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Abstract 

This paper aims is to find out the fixed points for two mappings in Ĝ - dualistic partial metric space with the help of graph by 
using Ĝ - Convergence Comparison Property (Ĝ - CCP). An application is also given to find fixed point with the help of 

boundary value problem. 
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1 .Introduction 

 In 1922, a vital research in fixed point 

theory is due to Banach, see [7] who gave 

Banach’s     contraction principal.After this 

many  extensions had appeared in the literature 

see [4, 20]. 

In 1992, the concept of partial metric space was 

given by Matthews[14]. Partial metric space 

just replaces one condition of usual metric 

space i.e self distance not necessarily zero.The 

concepts like how to find convergence of 

sequences , cauchy sequences , completeness of 

spaces , etc can be seen in [1, 10, 11, 14, 18, 

19]. In 1996, Neil [15] developed the idea of 

Dualistic partial metric space(DPMS) and 

established the relationship between dualistic 

and partial metric space. In partial metric 

space(PMS), range is restricted to non negative 

real numbers , but in dualistic partial metric 

space range is extended from non - negative real 

numbers to set of real numbers i.e ℝ. He found 

many properties of topological space and 

axioms of DPMS . Oltra and Valero [16] 

established the concept of fixed point in 

DPMS.Nazam et al.[8] gave the concept of 

rational type contractive conditions of fixed 

point.Recently Nazam et al.[9]initiate the view 

of fixed point in dualistic metric space and 

found an application with the help of boundary 

value problem in DPMS.Jachymski 

[6],introduced the concept of graphs in the area  

of fixed point and proved many results of fixed 

point theory by using concept of graphs. 
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Motivated by[3, 6, 13, 17] ,we obtain fixed 

points for two mappings in Ĝ - dualistic partial 

metric space with the help of graph by using Ĝ  

- Convergence Comparison Property(Ĝ - CCP). 

An application is also given to find fixed point 

with the help of boundary value problem.Firstly 

we present some definitions related to graphs 

see in [5, 6, 7, 12]. Throughout this paper, the 

product of  Å×Å  (which is diagonal ) is 

represented by Δ where Å ≠ 𝜙.Choose Ĝ as a 

graph,where set of vertices are indicated by 

V(Ĝ) coincides with Å, and E(Ĝ)  contains 

loops  as well as edges. Thus a pair Ĝ = (V(Ĝ), 

E(Ĝ)) represents a graph. Let   Ĝ - 1 represent a 

change in Ĝ i.e E(Ĝ - 1)= {(w,v)|(v,w) ∈E(Ĝ)} 

and 𝐆̈ indicates an undirected graph from Ĝ , 

when the direction of the set of edges is not 

considered .  

Thus E(Ĝ) ∪E(Ĝ - 1) = E(𝐆̈)  

 

2 .Definitions and Preliminaries  

Definition 2.1. Consider a graph Ĝ = (V, E), 

V(Ĝ) = Å,  E(Ĝ) = { (u,v)∈ Å×Å } a pair (Å, 

d) defined on Å ≠ ϕ is termed as Ĝ - Metric 

space if d: Å×Å → [0, ∞) met the following 

postulates: 

(d1) d(u, v) ≥ 0 and d(u, v) = 0 iff u = v, 

(d2) d(u, v) = d(v, r) , 

(d3) d(u, w) ≤ d(u, v) + d(v, w) 

for all u , v, w ∈E(Ĝ) 

Then the pair (Å, d) termed as a Ĝ - metric 

space.  
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Definition 2.2 [14]. A pair (Å, P) on Å≠ ϕ is 

said to be a partial metric space if  

P: Å×Å → [0, ∞) satisfies the following 

axioms: 

(P1) P(u, u) = P(u, v) = P(v, v), iff u = v, 

(P2) P(u, u) ≤ P(u, v), 

(P3) P(u, v) = P(v, u),  

(P4) P(u, w) + P(w, w) ≤ P(u, w) + P(w, v) 

∀ u , v, w in Å 

Then a pair (Å, P) termed as a partial metric 

space(PMS).  

    

Neil[15] did a remarkable change in definition 

of PMS.He extended the range from[o, ∞) to ℝ. 

This leads us to metric space which is DPMS . 

 

Definition 2.3 [9] A pair (Å, D) on Å≠ ϕ is 

termed as dualistic -partial metric space if  

D:Å×Å → ℝ satisfies the following axioms: 

(D1) D(u, u) = D(u, v) = D(v, v) ⇔ v = u, 

(D2) D(u, u) ≤ D(u, v), 

(D3) D(u, v) = D(v, u),  

(D4) D(u, v) + D(w, w) ≤ D(u, w) + D(w, v) 

for all u , v, w ∈ Å 

Then a pair (Å, D) termed as a DPMS.  

 

Remark. Any PMS ⇒DPMS but DPMS⇏ 

PMS. We give an illustration in support of our 

remark.  

 

Example 2.4. Consider a map D: [−4,4] ×
[−4,4] → ℝ defined as max(v,w)= D(v,w) 

∀ v,w ∈[-4,4]. We observe that D satisfies all 

the axioms of DPMS i.e (D1) to (D4).Thus D 

is a DPMS. On the other hand, we see D is not 

PMS due to D(-1,-2)= -1 i.e not in the set of 

non - negative real numbers.  

 

Neil[15] showed that any dualistic patrial 

metric space (Å, D) generates a topology 

(which is T0 topology) ℧(D) on Å and possesses 

a base along with a family of D - balls  

{BD(v,u):v ∈ Å,u >0} and BD(v,u) = {w ∈ Å: 

D(v,w) <u + D(v,v)}. 

