ execution time varies in 

an unpredictable fashion. Many scheduling problems in autonomous cars and avionics systems are mixed critical as they comprise tasks at 

different critical levels. The primary purpose of this research is worst-case execution time analysis and system makespan evaluation of 

fault-tolerant mixed critical applications. The study considers priority-based task scheduling algorithms for multicore critical systems. The 

work has considered distinct parameters of evaluation namely deviation in actual execution time, system makespan, and fault- tolerance. 

The experimentation on a real-time kernel indicates, that GEDF has minimal deviation of only 4.6% in the execution times as compared to 

PEDF which is 15.8% when active backups of high critical tasks are added to the system. The global approach outperforms the partitioned 

approach for the considered parameters in a mixed-critical application. 

Keywords: Multicore Critical Systems (MCSs); Real–Time Scheduling; Partitioned Scheduling (PS); Global Scheduling (GS); 

Multiprocessor (MP). 

1. Introduction and Motivation 

Modern multicore (MC) critical systems are getting more 

performance-intensive as a result of the fact that, on the 

one hand, they feature more complicated functionality 

than previously, and, on the other hand, functionality that 

was traditionally implemented with hardware is 

progressively being shifted to software. In the design of 

systems that are set in real-time, integrating components 

with varied degrees of criticality into a single computing 

platform is becoming an increasingly relevant topic. 

Concurrently, these platforms are undergoing a transition 

of hardware (HW) from single-core to multi-core to 

many-core architectures in the near future. If a component 

in a system requires a higher level of assurance against 

failure, it is characterised as essential. “Mixed-Criticality 

Systems (MCS)” are structures that have components that 

fall under two or more unique crucially levels, such as 

“safety-critical, mission-critical, and non-critical,” 

amongst others. The timing analysis of mixed critical 

systems is crucial and is essential for the system design.  
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The resource allocation process denotes the job and 

collation of the activities and their communications onto 

the resources of a MC system. This is done with the 

intention of optimising certain parameters, like 

“makespan of the system, reliability, memory requirement 

and energy usage.”  The makespan can be defined as the 

overall length of time required to complete the tasks on 

processors. Let tf be the final completion time of tasks 

executing on processor Pi, the makespan of the whole 

system is then the maximum of schedule length of 

processors, that is-  

tf = max{tf (Pi)| i ∈ [1, 2, ··· , m]}   (1) 

Where m is the number of processor cores in the system. 

Majority of the research in scheduling MC system is done 

on single processor systems. Few of the researchers have 

considered multi-processor systems for scheduling MC 

systems for periodic and sporadic task models with 

deadline as the constraint. Some of the work is also carried 
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on achieving fault tolerance in MC system (Hongxia Chai 

et.al, 2018). This work focuses on combining two 

parameters, makespan and fault tolerance as in (H. 

Youness et.al, 2021). The system model and mixed critical 

task model is expressed in section 2. Section 3 covers the 

evaluation of the makespan and WCET analysis of the 

major priority-based algorithms. The conclusion and 

future work is covered in section 4. The main 

contributions of the paper are – 

- Computation of the worst-case execution time of 

mixed critical applications on a real-time Linux-

based kernel. 

- Evaluation of the priority-based both static and 

dynamic scheduling algorithms are covered based 

on the makespan of the system. 

- Fault tolerance and Makespan used as parameters 

for evaluation. The transient errors are solved 

using re-execution of the active backups to make 

the system fault- tolerant. 

 

2. Literature Review  

Deploying applications in real-time on MC is difficult as 

concurrent operations can intervene with collective 

resources, confounding worst-case timing analyses 

(Giannopoulou, et al. 2017). Researchers suggest 

Isolation Scheduling (IS) to solve this problem. It provides 

an outline to arrange jobs for multicore applications in 

real-time. IS enforces mutually exclusive task class 

execution, preventing inter-class interference. This cited 

paper proposes and analyses two unique IS approaches: a 

universal method based on a partitioned approach as well 

as fluid scheduling and on hierarchical server scheduling. 

(Sneha Chattopadhyay et.al; 2011) measurement-based 

analysis to estimate worst-case execution time (WCET). 

