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Abstract: Natural Disaster is an event caused by environment, it has been concerned as it can caused casualties that makes manual damage 

assessment become inefficient. Automated damage assessment is one of field of study in Remote Sensing which already studied for several 

years, from using Traditional Machine Learning into Deep Learning. Recently, semantic segmentation with multitemporal fusion is a 

method used for Damage Assessment using Deep Learning. Multitemporal Fusion is a method fusing two features from Pre and Post 

Disaster Images as one using concatenation to get the feature of all two images. Semantic Segmentation is a method to classify each pixel 

in images into specified class given. This research creates Baseline Model (ResNet-50 + Panoptic FPN + Multitemporal Fusion) for 

comparison with our proposed method, called SCAMU-Net, which consists of U-Net (with different backbone, DenseNet 121, 169, and 

201 layers) and followed by Spatial Channel Attention Module (SCAM) using xBD Dataset in Sunda and Palu Dataset. According to 

finding of the study, SCAMU-Net with DenseNet 121 shows biggest result in Macro F1 in Palu Dataset with 89.8% outperforms the 

Baseline Model about 3.6%. Sunda Dataset cannot perform for Training and Testing caused by destroyed class too few for Models to 

generalized. SCAMU-Net has 1,203,549 less parameters than baseline model. SCAMU-Net also good for detecting different class (No 

Damaged and Destroyed) that adjacent each other. Results shown that SCAMU-Net DenseNet 121 is enough for classify damage in this 

research, it shown that extending from DenseNet 121 provide no significant results. 
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1. Introduction 

Natural Disaster is an event that caused by natural process without 

human intervention, one of the Natural Disaster is Tsunami. One 

of task in Disaster Recovery are damage assessment, which the 

task is how to identify the building and its classification based on 

damage levels. Damage assessment is suggested to be automated 

to minimize the risk because of post-disaster situation that can 

endanger the responder to enter the location, with automated, will 

reduce the cost, time and resources needed compared to manual 

damage assessment [1].  

 

Navalgund et al. [2] stated that there are many applications in 

Remote Sensing, one of it is Urban Landuse which are 

Demography, Housing Quality, Traffic Modelling and Planning 

Utilities. Urban Landuse are used for detecting many things in 

urban area, such as buildings, park, school, cemetery, etc [3]. 

Remote Sensing data have contributed greatly in Landuse 

mapping, Remote Sensing utilize Satellite to capture Image Data 

for further processing, because it is utilizing Satellite then it is 

relatively safe to get the data for region impacted by disaster 

recently.  

 

In the past few years, many studies use Machine Learning Methods 

to make classification of building damage with SVM [4]–[6], many 

Deep Neural Network (DNN) used for Damage Assessment. DNN 

as Nia et al. [7] stated outperforms Machine Learning (ML) Model 

(SVM as baseline) on ground-level image data. DNN approach for 

damage assessment mostly used in Literature Research are 

Classification [1], [7]–[15] and recently the studies are moved 

from Classification into Multiclass Segmentation [16]–[19]. 

Approach in this study is use Multiclass Segmentation, which are 

an approach to classifying each pixel on Image with collection of 

labels such as background, buildings, and roads. 

 

Damage Assessment in Multiclass Segmentation also use 

Multitemporal Fusion, Weber et al. [17] use Pre-Disaster Images 

and Post Disaster Images extracted from one single model with 

shared weights, and its output features are stacked (concatenate) to 

get the features between pre and post. This method is significance, 

because it’s increased F1 score about 0.283. Contribution in this 

paper is modifying state of the art from section 2 with Spatial 

Attention and Channel Attention Module after using 

Multitemporal Fusion module to increased damaged F1 Score. 

Firstly, this study will compare from the Benchmark models 

(Weber et al.) with additional Spatial and Channel Attention [20]. 