 

To obtain more information related to concepts 

like convergence , cauchy sequences , 

completeness of DPMS in [9].  

 

Definition 2.5. Consider a DPMS (Å, D) 

where Å ≠ ϕ . If we establish DPMS on  

E(Ĝ) = {(v,w) )∈ Å×Å } structure of graph Ĝ 

=(V,E), V(Ĝ) = Å, then the new structure is 

called a Ĝ -DPMS i.e D:Å×Å → ℝ met the 

following axioms: 

(D1) D(u, u) = D(u, v) = D(v, v) ⇔ u = v, 

(D2) D(u, u) ≤ D(u, v), 

(D3) D(u, v) = D(v, u),  

(D4) D(u, v) + D(w, w) ≤ D(u, w) + D(w, v) 

∀ u , v, w ∈E(Ĝ) Then a pair (Å, D) termed as 

a Ĝ - DPMS. 

If (Å, D) is a Ĝ - DPMS and a mapping ℓD: 
Å×Å → [0, ∞) given by  

D(v,w) - D(v,v) = ℓD(v,w),  v, w∈E(Ĝ) is  Ĝ - 

quasi metric space(define on graph (V, E) = Ĝ 

)with ℧(D) = ℧(ℓD).Furhter if ℓDis  Ĝ - quasi 

metric space implies ℓD
∗ (s,t) = max{ ℓD(v,w) , 

ℓD(w,v)} is Ĝ -metric space(define on graph 

(V, E) = Ĝ.  

  

Example 2.6 .Define a function D:Å×Å → ℝ 

as D(v,w) = P(v,w) - P(v,v) - P(w,w), where  

Å = [-5,5], P is PMS on non empty set Å. Thus 

(Å, D) is  Ĝ -DPMS with a graph (V, E) = Ĝ,  

E(Ĝ) = { (v,w)∈ [−5,5] × [−5,5] } contains 

loops and V(Ĝ) = [-5,5].Thus a couple (Å, D) is 

a  

Ĝ - DPMS.  

  

Definition 2.7. Consider a Ĝ - DPMS, (V,E) = 

Ĝ  represents the graph and E(Ĝ) represents a 

set of edges and Å = V(Ĝ),  where   Å ≠ ϕ, 

then 

(1) A sequence { vn } in Ĝ  -Dualistic partial 

metric space Ĝ  - DPMS converges to point v 

such that (vn , v) in E(Ĝ) iff D(v,v) = 

limn→∞D(v, vn). 

(2) A sequence { vn } in Ĝ -Dualistic partial 

metric space(Ĝ -DPMS) called cauchy with (vn 

, v) in E(Ĝ) and limn→∞D(vm, vn) exists as well 

as finite. 

(3) A  Ĝ -DPMS (Å, D) is termed as a complete 

space if we take any sequence { vn } which is 

cauchy in Ĝ -DPMS converges w.r.t ℧(D) and 

D(vn , vm) = D(v,v) as m, n → ∞ for any  

(vn , vm) in E(Ĝ) .If we take [0,∞) in place of 

ℝ then the Definition 2.5 reduces to Ĝ - partial 

metric space and consequently Definition 2.7 

holds for Ĝ - partial metric space.  

  

Definition 2.8 [2]. Suppose that (Å, D) is a Ĝ -

DPMS with a graph Ĝ  = (V , E), Å = V(Ĝ) ,  

ϕ ≠Å , E(Ĝ).contains loops. Then the map A 

from Ĝ  - DPMS to itself is called a graph 

preserving map if ( v ,w) in E(Ĝ) implies ( A(v), 

A(w)) in E(Ĝ).  

 

Definition 2.9. Suppose that (V,E) = Ĝ 

represents the graph where E(Ĝ) contains 

loops , 
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V(Ĝ) = Å, Å≠ ϕ. A graph preserving mapping 

on Ĝ - DPMS (Å, D) is termed as Ĝ - 

Convergence Comparison Property (Ĝ - CCP) 

if  

(1) A sequence { vn } which converges to v 

such that (vn , v) in E(Ĝ). 

(2) D(v,v) ≤ D(A(v),A(v)), where (v,v), (A(v), 

A(v)) in E(Ĝ).  

  

Example 2.10 Consider Å = ℝ and D:Å×Å→
ℝ defined as D(v,w) = max{v,w} endowed 

with a graph Ĝ = (V, E) where E(Ĝ) is {(v,w) 

∈ Å×Å } is a Ĝ - DPMS. We observe A is a 

graph preserving map. Let { vn = 
1

n
 - 2 , n is 

natural number }, we observe that { vn } 

converges to 

 -2 . 

Let A(v) = e v whenever (v,v) in E(Ĝ) . Now 

D(−2, −2) ≤ D(A(v), A(v)). Thus A satisfies 

all the conditions of Ĝ - CCP.  

 

 

The following lemma is useful for our 

upcoming results. 

Lemma 1[16]. 

(1) A (DPMS) (Å, D) is complete ⇔ metric 

space (Å, ℓD
∗ ) is complete. 

(2) A sequence vn in Å converges to s ∈ Å  w.r.t 

℧(ℓD
∗ ) iff D(vm ,vn) = D(v,v) = D(v ,vn) 

as n,m → ∞. 

 

3 .Main Results 

  
Theorem 3.1. Consider a complete Ĝ - DPMS 

(Å, D) along with a graph Ĝ = (V,E), Å = 

V(Ĝ), E(Ĝ) possesses  loops also, A,B be self 

mappings on (Å, D) satisfies the conditions 

given below:   

(1)The pair (A, B) satisfies Ĝ - CCP property.  

(2)The pair (A , B) preserves the edges of E(Ĝ). 