The periodic tasks were emulated to estimate the WCET 

of the program. The technique is independent of the 

program semantics. (Saifullah, et al. 2013) points out that 

MC processors outperform single-core processors. They 

can enable real-time applications that require a lot of 

processing power and must adhere to rigorous deadlines 

that single-core processors can't meet. Old-style MP real-

time scheduling uses models of sequential programming 

and ignores parallelism within tasks. The authors extend 

their study to a “directed acyclic graph (DAG)” task 

model with unit implementation requirements. These can 

be changed into synchronic tasks with the similar 

decomposition and extension bounds. Synthetic workload 

recreations show safe and sufficient resource 

augmentation bounds. (Sanjoy Baruah et.al; 2016) 

analysed the workload on homogeneous multiprocessor 

system for a simple mixed critical application. The pre-

emptive and non-pre-emptive scheduling algorithms are 

used to minimize the makespan of the system. 

(AntoninNovak et.al; 2019) proposed a linear integer 

programming-based approach to reduce the uncertainty of 

the processing times in mixed critical applications. The 

approximation algorithm minimizes the makespan of the 

system. The work carried out by (Sanjoy Baruah et.al, 

2016 and AntoninNovak et.al; 2019) forms the basis of 

this study to evaluate the global and partitioned 

scheduling algorithms based on the makespan of the 

system and the execution time of the tasks. (Hongxia Chai, 

2018) explored the mixed critical systems and has 

identified that fault tolerance is ignored by many of the 

researchers as a design requirement. So, this study 

considers transient faults occurring at the end of execution 

of the tasks while finding the makespan of the system. 

Cluster-based Scheduling has become increasingly 

important for using real-time MC systems on multicore 

processor platforms. In these approaches, the cores are 

divided into clusters, and each cluster of the global 

scheduler schedules the partitioned tasks among different 

clusters (N.KIM et.al, 2016). Cluster-based scheduling 

can be used when there are a large number of cores. (H. 

Youness et.al; 2021) proposed a new parameter, 

“weighted average makespan” to evaluate the mixed 

critical applications. The optimization of the schedule 

length and system reliability was done using the newly 

introduced measuring parameter. 

Summary of the Review and Gaps identified 

- Worst-case Execution Time analysis becomes 

unpredictable when multicores are used in MC 

systems. 

- Fault-Tolerance as a design parameter is ignored 

and needs attention on multicore MC systems 

- Makespan of the system is an important parameter 

that can be combined with fault tolerance to meet 

the timing constraints of MC system. 

 

3. System Model 

This section describes the semantics of the MC system and 

the problem that the work is trying to solve. Also, 

highlights the priority based scheduling algorithms used 

in the study. 

1. A collection of mixed critical jobs J = {J1, J2…Jn} 

is characterised by the following parameters {CL, 

Ci, Ti}, with CL ∈ {LOW, High} representing the 

critical levels of the jobs, Ci is the worst-case 

execution time of the task and Ti is the time 

period. 

2. A homogeneous quad-core system with real-time 

Linux-based kernel is used for recording the 

actual execution times (ACET) of the task, which 

eventually is used to calculate the makespan of the 

tasks and the system makespan as in equation 1. 

3. The transient faults are temporarily assumed to be 

occurring at the end of the execution of the job. 
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To make the system fault-tolerant many 

mechanisms exist in the review like the use of 

specialised hardware, backups, re-execution and 

rollback ((E. A. Rambo and R. Ernst, 2017); (S. 

Barauah, 2017)). The strategy of active backups 

of high critical tasks is used to achieve fault 

tolerance in the MC system. Two copies of the 

backups are assumed to be running along with the 

primary copy at any instance of time. Two copies 

are maintained as per the triple redundancy model 

to achieve fault tolerance. 

Problem Statement 

Given a task set J with n mixed critical jobs along with the 

active backup of high critical jobs, identify a schedule that 

minimizes the makespan of the schedule on a 

homogeneous quad-core system. On an m processor 

system, the lower bound of the makespan of the system is 

given by (S. K. Baruah et.al, 2016) where Ci is the actual 

execution time of the job Ji - 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 =  𝑀𝐴𝑋
{∑ 𝐶𝑖 (𝐿𝑂𝑊) 

𝐽𝑖∈J ∑ 𝐶𝑖 (𝐻𝑖𝑔ℎ)}

𝑚
  (2) 

The upper bound is – 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑀𝑎𝑥 ∑ 𝐶𝑖𝐽𝑖 ∈J   (3) 

Scheduling Algorithms 

The scheduling algorithms used in MC systems are 

majorly classified into two categories- 

Global Scheduling (GS) - Tasks are distributed evenly 

across all processors in a system using global scheduling. 

