

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 695–700 | 695

Comprehensive Empirical Study of Static Code Analysis Tools for C

Language

Vishruti V. Desai *1, Dr. Vivaksha J. Jariwala2

Submitted: 10/09/2022 Accepted: 20/12/2022

Abstract: A developing trend in current science and technology is the emphasis on software codes, which places greater attention on the

quality of software codes. In today's quality assurance procedure, static analysis plays a significant role. The important feature is that any

fault or vulnerability in the code is discovered without the need to execute it. The key challenge is identifying complex code blocks and

possible system faults. For unsafe programming languages like C and C++, various static code analyzers are used. Each of them has unique

importance and constraints. To date, no technique has yet been able to guarantee that the software will not ever halt, crash, or behave

bizarrely. However, more effective techniques may be chosen to reduce software coding defects. Our objective is to examine various static

analysis tools to identify their uniqueness and specification. In this paper, we examine static analysis tools, their methods and determine

their performance measures. Our focus is to compare various tools that assess C programs according to capabilities for detecting

vulnerabilities and to identify the strengths and limitations of each tool. As an empirical study, we evaluate various performance parameters

for the Juliet Test suit for C programming language.

Keywords: C language, Common Weakness Enumeration (CWE) , Programming language, Security Vulnerability, Static Code Analysis

1. Introduction

Software needs to be reliable and secure in today's software-driven

environment. Security and software quality issues are becoming

important in the rapidly expanding world of modern technology.

The software application is defined by the quality of the code and

the coding standards that it conforms. An effective way to examine

the software system coding strategy is through Static Code

Analysis (SCA). Tools for SCA assist programmers in creating

robust software that is free of flaws and vulnerabilities [1][2].

Inadequate software quality is the primary cause when it comes to

information security breaches. Low-quality code that has a few

flaws might result in insecure software and because of it,

knowledgeable adversaries can take advantage [3]. Manual

inspection through the source code and seeking faults is a time-

consuming and laborious process. In the worst-case scenario, it

could not even be a practical strategy. Static analysis tools are

useful in such situations [4]. Tools save time and effort for the

inspector by alerting them to potential defects and code mistakes.

But still, require someone to run them and manually review the

indicated potential problems. If analysis results are used skilfully,

they are a great resource for flaw finding [5].

Static analysis tools have significantly improved over the last 10

years, going beyond simple lexical analysis to incorporate far more

complex algorithms. However, most static analysis challenges are

undecidable, that is, it is difficult to devise an algorithm that always

yields the right response in every situation. Therefore, not all

vulnerabilities in source code are found by static code analysis

tools and are likely to provide information that, upon closer

inspection, is not a security vulnerability [6]. An SCA tool must

uncover as many vulnerabilities as feasible, ideally all of them,

with the least number of false positives—ideally none—to be

useful. This work aims to better understand the advantages and

disadvantages of static code analysis techniques by conducting a

comprehensive empirical evaluation of their capacity to identify

security flaws. The following are the primary contributions of this

paper:

1) We represent comprehensive details of tools and prepare the

comparison study between them.

2) We examine tool evaluation on Juliet Test Suit. It is a

benchmark for assessment of static code analysers tools.

3) We consider performance measures such as accuracy, recall,

time for execution, detection ratio for accountable Common

Weakness Enumeration (CWE).

The remaining contents of this paper is organized as follows: The

Section 2 contains the literature review; the Section 3 describes

tool overview in detailed comprehensive way. Section 4 gives

analysis of each tool mentioned in section 3. Section 5 discusses

the result and performance measures affected by each tool

followed by conclusion.

2. Literature Survey

Static code is a method in which a source code is examined for

quality and safety. For identifying vulnerabilities in C/C++

software, we look for automated tools. In [7], the author reviewed

various programme analyzers that are used by Google, Facebook,

and Microsoft. Many static analyzers did not consider all potential

runtime faults. Others pay particular attention to the ones that were

likely to be useful to them. We search for memory related

vulnerability detection using such tools. Authors in [8], compared

12 different tools with various parameters and defect types. For

1 Ph.D. Scholar, Gujarat Technological University, Gandhinagar,

Gujarat, India.