For a λ ∈ [0,1) such that 

|D(A(v), B(v))| ≤ λ max {|D(w, B(w))|} ∀ 

v,w ∈Å  and (v,w) in E(Ĝ) then A , B possess 

the fixed point.     

Proof. Consider a sequence vn and an initial 

term v0 with (vn , v0) in E(Ĝ) with vn = A(vn−1 

) true for any natural number n. We also 

suppose that this assumption is also true for the 

map B.If ∃ vn0
 = vn0+1 = A( vn0

) = B(vn0
) 

implies vn0
 satisfies A( vn0

) = B(vn0
) = vn0

 . 

Now we consider vn ≠ vn+1 such that (vn, 

vn+1)∈E(Ĝ)   
   By contraction condition (2), we obtain  

 

|D(vn, vn+1)| =

|D(A(vn−1), B(vn)) ≤|λmax {|D(vn−1, A(vn−1))|, |D(vn, B(vn))|
} 

           =
λ max{|D(vn−1, vn)|, |D(vn, vn+1)|}                                       

(3.1) 

  

Thus |D(vn, vn+1)| ≤  λ max 

{|D(vn−1, vn)|, |D(vn, vn+1)|}                                                

(3.2) 

  

If |D(vn, vn+1)| = 

max{|D(vn−1, vn)|, |D(vn, vn+1)|}                                                            

(3.3) 

 Then we observe that from (3.2), we get 

contradiction. Therefore we must have  

 |D(vn, vn+1)| ≤
λ|D(vn−1, vn)| (3.4) 

  

|D(vn−1, vn)| = |D(A(vn−2), B(vn−1))| ≤

λmax{|D(vn−2, vn−1)|, |D(vn−1, vn)|} (3.5) 

 Continuing in this way,  

 

max {|D(vn−2, vn−1)|, |D(vn−1, vn)|} =
|D(vn−2, vn−1)| (3.6) 

We observe (3.4) leads to  

 |D(vn, vn+1)| ≤
λ2|D(vn−2, vn−1)| (3.7) 

 In similar way , we obtain  

 |D(vn, vn+1)| ≤
λn|D(v0, v1)| (3.8) 

 Now consider  
|D(vn, vn)| =

|D(A(vn−1), B(vn−1))| ≤ λmax 

{|D(vn−1, vn)|, |D(vn−1, vn)|} (3.9) 

 By (3.8) we get  

 |D(vn, vn)| ≤ λn|D(v0, v0)|
 (3.10) 

 We use the condition ℓD(v,w) = D(v,w) - 

D(v,v), we obtain  

 ℓD(vn, vn+1) + D(vn, vn) ≤
|D(vn, vn+1)| (3.11) 

 From (3.8) and (3.10) we get  

 ℓD(vn, vn) ≤ 2λn|D(v0, v0)|
 (3.12) 

 For m> n , we get  

ℓD(vn, vm) ≤ ℓD(vn, vn+1) + ℓD(vn+1, vn+2)
+ ⋯ . . +ℓD(vm−1, vm) 

                     ≤ 2λn|D(v0, v1)|

+ 2λn+1|D(v0, v1)|

+ ⋯ . +2λm−1|D(v0, v1)| 
                  ≤ 2(λn + ⋯ + λm−1)|D(v0, v1)| 

      ≤ 2
λn(1−λn−m)

(1−λ)
 (3.13) 

 Now letting n,m ⟶ ∞ implies ℓD
∗ (v,w) = max 
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{ ℓD(v,w),ℓD(w,v)} tends to zero , implies { vn 

} is a sequence which is cauchy in (Å, ℓD
∗ ) . Also 

, (Å, D) is a Ĝ - DPMS which is complete so by 

using (1) of Lemma1 (we use this lemma 

because proof of this lemma is also obtained on 

the structure of graph and proof is same as given 

in Lemma1) (Å, ℓD
∗ ) is  Ĝ - complete metric 

space. So ∃ v in (Å, ℓD
∗ ) with { vn } → v as n 

→ ∞ i.e ℓD(vn,v) = 0 and by using (2) of 

Lemma1, inequalities (3.10) and ℓD(v,w) = 

D(v,w) - D(v,v), we write  

 D(v, v) = D(vn, v) =
D(vn, vm) = 0 (3.14) 

 as n and m → ∞ .Thus vn is a sequence which 

is cauchy also converges to v .Now we show 

here v = A(v) = B(v). Using contraction 

condition of this theorem  

|D(vn, B(v))| = |D(A(vn−1), B(v))| ≤

λ max {|D(vn−1, A(vn−1))|, |D(v, B(v))|}

 (3.15) 

 for n → ∞  |D(vn, B(v))| ≤ |D(v, B(v))| 

⇒D(v, B(v)) = 0 and B has Ĝ - CCP , we obtain  

0 = D(v, v) ≤ λD(B(v), B(v)) + D(B(v), v) −

D(B(v), B(v)) (3.16) 

 By using D(4) property of Ĝ - DPMS, D(v,v)≤ 

D(v ,B(v)) - D(B(v),v) - D(B(v) ,B(v)), we 

obtain  

 D(B(v), B(v)) ≤ 0 (3.17) 

 From (3.16) and (3.17) D(B(v),B(v)) = 0 and 

D(v, B(v)) = D(B(v) , B(v)) = D(v,v).  

This implies v = B(v) i.e s is fixed point for B . 

Now we show that v = A(v). Now consider,  

|D(A(v), vn)| = |D(A(v), B(vn−1))| ≤

λmax{|D(v, A(v))|, |D(vn−1, B(vn−1)|} (3.18) 

 As we have used the steps for fixed point for B 

,similarly it is used for mapping A. 