Second, this study also replaced the ResNet-50 + FPN model with 

U-Net + ASPP and replace the backbone from ResNet [21] into 

DenseNet [22], to increasing Macro Average F1 score. 
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The structure paper as follows: first section discusses about 

problem, motivation, approach of the paper, and contribution of 

this paper. Second section discuss about similar research in this 

study. Third section discuss about methodology about this paper, 

about datasets, pre-processing, augmentation, proposed method, 

and evaluation metrics. Fourth section discuss about results, 

comparison between model selected and benchmark selected. Fifth 

section discuss about conclusion, future works and limitations. 

2. Related Works 

In the early phase of this study, Cooner et al. [8] developed a 

comparison using three MLA (Machine Learning Algorithm), 

which are ANN (Artificial Neural Network), RBFNN (Radial 

Based Function Neural Network) and RF (Random Forest). 

Dataset used in that study are Haiti Earthquake 2010. The results 

are ANN outperforms the other two MLA with building omission 

error of 37.7%. Ji et al. [9] developed MLA, which is SVM 

(Support Vector Machine), dataset used in the study are Tokyo 

Tsunami. The dataset divided into 4 categories in block map which 

are SED (Slightly Damaged Area), MOD (Moderately Damaged 

Area), SLD (Slightly Damaged Area) and NOD (Undamaged 

Area), the study achieved accuracy of 88.81% to 92.28%.  

Recently, the research of this study using Satellite Imagery to get 

the data, Bai et al. [23] created tsunami damage recognition with 

Deep Neural Networks. This study uses TerraSAR-X Satellite 

Imagery to get the data in Tohoku Earthquake, Japan, 2011. This 

study divided into 4 regions, which are non-build-up region, 

washed away region, collapsed region, and slightly damaged 

region. The study is divided into two phases, which are Built-Up 

Region Extraction (BRE) and Damage-level Recognition (DR). 

The model used in this study are SqueezeNet, WRN, ResNet-50 

and AlexNet. The best result accuracy for BRE is 81.9% and DR 

is 74.9% which WRN best performed in this case.  

 

In previous study above, the data is separated into region (block), 

more recently, the studies about Damage Assessment are directly 

classified the building to be more precise for damage rescue. 

Firstly, Gupta et al. [1] created benchmark dataset called xBD 

Dataset, which are consist of disaster images from 15 countries, 

dataset is captured using WorldView-2 satellite, the study 

developed two stage architecture with U-Net (Localization) and 

ResNet-50 (Classification) to tackle the problem. The model gets 

F1 0.2654 as Baseline Model. Baseline model suffers from Minor 

and Major damage class. (Liu et al., 2021) [15]  developed two 

stages with SE-ResNeXt (Localization) and HRNet 

(Classification) with post only in stage two in xBD Dataset 

achieved F1 0.65.  

 

More recently, the study of Damage Assessment moved from two 

phase (Localization and Classification) into one phase (Multiclass 

Segmentation). Firstly, Weber et al. [17] create two approaches for 

damage assessment, which are Instance Segmentation and 

Semantic Segmentation, with base model of Instance 

Segmentation of ResNet-50 + FPN. This study also used 

Multitemporal Fusion, which concatenate the output layer of each 

FPN from Pre-Disaster Feature and Post-Disaster Feature, and use 

Panoptic FPN as Segmentation Head, where the model is trained 

with same ResNet-50 + FPN (Shared Weights). The result of this 

study stated that Semantic Segmentation are suitable for Damage 

Assessment in xBD Dataset, because the buildings are too small to 

use Instance Segmentation. This study gets F1 score of 0.697 with 

Semantic Segmentation approach. Gupta et al. [24] create model 

called RescueNet, which consist of one model Dilated ResNet-50 

+ ASPP for feature extraction of Pre and Post Disaster Images and 

post disaster features are integrated with Encoder-Decoder style 

which concatenate feature between Post Disaster Features and Skip 

Connection from ResNet Block of Post Disaster to make 

classification. This study states the model gets F1 score 0.74. 

Although, the study says the model gets F1 0.74, when the model 

test with Tier 3 datasets, the F1 score are fall to 0.37 and Tier 1 

validation dataset about 0.66 of F1 Score. The model is suffered 

significant degradation in Damage Assessment Task.  