Every task is stored in a single priority queue, from which 

it may migrate to any of the available processors.  One of 

the most significant benefits of using global scheduling is 

that it eliminates the challenge presented by the issue of 

task assignment in PS. This is because all of the tasks are 

distributed evenly across all of the system's processors. 

Partitioned Scheduling (PS) – In the partitioned approach, 

migration of tasks is not permitted method because each 

task is allocated to a dedicated processor. Every processor 

has its scheduler, each with their own distinct task run 

queue, and there is no room for relocation while the 

system is active. The primary advantage of utilising 

partitioned scheduling is that once a task has been 

assigned to a specific processor, the prevailing algorithms 

for uniprocessor scheduling can be used to schedule the 

task onto the processor. The second advantage of using PS 

is that there is no migration overhead associated with it. 

This makes queue management much simpler. Under the 

partitioned scheduling method, the utilisation of the 

system is low, and whether the overall utilisation of the 

task set ranges a little higher than fifty percent, then it is 

possible that the deadline will not be met (Akram, N., 

Zhang et.al, 2019). 

Cluster scheduling (CS) – It is a mixture of PS and GS. 

Tasks are first partitioned into groups, then allocated to 

clusters, which are collections of processors, and finally 

scheduled universally within the cluster. 

The scheduling mechanisms are also categorized based on 

the way priorities are assigned to the tasks. The priorities 

may be assigned statically which remains fixed as in rate 

monotonic or fixed priority scheduling. The priorities vary 

dynamically based on their deadlines as in the earliest 

deadline first (EDF). In this work, we cover three 

algorithms Partitioned EDF (PEDF), Global EDF(GEDF), 

and Partitioned fixed-priority(PFP) to evaluate on the 

basis of makespan and worst-case execution time.  

4. Results and Discussions 

The mixed critical applications are scheduled with three 

different policies PEDF, GEDF and PFP to identify the 

actual execution time of the jobs. The simulation is carried 

on a real-time Ubuntu kernel on a quad-core platform with 

all identical processors.  

Experiment 1 – The main objective of this experiment is 

to identify the deviation in the ACET when active back-

ups are to be maintained. The MC application consists of 

six tasks with three tasks at a high critical level and three 

tasks at a low critical level are all released at time 0; is 

simulated to find the actual execution time. First, the 

simulation is carried out with only primary tasks and 

ACET is measured as in figure 1a. Two backups of the 

high critical jobs are maintained to achieve fault tolerance, 

so in all there are 12 tasks (6 primary and 6 backups of 

high critical jobs with two backups for each high critical 

job). Now, the measurement of ACET is shown in Figure 

1b. 

 

Figure 1a- ACET of tasks without backups 
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Figure 1b- ACET with active backups of high critical 

jobs 

Though the worst-case execution time is considered while 

simulating the MC tasks, there is variation in the 

execution times when active backups of high critical tasks 

are considered to achieve fault tolerance. The actual 

execution time of the tasks is same as assumed WCET 

when the backups of the tasks are not considered as in 

figure 1a in all three algorithms.  But, with the presence of 

the active backups of the high critical tasks, the actual 

execution time is changing drastically in PEDF and PFP. 

The deviation in the ACET of the jobs of the synthetic task 

set is shown in Table I. Column 3, 5, and 7 in the table 

gives the worst-case ACET of each of the task including 

the six active backups for three different algorithms. 

Column 4, 6 and column 8 gives the deviation of the actual 

execution time when active backups along with primary 

tasks are considered w.r.t to only the primary tasks. The 

average deviation of the tasks ACET when active backups 

are introduced with PEDF scheduling is around 15.8%, 

with GEDF is 4.6% and with PFP it is 37.66%. The 

allocation of tasks to processors in partitioned scheduling 

is based on the utilization factor of the tasks. Global 

approach is better as compared to partitioned approaches. 