Consequently we get v = A(v) . Thus A(v) = 

B(v) = v. Now uniqueness let t be another fixed 

point for A and B and D(w,w) = 0 and A(w) = 

B(w)  =  w. 

|D(v, w)| ≤ λ max{|D(v, A(v))|, 

|D(w, B(w))|} ⇒ D(v,w) = D(v,v) = D(w,w) = 

0 ⇒ v = w.  

 

Corollary 3.2. Consider a  Ĝ - complete partial 

metric space (Å,  D) occupied a graph  

(V, E) = Ĝ   , Å = V(Ĝ) , A, B are two self maps 

from (Å,  D) to itself then 

D(A(v),B(w)) ≤ λ max{D(v,A(v)), 

D(w,B(w))} for all v,w ∈Å, λ ∈ [0,1) and (v,w) 

in E(Ĝ) implies A , B possess a fixed point.  

  
Proof. If we restrict  Ĝ - DPMS ranges from set 

of real numbers to non - negative numbers then 

Ĝ - complete dualistic partial metric space 

becomes Ĝ - complete partial metric space 

consequently proof of Corollary 3.2 is obtained 

by same steps of Theorem 3.1 .  

  
Example 3.3. Let (V,E) = Ĝ be a graph choose 

[0,1] = Å, V(Ĝ) = [0,1] and 

 E(Ĝ)= {(v,w)∈ [0,1] × [0,1]}, D:Å×Å →
ℝ  given as D(v,w) = max{v, w} is a  

Ĝ -complete DPMS. Now we define the maps 

as A(v) = 
v

2
 and B(v) = 

v

3
, both these maps are 

graph preserving and satisfies Ĝ -CCP for the 

sequence { vn } = 
1

n
 converges to 0, (vn ,0) in 

E(Ĝ) and  

also satisfies contraction condition of above 

Theorem 3.1 for λ = 
3

4
. Thus 0 = A(0) = B(0), 

see in figure 

1 . 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 363–375 |  367 

 

 
  

Figure  1: Graph of a fixed point of A and B 

  
    

Example 3.4. Suppose (-∞, 0] = Å and (V,E)= 

Ĝ is a graph , V(Ĝ) = (-∞, 0] where  

E(Ĝ) = {(v,w): ∈ Å×Å }. A map D: (−∞, 0] ×
(−∞, 0] → ℝ defined as,  

D(v, w)  =  {
| v − w | ,

v ∧ w ,
    v ≠ w
 v = w

 

Let ∧ denotes the supremum of v and w. So (Å, 

D) is Ĝ - dualistic partial metric space as well 

complete .Consider the maps A and B as , B is 

a zero map and A is defined as 

A(v) = {
−1 ,
0 ,

    v ∈ (−∞ , −4]

    v ∈ (−4, 0 ]
 

 

Also both the maps are graph preserving and 

satisfies Ĝ - CCP property . For this let us 

consider the sequence { vn =  
−1

n
}. Thus { vn } 

is cauchy sequence which converges to 0 in (Å, 

D) and 

 (vn ,0) in E(Ĝ). Also we have D(A(0),A(0)) ≥ 

D(0,0) and D(B(0),B(0)) ≥ D(0,0), both the 

maps satisfies  Ĝ -CCP. For the contraction 

condition of our theorem , let λ =
3

4
. We discuss 

the following cases hold 

Case (a).  (1) v ≠w and v,w ∈ (−4,0] we get 

|D(A(v), B(w))| = 0 

   (2)  v ≠w and v,w ∈ (−∞, −4], 

|D(A(v), B(w))| = 1 ≤ λmax{|D(v, A(v))|, 

|D(w, B(w))|} 

(3) if we take v ≠w and w ∈ (−4,0] and v ∈
(−∞, −4] and conversely the contraction 

condition is also hold. 

Case (b). (1) for v = w ∈ (−4,0] then 

|D(A(v), B(w))| = 0 and when v = w ∈
(−∞, −4], contraction condition also holds. we 

observe that w = 0 is fixed point for the map A 

and B. Now we represent a table for λ = 
3

4
 which 

evaluates the contraction condition of theorem  
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Contraction table for A and B and λ = 
3

4
  

(v, w) |D(A(v) , B(w))| λ max{ |D(v , A(v))| ,|D(w , B(w))|} 

(0,0) 0 0 

( -1, -1) 0 3

4
 . 1 

(-1, -2) 0 3

4
 . 2 

(-10 , -10) 0 3

4
 . 10 

(-4 ,-3) 1 3

4
 . 3 

(-2 , -1) 0 3

4
 . 2 

(-1, -3) 0 3

4
 . 3 

(-1, - 0 .1) 0 3

4
 . 1 

(-3 , -3) 0 3

4
 . 3 

 

  
Theorem 3.5. Consider a  Ĝ - Complete 

dualistic partial metric space (Å, D)  and (V,E)  

=  Ĝ  represents a graph with  V(Ĝ) = Å ,  

E(Ĝ) contains loops and A, B are self 

mappings on (Å, D)  met the following 

postulates:  

(1)The pair (A,B) satisfies  Ĝ - CCP property.  

(2)The pair (A,B) preserves the edges of E(Ĝ). 

If there is 0 ≤c,e,i  and c+e+i < 1 such that 

|D(A(v), B(w))| ≤ c |D(v, w)|+ e 

|D(w, A(w))| + i|D(v, B(v))|  ∀ v,w ∈Å and 

(v,w) in E(Ĝ) implies A , B possess the fixed 

point.  