 

Based on the facts regarding good performance in Damage 

Assessment using xBD Dataset Benchmark, this study will use 

basic model from Weber et al. [17] as basic model architecture for 

this research, feature extraction will be replaced by model that 

perform the best in hyperparameter tuning to ensure the model 

achieved better F1 score than previous research without increasing 

trainable parameters exponentially. 

 

3. Methodology 

3.1. Dataset  

In this study, Tsunami Sunda Dataset from xBD Dataset Tier 3 

(https://xview2.org) and Tsunami Palu Dataset in Tier 1 are used 

for Training and Testing. Dataset Sunda consists of 148 images of 

Pre and Post Disaster Images. Dataset Palu consists of 69 images 

Figure 1. Tsunami Sunda Strait and Palu 2018 Location 
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of Pre and Post Images. Dataset split into 2 parts, Train Dataset and 

Test Dataset with distribution in Table 1 and 2. Location of 

Tsunami Sunda and Tsunami Palu marked by red polygon in Fig 

1. 

Table 1. Distribution of Dataset Sunda 
 

Dataset Total 

Train Dataset (90%) 133 Images 

Test Dataset (10%) 15 Images 

 

Table 2. Distribution of Dataset Palu 
 

Dataset Total 

Train Dataset (88%) 54 Images 

Test Dataset (22%) 15 Images 

 

3.2. Data Preprocessing and Augmentation 

Sunda Dataset extracted from original size of 1024x1024x3 into 

smaller patch of 256x256x3, with the stride of 128x128 when the 

Image does contain Damaged, and 256x256 when the Image does 

not contain Damaged (only Background). Dataset increased from 

133 Images into 5191 Images for Train Dataset, and 15 Images into 

528 Images for Test Dataset. Pre-Disaster Dataset have 2 class 

(Background and Building) and Post Disaster Dataset will be 

simplified into 3 class (Background, No Damaged and Destroyed). 

To balance the Minority Class (Destroyed), Oversampling will be 

used in this study. Oversampling can be seen in Fig 2. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Oversampling Method To balance the Minority Class 

(Destroyed) 

Dataset of Tsunami Palu extracted the same way as Sunda, but the 

stride instead using 128x128, the dataset cropped use stride of 

64x64, when the Image does contain Destroyed category, it will 

use 128x128 if there is only no damaged class. Train Dataset 

increased from 54 Images into 3264 Images of Pre and Post 

Disaster Images. Under sampling and Oversampling are used in 

this study. 60% Images are used if there is not destroyed class 

(class 2) but there is no damaged / building (class 1) class. If no 

damaged class (class 1 and 2) is not present, the background image 

is discarded completely. In this study, the class will be simplified 

to 3 class, which are Background, No Damage and Destroyed. 

Minor Damaged and Major Damaged are converted into No 

Damaged. The dataset is reduced from 3264 into 1747 Images. 

Test Dataset increased from 15 Images (1024x1024) into 1024 

Images (256x256) of Pre and Post Images. Firstly, Training 

Dataset are divided into 70% for Training (1222 Images) and 

Validation Dataset 30% (524 Images). After that, the dataset for 

training is rotated each of 30 degrees generated new patch. Steps 

per Epoch used in this study are 16000 images for Training, and 

5000 for validation. Distribution of Sunda Dataset and Palu 

Dataset are displayed in figure 3 and 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Distribution Sunda Dataset 

 

 

 

 

 

 

 

 

 

Figure 4. Distribution Palu Dataset 

 

3.3. Proposed Method 

This study proposed model named SCAMU-Net which consists of 

single segmentation model U-Net [25] with Hyperparameter 

Tuning included  and extended with Spatial Channel Attention 

Module (SCAM) [20]. U-Net, in this study is a single U-Net with 

different backbone is used with DenseNet 121 Layers, 169 Layers 

and 201 Layers [22], because the recent studies in section 2 uses 

ResNet for feature extraction, this study will try to extend from 

ResNet with deeper backbone for optimal solution, that is 

DenseNet.  