If the allocation of the tasks in PEDF is based on other 

parameters along with utilization factor, the deviations 

can be reduced. Optimization of task allocation to 

minimize the deviations in ACET can be the future 

direction of work. 

Table I: Deviation in ACET for different scheduling 

algorithms for synthetic task set with 6 tasks and around 

600 jobs 

Ta

sk 

C

i 

AC

ET-

PE

DF 

Devia

tion 

AC

ET-

GE

DF 

Devia

tion 

AC

ET-

PFP 

Devia

tion 

T1 1 2.33 

90.50

% 1.37 

22.44

% 3.20 

169.8

4% 

T2 2 2.14 

0.00

% 2.04 

0.00

% 2.14 

0.00

% 

T3 3 2.98 

0.00

% 3.01 

0.00

% 3.12 

0.00

% 

T4 1 1.16 

0.00

% 1.05 

0.00

% 1.28 

9.52

% 

T5 2 2.13 

0.00

% 2.09 

0.00

% 2.31 

0.00

% 

T6 1 1.10 

4.45

% 1.09 

5.24

% 1.66 

46.60

% 

Experiment 2- 

The main aim is to evaluate the scheduling algorithm 

based on the system makespan. The makespan of the job 

is the overall length of time required to complete the tasks 

on processors. The makespan of the whole system is the 

maximum of schedule length of processors. The ACET of 

each task is used to evaluate the makespan of the system 

when the schedule is made using both global and 

partitioned approaches. The system makespan is evaluated 

based on the upper bound as in equation 2. The aim is to 

identify the scheduling strategy that minimizes the 

makespan when the system has both primary and active 

backups of high critical tasks. The experimentation is 

carried out on a homogeneous quad-core platform and the 

results of the makespan for all three algorithms is shown 

in table II. All the values are in milliseconds and P0-P3 

represent processor cores. The allocation of tasks to 

different processors is done based on the first-fit 

decreasing utilization algorithm. 

  

GEDF 

m=4 

PEDF 

m=4 

PFP 

m=4 

GEDF 

m=2 

P0 Core 4.21 8.55 8.74 9.09 

P1 Core 6.53 6.62 8.34 7.29 

P2 Core 5.22 3.40 5.46 - 

P3 Core 1.04 0 0 - 

System 

Makespan 6.53 8.55 8.74 

 

9.09 

Table II: System Makespan on a quad core platform 

The results indicate the global approach outperforms the 

partitioned approach when the makespan of the system 

has to be minimized. This indicates the need to improve 

the task allocation mechanism in partitioned approaches. 

Also, the number of processor cores is minimized to check 

the system makespan in case of a global approach. This 

acts as a system design parameter. The partitioned 

approaches are unable to schedule the task set with only 

two processors as all the tasks are unable to meet the 

deadlines. Hence, the system makespan is calculated only 

for GEDF on a two-processor platform.  The system 

makespan where GEDF schedules the task set with two 

cores is mentioned in the last column of Table II. There is 

a rise of around 39% in the system makespan when the 

number of processor cores are reduced to 2.  
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Conclusion 

The study evaluated partitioned and global scheduling 

algorithms based on some distinctive parameters like 

deviation of actual execution times and system makespan 

in a fault-tolerant environment. Partitioned scheduling 

wastes resource capacity and causes work splitting 

problems. Global scheduling has a high overhead for task 

migration and queue management. Though, the global 

approach has a high overhead it gives a minimal deviation 

of only 4.6% in the execution times of the synthetic 

mixed-critical task set when the active backups of the high 

critical tasks are added to achieve fault tolerance. Also, 

the system makespan is minimal when global scheduling 

is used. The experimentation indicates that multi-core 

real-time scheduling is needed to minimize the system 

makespan. The PEDF has a higher deviation in worst-case 

execution times as compared to GEDF when the system 

has to be fault-tolerant. This may be due to the allocation 

strategy used in task partitioning. As GEDF has a high 

overhead cost, this study gives the future direction to 

optimize the task allocation mechanism in a partitioned 

approach which aims at minimizing the system makespan, 

reducing the deviation in the execution times and also 

make the system fault-tolerant. 
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