  

Proof. Consider a sequence vn and an initial 

term is v0 with (vn , v0) in E(Ĝ) with vn = 

A(vn−1 ) true for any natural number n. We also 

suppose this assumption also true for the map 

B.If there ∃ vn0
 = vn0+1 = A( vn0

) = B(vn0
) 

implies vn0
 satisfies A( vn0

) = B(vn0
) = vn0

. 

Now we consider 

 vn ≠ vn+1 such that (vn, vn+1) ∈ E(Ĝ)  .By 

contraction condition (2) we obtain  

|D(vn, vn+1)| = |D(A(vn−1), B(vn))|

≤ c|D(vn−1, vn)|

+ e|D(vn−1, A(vn−1))|

+ i|D(vn, B(vn))| 

                     = |D(vn, vn+1)| ≤
c+e

1−i
|D(vn−1, vn)| (3.19) 

 Let λ = 
c+e

1−i
so that 0 ≤ λ <1 and repeating the 

above procedure , we get  

 

 |D(vn, vn+1)| ≤
λn|D(v0, v1)| (3.20) 

 For self distance,we obtain  

 |D(vn, vn)| ≤
c|D(vn−1, vn−1)| + (e + i)|D(vn−1, vn)| (3.21) 

 with the help of (3.18), we write  

 |D(vn, vn)| ≤
c|D(vn−1, vn−1)| + (e + i)λn−1|D(v0, v1)|
 (3.22) 

  

|D(A(vn−2), B(vn−2))|

≤ c|D(vn−2, vn−2)|

+ e|D(vn−2, A(vn−2))|

+ i|D(vn−2, B(vn−2))| 

                      =
c|D(vn−1, vn−1)| + (e + i)λn−2|D(vn−1, vn)|
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 (3.23) 

 Where |D(A(vn−2), B(vn−2))| = 

|D(vn−1, vn−1)|. From (3.22) we obtain  

|D(A(vn−2), B(vn−2))| ≤ cn|D(v0, v0)| +

(cn−1 + cn−1λ + ⋯ + λn−1)(e + i)|D(v0, v1)|
 (3.24) 

  

|D(A(vn), B(vn))| ≤ cn|D(w0, w0)| +
λn−cn

λ−c
(e + i)|D(v0, v1)| (3.25) 

 

We use the condition ℓD(v,w) = D(v,w) - 

D(v,v),we get  

 ℓD(vn, vn+1) ≤
|D(vn, vn+1)| − D(vn, vn) ≤ |D(vn, vn+1)| +
|D(vn, vn)| (3.26) 

 Also,|D(vn, vn+1)|+|D(vn, vn)| ≤

λn|D(v0, v1)|+c n+|D(v0, v1)|+
λn−cn

λ−c
(e+i)

|D(v0, v1)| 

And,  
λn−cn

λ−c
(e+i)|D(v0, v1)| ≤(λn+ 

(e+i)
λn−cn

λ−c
)|D(s0, v1)|+ c n|D(v0, v0)| 

on solving the last above inequalities we write  

(λn+λn−1+cλn−2+...+c n−1)|D(v0, v1)|

+s n−1|D(v0, v1)|  
Let    γn = λn + λn−1 + cλn−2 + ⋯ +

cn−1 (3.27) 

 then we obtain  

 |D(vn, vn+1)| ≤ γn +
|D(v0, v1)| + un|D(v0, v1)| (3.28) 

 

For m > n . let us solve the inequality 

 ℓD(vn, vm) ≤ ℓD(vn, vn+1) +
ℓD(vn+1, vn+2) + ⋯ . . +ℓD(vm−1, vm) 

≤ γn|D(v0, v1)| + cn|D(v0, v1)|

+ γn+1|D(v0, v1)|+. . +cn−1|D(v0, v1)| 
        ≤ (γn +

γn+1+. . +γm−1+. . )|D(v0, v1)| + (cn +
cn+1+. . +cm−1+. . )|D(v0, v1)| 

        ≤ (
γn

(1−γ)
+

cn

(1−c)
) |D(s0, s1)|

 (3.29) 

 

Letting m,n → ∞ , implies ℓD
∗ (vn, vm) = 0.Also 

, (Å, D) is a Ĝ - dualistic partial metric space 

and complete also so by using (1) of Lemma1 

(we use this lemma because proof of this lemma 

is also obtained on the structure of graph and 

proof is similar as given in Lemma1) (Å, ℓD
∗ ) is  

Ĝ - complete metric space . So ∃ s in (Å, ℓD
∗ ) 

with v n converges to v i.e ℓD(vn,v) = 0,as n →
∞ along with (v n,v) in E (Ĝ). So by (2) of 

Lemma1,using (3.25) and ℓD(v,w) = D(v,w) - 

D(v,v),we can write, D(v,v) = D(v n, v)= D(v n, 

v m) = 0 as m, n → ∞.  

|D(vn, B(v))| = |D(vn−1, B(v))| 

           ≤ c|D(vn−1, s)| +
e|D(vn−1, A(vn−1))| + i|D(v, B(v))| (3.30) 

 

Taking limit as n → ∞ , and B has Ĝ - CCP,we 

obtain |D(v, B(v))| = 0.  

 0 = D(v, v) ≤ D(B(v), B(v))
 (3.31) 

 

Now we use (D2) property  

 D(B(v), B(v)) ≤ D(v, B(v))
 (3.32) 

 

From 3.31 and 3.32 we obtain D(B(s),B(s)) = 0 

.  