On top of that, U-Net will use ASPP (Atrous Spatial Pyramid 

Pooling) module in the end of encoder block to capture global 

context information. U-Net with ASPP can be seen in Figure 5. 

After ASPP used in U-Net Architecture, the module will use 

BottleNeck layer as shown in Figure 6. After that, U-Net Decoder 

(Expansion Path) configuration are used in this model shown in 

Figure 7. Concatenation in U-Net decoder consists of last layer of 

previous bottleneck, and concatenate with last concatenation layer 

in DenseNet block, to ensure all context information extracted by 

DenseNet can be used to classify the problem more correctly.  

The following structure of U-Net Decoder BottleNeck Layer are 

Concatenation (from output of previous layer and output of ResNet 

block), Convolution 3x3 with N channels with 

BatchNormalization and ReLU activation function and followed 
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by two Convolution 3x3 with N/2 (half) channels (from first 

convolution layer in current bottleneck) with BatchNormalization 

and ReLU. N channels for each bottleneck are (1024,512,256, and 

128) respectively.  

 

 

 

This study proposed model named SCAMU-Net (Spatial and Channel 

Attention Module U-Net), which consist of Single U-Net with shared 

weights from configuration in Fig 5, for processing Pre-Disaster and Post-

Disaster Images. Firstly, Pre-Disaster Images and Post-Disaster Images are 

trained with same model to get feature from each image (pre and post 

disaster image) and will be fusion into one with Concatenate Layers. After 

the Concatenation layers, instead the model predicts, the architecture 

extended by using Spatial Attention Module and Channel Attention 

Module inspired from Woo et al. [20] to learn what feature and where the 

location of feature is important to be selected.  

Fig 7. U-Net Decoder Bottleneck Layer 

Figure 5. U-Net DenseNet Architecture with ASPP (Output Channels in DenseNet is 121 layers) 

Figure 6. BottleNeck Layer 

Figure 8. SCAMU-Net Architecture 

Figure 9. Channel Attention Module 

Figure 10. Spatial Attention Module 
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Base Architecture modified can be seen in Figure 8. In this study, Dense 

layers in Figure 9 for Channel Attention Module is modified, from single 

Dense Layer into double dense layer, with channels of [C * 2, C] 

respectively. Figure 9 and 10 denote detail of Channel and Spatial Attention 

Module used in the architecture. In this experiment, all models will be 

trained with same loss function which is categorical cross entropy, learning 

rate 1e-4, with Adam optimizer and same epochs of 10.  

 

3.4. Evaluation Metrics 

Evaluation Metrics for this study is Macro Average F1 Score will 

become the comparable metrics for baseline model and proposed 

model, which have formula as described below. Example for True 

Positive (TP), False Positive (FP), False Negative (FN) and True 

Negative (TN) for class 0 in Table 3. 

 
Table 3. Confusion Matrix for Class 0 

 

Label 

 

Prediction 

Class 0 Class 1 Class 2 

Class 0 TP FP FP 

Class 1 FN TN  

Class 2 FN  TN 

 

From Table 3, precision, recall and F1 Score formula for class i (0 

to 2, in this study), described in equation (eq) 1, 2 and 3. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖) =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
  (eq 1.) 

 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑖) =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
  (eq 2.) 

 

𝐹1(𝑖) =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖)∗𝑅𝑒𝑐𝑎𝑙𝑙(𝑖)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖)+𝑅𝑒𝑐𝑎𝑙𝑙(𝑖)
  (eq 3.) 

 
Each of individual F1 score (class 0 to 2) will be summed and 

average, to get the final results as described in eq 4. 