 D(v, B(v)) =

D(B(v), B(v)) = D(v, v) (3.33) 

 

Now by (D1) we obtain v = B(v).  

 |D(A(v), vn)| =

|D(A(v), B(vn−1))| 

                        ≤
c|D(v, vn−1 )| + e|D(v, A(v))| +
i|D(vn−1, B(vn−1))| (3.34) 

Taking limit as n → ∞ and A has  Ĝ -CCP,we 

obtain |D(v, B(v))| = 0. 

As we have used the steps for fixed point for B 

,similarly it is used for mapping A. 

Consequently v is also fixed point for A. This 

implies v = A(v) = B(v).  

 

Corollary 3.6. Consider a Ĝ - complete partial 

metric space (Å, D) occupied a graph  

(V, E) = Ĝ,  Å = V(Ĝ) , A,B are two self maps 

from (Å, D) to itself then  

D(A(v),B(w)) ≤ c D(v,w)+ e D(v,A(v))+i 

D(w,B(w)) ∀ v,w ∈Å, 0 ≤ c,e,i  and c+e+i < 1 

, (v,w) in E(Ĝ) implies B ,  A possess a fixed 

point.  

 

Proof. As if we restrict  Ĝ -DPMS ranges from 

set of real numbers to non - negative numbers 

then Ĝ -complete dualistic partial metric space 

becomes Ĝ - complete partial metric space 

consequently proof of this Corollary is obtained 

by same steps of Theorem 3.5 .  

 

Example 3.7 Suppose that (V,E) = Å is a graph 

and Å = [0,1],V(Ĝ) = [0,1] further  

E(Ĝ)= { (v,w)∈ Å×Å } consider a map 

D: [0,1] × [0,1] → ℝ defined as D(v,w) = 
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max{v,w} 

∀ v,w ∈[0,1] is a Ĝ -complete DPMS. Now we 

define the maps on [0,1] to itself as A(v) = 
v

3
 and 

B(v) = 
v

6
, both these maps are graph preserving 

and satisfies Ĝ -CCP for the sequence { vn } = 
1

n
 converges to 0,(vn ,0) in E(Ĝ).Now  

|D (A (
v

3
) , B (

v

6
))| ≤c|D(v, w)|+ 

e|D (v, A (
v

3
))|+i |D (w, B (

w

6
))|= 

v

3
≤

1

4
v+

1

5
v+

1

6
w. 

Thus we observe that 
v

3
≤

1

4
v+

1

5
v+

1

6
w, since 

v

3
 is 

greater than  
v

6
 and v and w behave same.Thus, 

A and B satisfies contraction condition of above 

theorem for some c,e,i which is non -negative 

and their sum is less than  one. So , A and B has 

a fixed point say zero.We have a graphical 

representation of this example which is given in 

figure 2  on next page 

 

 
 

                             Figure  2: Graph of a fixed point for A and B 

  
  

Example 3.8 Suppose 

{0, −1, −0.3, −0.1, −2, −3} = Å  along with a 

graph (V,E)= Ĝ, 

Å = V(Ĝ), {(v,w): v,w∈ Å ×Å }= E(Ĝ). Let us 

define the map D:Å×Å → ℝ as we define in  

Example 3.4 .Consider the map  A:  Å→Å   

defined as  A(v) = 

{
−1,

− 0.3
−0.1,

,
v ∈ {0, −1 , −0.3 , −2 , −3}

v = −2
v =  −3

 

 

and  B:  Å→Å   defined as B(v) = 

{
−1,

− 0.3
−0.3,

,
v ∈ {0, −1 , −0.3 , −0.1 − 2 , −3}

v = −2
v =  −3

 

 

Both the maps are graph preserving and 

satisfies Ĝ -CCP property i.e for a convergent 

sequence vn converges to v due to completeness 

of (Å,D) and (vn , v) in E(Ĝ). So we write 

 D(A(v),A(v)) ≥ D(v,v) and D(B(v),B(v)) ≥ 

D(v,v). The table given below evaluates the 

contraction condition for two mappings.  
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  Contraction table for two maps  A and B 

(v, w) |D(A(v) , B(w))| C|D(v ,w)| +e |D(v ,A(v))|+ 

i | D(w ,B(w)| 

(0,0) 0 0 

(0 ,-1) 0 c+i 

(0 , -2) 0.3 2c+ 1.7i 

(0 , -3) 0.3 3c+ 2.7i 

(0 , - 0.1) 0 c.0.1+0.1i 

( - 1 , - 2) 0 .3 c+ e+1.7i 

(-1, -3) 0.3 2c+e+2.7i 

(-1, - 0.1) 0 0.9c+e+0.1i 

(-1 , - 0.3) 0 0.7c+e+0.3i 

(-1 , -1) 0 c+e+i 

(-2 ,-2) 0.3 2c+1.7e+1.7i 

(-2 , -3) 0.3 c+1.7e+2.7i 

(-2 , - 0.3) 0.3 1.7c+1.7e+0.3i 

(-2, - 0.1) 0.3 1.9c+1.7e+0.1i 

(-3 ,-3) 0.2 3c+2.9e+2.7i 

(-3 ,- 0.1) 0.1 2.9c+2.9e+0.1i 

(-3 , - 0.3) 0.1 2.7c+ 2.9e+ 0.3i 

(-0.1 , - 0.1) 0 0.1(c+e+i) 

(-0.3 , - 0.3) 0 0.1(c+e+i) 

  
Theorem 3.9  Consider a  Ĝ - Complete 

dualistic partial metric space (Å, D)along with 

a graph (V,E)=  Ĝ with Å = V(Ĝ) , loops are 

contained by E(Ĝ) and A,B are self mappings 

on (Å,D) satisfies the conditions given below:  

(1)The pair (A,B) satisfies (Ĝ -CCP) property.  

(2)The pair (A,B) preserves the edges of E(Ĝ). 

If there is, 0 ≤c,e,i and c+e+i < 1 such that  

|D(A(v)), B(w))| ≤ c 
|D(v,A(v)).D(w,B(w)|

|D(v,w)|
  + 

e|D(w, B(w))| + i|D(v, w)|  ∀ v, w∈ Å  and 

(v,w) in E(Ĝ) then B , A possess a fixed point 

 

 

 

 

Proof. Consider a sequence vn and an initial 

term v0 with (vn , v0) in E(Ĝ) with vn = A(vn−1 

) true for any natural number n. We also 

suppose that this supposition is also true for the 

map B.If ∃ vn0
 = vn0+1 = A( vn0

) = B(vn0
) 

implies vn0
 satisfies A( vn0

) = B(vn0
) = vn0

 

.Now we consider  

vn ≠ vn+1 such that (vn, vn+1) ∈E(Ĝ) . By 

contraction condition (2) 

|D(vn, vn+1)| = |D(A(vn−1), B(vn))| 

           ≤

c
|D(vn−1,A(vn−1))|.|D(vn ,B(vn))|

|D(vn−1,vn)|
+

e|D(vn, B(vn))| + i|D(vn−1, vn)| 

           ≤
i

1−c−e
|D(vn−1, vn)| (3.35) 

 

Now we choose ℘ = 
i

1−c−i
|D(vn−1, vn)| < 1 
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then we get  
|D(vn, vn+1)| ≤ ℘|D(vn−1, vn)| ≤
℘2|D(vn−2, vn−1)| ≤ ⋯ ≤ ℘n|D(v0, v1)|
 (3.36) |D(vn, vn)| =
|D(A(vn−1), B(vn−1)| 

        = c
|D(vn−1,vn)|.|D(vn−1,vn  )|

|D(vn−1,vn−1)|
+

e|D(vn−1, vn)| + i|D(vn−1, vn−1)| (3.37) 

 

We observe   
D(vn−1,vn)

D(vn−1,vn−1)
 ≥ 1,  so we write 

|D(vn, vn)| ≤ c|D(vn−1, vn)| + e|D(vn−1, vn)|
+ i|D(vn−1, vn−1)| 

                    = (c + e)℘n−1 +
i|D(vn−1, vn−1)| (3.38) 

 

Continue in this manner we obtain  

 |D(vn−1, vn−1)| ≤ (c +
i)℘n−2|D(v0, v1)| + i|D(vn−2, vn−2)| (3.39) 

 From (3.38) we write  

 |D(vn, vn)| ≤ (c +
i)(℘n−1 + ℘n−2)|D(v0, v1)| +
i2|D(vn−2, vn−2)| (3.40) 

Proceeding in this way  

 |D(vn, vn)| ≤ (c +
e)(℘n−1 + i℘n−2+. . +in−1)|D(v0, v1)| +
in|D(v0, v0)| 

                       ≤ (c +

e) (
in−1−℘n−1

i−℘
) |D(v0, v1)| + in|D(v0, v0)|

 (3.41) 

By using this relation i.e ℓD(v,w) = D(v,w) - 

D(v,v), we obtain  

 ℓD(vn, vn+1) ≤
|D(vn, vn+1)| + |D(vn, vn)| 

 ≤ ℘n|D(v0, v1)| + (c +

e) (
in−1−℘n−1

i−℘
) |D(v0, v1)| + in|D(v0, v0)| 

 ≤ (℘n + ℘n−2 + i℘n−3 +
⋯ + in−2)|D(v0, v1)| + in|D(v0, v0)| (3.42) 

  

 ℓD(vn, vn+1) ≤
γn|D(v0, v1)| + in|D(v0, v0)| (3.43) 

. When m ≥ n we obtain  

ℓD(vn, vm) ≤ ℓD(vn, vn+1)
+ ⋯ . +ℓD(vm−1, vm) 

      ≤ γn|D(v0, v1)| + in|D(v0, v0)|

+ γn+1|D(v0, v1)| + ⋯
+ im−1|D(v0, v0)| 

      ≤ (γn + γn+1 + ⋯ +

γm−1)|D(v0, v1)| + (in + in+1 + ⋯ +
im−1)|D(v0, v0)| (3.44) 

We conclude that as m,n → ∞ we get 

ℓD(v n,v m)and ℓD(v m,v n)  =  0 . Thus { vn } 

is cauchy sequence in (Å, ℓD
∗ ).The remaining 

part of this theorem is done by same as Theorem 

3.5 .  

 

Corollary 3.10. Consider a  Ĝ - complete 

partial metric space (Å, D) occupied a graph  

(V, E) = Ĝ , Å = V(Ĝ)  and A, B are two self 

maps from  (Å, D) to itself then 

D(A(v),B(w)) ≤c 
D(v,A(v)).D(w,A(w))

D(v,w)
+ e 

D(w,B(w))+iD(v,w)  ∀ v,w ∈ Å, 0 ≤c,e,i,and 

c+e+i < 1 and (v,w) in E(Ĝ) and then A , B 

possess a fixed point.  

  

Proof. Since if we restrict ranges of  Ĝ - DPMS 

from set of real numbers to non - negative 

numbers then Ĝ - complete dualistic partial 

metric space becomes Ĝ - complete partial 

metric space and proof of this Corollary is 

obtained by same steps of Theorem 3.9 .  

   

Example 3.11. Suppose (V,E) = Ĝ  is a graph 

choose [1,4]= Å, [1,4] = V( Ĝ)  and  

E(Ĝ) = {(v,w)∈ [1,4] × [1,4]}, consider the 

function  D:Å×Å → ℝ defined by 

D(v,w) = max{v,w} is a Ĝ -complete DPMS. 