𝑀𝑎𝑐𝑟𝑜𝐹1 =
∑ 𝐹1(𝑖)𝑛
𝑖=0

(𝑛+1)
 (eq. 4) 

 

4. Results and Discussion 

Firstly, SCAMU-Net is train using Sunda Dataset. The validation 

result and Test Result are shown in Fig 11 and Table 4. From the 

experiment, the results shown that, although the class 0 

(background) and class 1 (no damaged) are retained, but class 2 are 

heavily impacted in the Test Set, the model cannot predict the Test 

Set that very different from Validation Set, feature from Train 

Dataset are too few so the model cannot generalize the feature in 

class 2 (destroyed). The result of oversampling in Training Dataset 

Sunda only makes the model memorize the pattern in Train 

Dataset, but worse in Test Set (very overfit). Hypothesis concluded 

that because too few Destroyed class in Sunda dataset, Sunda 

Dataset cannot use for training and testing. Alternatively, this study 

also using Palu Dataset to create damage assessment. 

Fig 11. Macro F1 Validation Sunda Dataset SCAMU-Net 

DenseNet 169 Layers. 

 

Table 4. Validation and Test Result of Dataset Sunda UNet 

DenseNet169 
 

SCAMU-Net 

DenseNet16

9 

F1 

Backgroun

d 

F1 No 

Damage 

F1 

Destroyed 

Macro 

Average 

F1 

 Best 
Validation 

Dataset 

Result 

0.9881576 0.755206
2 

0.755206
2 

0.891556
9 

Test Dataset 0.9761409 0.785703

3 

0.019989

2 

0.593944

5 

 

Second, the models (baseline models and proposed method) are 

train with Palu Dataset, macro F1 of Validation in each model in 

Palu Dataset is described in Fig 12. The experiment shows in 

Validation dataset in each epoch, U-Net with each different 

DenseNet bottleneck (121, 169 and 201 layers) outperforms the 

Baseline Model.  

 

Maximum Validation result are shown in Table 5 to assess 

individual Macro F1. Test results are shown in Table 5 to assess 

individual macro F1 of each model. From Table 5, Spatial and 

Channel Attention Module (SCAM) is sacrificing macro F1 by 

0.1%, but it increases F1 of destroyed class (class 2) by 1% in Test 

Set, it means that SCAM focus in destroyed class more than 

without SCAM. From Table 5 and 6, SCAMU-Net with DenseNet 

is outperforms in this dataset from benchmark given, with 

whopping 2.3% to 2.8% in maximum validation results, and 3.2% 

to 3.6% in test results.  

 

In this study, layers of DenseNet are extended from 121 to 201, 

although in Figure 14, validation results are increased slightly for 

different DenseNet, test results shown in Table 5 stated that the 

optimum layer of DenseNet is 121. SCAMU-Net also reducing 

total parameters from benchmark 43,653,251 to 42,449,702 which 

are 1,203,549 parameters less than the benchmark model. 
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Figure 12. Validation Macro Average F1 of All Models in Palu Dataset 

Maximum Validation Dataset Result 

Model 

F1 

Background 

(Class 0) 

F1 No 

Damage 

(Class 1) 

F1 

Destroyed 

(Class 2) 

Macro 

Average 

F1 

Total Number of 

Parameters 

Baseline (Weber et al., 

2020) 0,952955 0,791920 0,837206 0,86069 43,653,251 

Baseline (Weber et al., 
2020) + Spatial Channel 

Attention Module 

(SCAM) 0,952929 0,793140 0,831640 0,859236 49,161,132 

SCAMU-Net 

(DenseNet-121)  0,962916 0,817383 0,870129 0,883476 42,449,702 

SCAMU-Net 

(DenseNet-169) 0,964829 0,823015 0,870980 0,886275 54,870,822 

SCAMU-Net 

(DenseNet-201) 0,964435 0,824145 0,876207 0,888262 62,450,470 

 

Table 5. Maximum Validation Result each models in Palu Dataset 

Model 

F1 

Background 
(Class 0) 

F1 No 

Damage 
(Class 1) 

F1 

Destroyed 
(Class 2) 

Macro 
Average F1 

Total Number 
of Parameters 

Baseline (Weber et al., 

2020) 0,981430 0,856837 0,750398 0,86289 43,653,251 

Baseline (Weber et al., 

2020) + Spatial 

Channel Attention 0,981293 0,843873 0,760476 0,861881 49,161,132 

SCAMU-Net 

(DenseNet-121)  0,986257 0,886659 0,823825 0,898914 42,449,702 

SCAMU-Net 

(DenseNet-169) 0,986096 0,885865 0,811915 0,894625 54,870,822 

SCAMU-Net 

(DenseNet-201) 0,986267 0,882162 0,824338 0,897589 62,450,470 

 

Table 6. Test Result each model in Palu Dataset 

0.75
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0.9
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M
ac

ro
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1

Epoch

Validation Macro Average F1 of All Models Palu Dataset

ResNet50 FPN + Spatial Channel Attention Module (SCAM)

ResNet50 FPN (Baseline Model)

SCAMUNet DenseNet169

SCAMUNet DenseNet201

SCAMUNet DenseNet121



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 498–506 |  504 

This study also random one of the images in Test Dataset to 

visualize the different between benchmark and proposed models 

perform, the pre disaster image and post disaster image can be seen 

in Fig 13,14. Ground Truth Label of post disaster image can be 

seen in Fig 15. The results between Benchmark model with 

SCAMU-Net DenseNet 121 (which the best test result in Table 5) 

can be seen in Fig 16 and 17.  

Firstly, the image is cut with patches of size 256x256x3, from 

1024x1024x3, making one image pre and post are converted into 

16 different patches pre and post. The models are predicting 16 

different patches, and then 16 predicted masks are stitches into one 

original mask.  

From the results, Benchmark model misclassified some no 

damaged label into destroyed label, meanwhile proposed model is 

predicting almost every building correctly in fig 17, when 

comparing to Ground Truth in fig 15. SCAMU-Net also can detect 

destroyed building when in dense area, as seen in fig 17, compared 

to benchmark model which misclassified between No damaged 

class and destroyed class in fig 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Pre-Disaster Image 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Post-Disaster Image 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Ground Truth Label 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Prediction of Benchmark (ResNet50 + Panoptic FPN 

+ Multitemporal Fusion) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Prediction of SCAMU-Net (DenseNet-121) 

 

5. Conclusion 

In this research, the proposed method called SCAMU-Net classify 

damage with multiclass semantic segmentation approach method 

using satellite imagery, by comparing baseline model (ResNet-50 

+ Panoptic FPN + Multitemporal Fusion) with proposed model 

which are (UNet + Multitemporal Fusion + Spatial Channel 

Attention Module) with 3 different DenseNet backbone 

(DenseNet-121, 169 and 201 layers).  

The dataset used in this study are Sunda Dataset and Palu Dataset 

in xBD Datasets. Sunda Dataset cannot give satisfying results in 

Destroyed class, because the class itself in Sunda Dataset are too 

few for deep learning model can generalize the feature, meanwhile 

in Palu Dataset, all model (including benchmark) is producing 

satisfying results.  

In Palu Dataset, Spatial and Channel Attention Module (SCAM) 

are increasing F1 Score 1% on Destroyed class and sacrificing 

about 0.1% on Macro F1 Score, it means that SCAM is focusing 

on important features in Destroyed class which are minority class. 

SCAMU-Net (DenseNet-121) are outperformed baseline model by 

3.6% in F1 Score and reducing its total parameters from 

benchmark by 2.75% (total of 1,203,549 less from benchmark 

model). Benchmark models are struggling classificate between no 

damage class and destroyed class when the building is mixed 

between two different class.  

The suggestion for future works is, firstly, extend the model from 

only Tsunami models into all category’s disasters model (such as 

volcano eruption, earthquake, hurricane, etc.) to ensure the model 
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accurateness in damage assessment beside Tsunami disaster. 

Second, extend the model with different combination of State-of-

the-Art model for Semantic Segmentation such as PSPNet [26], 

DeepLab V3[27]. Third, at the last concatenation layer on 

architecture, modificate the model by using Change Detection by 

subtracting the Pre-Disaster Image and Post Disaster Image and 

compare the result by using Concatenation and Change Detection. 
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