Now we define the maps on [1,4] to itself as  

A(v) = √v and B(v) = v 2 both these maps are 

graph preserving and satisfies Ĝ -CCP for the 

sequence { vn } = 
1

n
+ 1 converges to 1,(vn ,1) 

in E(Ĝ).   

|D(A(v), B(w))| ≤ c
|(D(v,A(v)).D(w,B(w))|

|D(v,w)|
+

e|D(w, B(w))| + i|D(v, w)| (3.45) 

Now,   

 |D(√v, w2)| ≤
1

2

|(D(v,√v).D(v,w2)|

|D(v,w)|
+

1

4
|D(w, w2)| +

1

5
|D(v, w)|

 (3.46) 

 Since all the elements are non - negative and 

v 2 greater than  √v on [1,4] , v and w behave 

same on [1,4] and solving (3.46) we obtain 

v 2 ≤
1

2
 w 2+

1

4
w 2+

1

5
w.Thus A and B fulfill 

entire conditions of theorem(3.10) so A(1)= 

B(1) = 1, see in figure 3 . 
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Figure  3: Graph of a fixed point for A and B 

 

4 .Application 

This portion includes an application of 

Theorem 3.1 i.e with the help of Theorem 3.1 

we find a solution for boundary value problem 

defined on [0,1] given below  

  

 y′′(w) = h(w, v(w)), v(0) =

v(1) = 0 (4.1) 

  

 y′′(w) = j(w, v(w)), v(0) =

v(1) = 0 (4.2) 

  

where h, j: [0,1] × ℝ → ℝ are continuous map. 

A green function for the boundary value 

problem (4.1)and (4.2) is given by i.e denoted 

as G and defined as  

G(t, a) = {
w(1 − a) ,

a(1 − w),
    0 ≤ w ≤ a ≤ 1
  0 ≤ a ≤ w ≤ 1

 

 

A space of all continuous functions on [0,1] is 

represented by C[0,1] . Consider  

Å = (C[0,1],ℝ),V(Ĝ) = Å, E(Ĝ) =  { (v,w) ∈
  Å×Å } along with a mapping D:Å×Å → ℝ is 

given by  

 

D(v, p) = ||v − p||∞ + k =
supw∈[0,1]|v(w) − p(w)| + k, k ∈ ℝ (4.3) 

  

We observe that (Å, D) is Ĝ - DPMS which is 

complete and the mappings A,B: Å→Å   given 

by  

  

 ∫
1

0
G(w, a)h(a, v(a))da =

Av(w) (4.4) 

  

 ∫
1

0
G(w, a)j(a, v(a))da =

Bv(w) (4.5) 

 

where w in [0,1], and (4.1) and (4.2) possess a 

solution ⇔ A and B possess a fixed point.  

 

Theorem 4.1. Consider Å = (C[0,1],ℝ),V(Ĝ) 

= Å, E(Ĝ)= {(v ,w)  ∈Å×Å   } and the two 

maps which are graph preserving and satisfies 

Ĝ  - CCP, A, B: Å→Å  defined as  

 ∫
1

0
G(w, a)h(a, v(a))da =

Av(w) (4.6) 
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 ∫
1

0
G(w, a)h(a, v(a))da =

Av(w) (4.7) 

 

where h, j: [0,1] × Å→ ℝ are continuous map 

and v(w) defined in such way  

D(v(w),v(w)) ≤D(A(v(w)),B(v (w)))  also these 

two mappings satisfy the inequalities  

|h(w, v) − j(w, p)| ≤ 8 (log
enb

π
) (4.8) 

for any w in [0,1], v,a in Å and b = 

{|D(v, A(v)), D(p, B(p))|} ⟹ (4.1) and (4.2) 

has a solution.  

 

Proof. Choose z(w) in ( C 2[0,1], ℝ ) as a 

solution for (4.1) and (4.2) ⇔ z(t) in Å a 

solution for (4.6) and (4.7) . Solution for (4.6) 

and (4.7) are obtained through fixed point of A 

and B.Choose s, p in Å and w in [0,1] we get ,  

 |Av(w) − Ba(w)| =

| ∫
1

0
G(w, a)[h(a, v(a)) − j(a, y(a))]da| 

 ≤ ∫
1

0
G(w, a)[|h(a, v(a)) −

j(a, p(a))|da] 
 ≤

8 (∫
1

0
G(w, a) (log

enb

π
) da) 

 =

8 (log
enb

π
) (supw∈[0,1] [∫

1

0
G(w, a)da]) (4.9) 

 

Since ∫
1

0
G(w, a) = 

v

2
 - 

v2

2
 = 

1

8
 for any v 

in [0,1] , we obtain  

 |D(A(p)) − D(B(p))| =

supw∈[0,1]|Av(w) − Bp(w)| + k ≤ sb 

                                                         =
s(max(|D(v, A(v), D(p, B(p))|)) (4.10) 

 

Where k = logπ.Thus by with the help of 

Theorem 3.1, A and B has atleast one fixed 

point say z(w) and also a solution of (4.6) and 

(4.7)  

  

5 .Conclusion 

 

Recently, a concept for fixed points of 

contractive type mappings in DPMS is explored 

by Nazam et al.[9] by the help of Nazam et 

al.[9],we established many theorems in Ĝ -

DPMS in which we use the Ĝ - CCP property , 

graph preserving mappings on the structure of 

graph and give illustration of the theorems.The 

beauty of this article will bring a lot of returns 

in the fixed point theory because we observe 

that many results that are not true in partial 

metric space i.e due to restrictions of non - 

negative real numbers are true in Ĝ -DPMS.  
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