ORCID ID: 0000-0002-5922-9374
2Supervisor, Gujarat Technological University, Gandhinagar, Gujarat,

India.

ORCID ID: 0000-0003-3332-2033

* Corresponding Author Email: Vishruti.phd@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 695–700 | 696

each tool, they have written their own parser for analysis of reports

and mentioned the tools priority for specific defect type. In various

comparisons papers [9], [4], [6], [10], [2], [11], they have either

said about the two or three tools with limited vulnerabilities. Even,

the names of the tools are not mentioned by authors. They also

considered the fact that commercial instruments are both expensive

and not readily available. Additionally, although not in

comparison, they outlined each tool's specific strengths and

weaknesses in publications.

Primarily, static code analysis tools use two basic approaches. It is

a compiler based or machine learning based approach. Here in our

survey, we found more work in compiler-based approach and very

less in machine learning based. Researchers employ SCA for a

variety of applications, including embedded systems, IoT systems,

etc., in addition to various techniques in general application

software. In [12], it used as fault detection tool for limited

resources and considered phase-wise analysis for software

development. In [3], IoT based applications, the authors took 18

open-source system and found unsafe commands related with

memory and string. This direction is helpful for secure coding and

high-quality standards. Apart from empirical evaluation on limited

set, authors in [1] have counted and listed theoretical concepts of

tools along with CWE categories that are available in manuals.

There are tools that used general purpose languages and domain

specific languages. Many papers used Toyota ITC Test Suit and

Juliet Test Suit for evaluation of tools and listed out vulnerability

on CWE category for defect type or their own category for it

[13][4]. There was a possibility that the same vulnerability is listed

with different name and CWE number as per their interpretations.

Instead of using ITC Test Suit or Juliet Test Suit, researchers also

worked on preparing their own test suits for analyzing various

parameters [14].

Other work carried out with static code analysis is related with

report generated by tools. Authors analyzed and labelled the

vulnerability in report and performed analysis on report. In

addition, they tried to find false positives and true positives in the

report. In [15], they presented a systematic review of the work

carried out till 2018 for SCA tools. They had more focused on the

language domain instead of detailing of the performance of tools.

3. Tools Overview

In this section, we introduce 14 tools in more detail with their

general information along with their capabilities mentioned in

manual of tools. Below table 1, shows the tool general information,

its description. Basically, we focus on tools that work in the C

language. We also compare them based on information such as the

platform they support, whether tools are extensible or not and

availability of tools. We consider both types of tools that are open

source and commercial products used in industry. We also reflect

the form of the output generated by tools, their version and first

release year.

Table 1. Tool Parameter Description

Parameter Name Description

Language (L) Language supported by specific tool.

Platform (P) It describes the platform on that tool run.

Extensibility (E) It is extendable or not. If yes(Y) else no(N)
Availability (A) Tool is available Commercial (C), Open

Source(O), or Free(F).

Output It gives the format of output generated
after tool runs. Command Line (CMD),

HTML, XML, CSV

Version
It provides the current version number
available in market.

Release Year
It gives release year of the tool when it was

first in use.

Table 2 describes this information for all considered tools. Astree

[17] developes for a specific domain of embedded systems. It looks

for variables’ issues, memory usage, dangling references in C.

ClangSCA [18] is fast, light, and scalable. It has library-based

architecture. CodeSonar [19] works as a listening software that

scans for applications that could use a C/C++ compiler. CppCheck

[20] is an open-source tool, detects many rules. The most recent

version of 2017 covers a vast list of checks, whereas the prior

version could only verify a small list of criteria. FlawFinder [21] is

simple but useful tool. The built-in database is examined by this

tool to check if any so-called "flaws" or vulnerabilities exist. It also

lists the severity of the problems. Frama-C [22] is a reliable

framework for the analysis of C program that includes a few

plugins for static analysis or verification. Infer [23] checks for null

pointer dereferences, memory leaks, coding standards, and

inaccessible APIs. Infer is integrated with Facebook's code review

system.

ITS4[24] effectively notices the huge number of code lines. It also

works on pattern matching. MOPS [18] basically checks for

security properties and identify whether it is observed or not.

Parasoft [26] employs as a testing tool, but it also analyzes source

code files. RATS (Rough Auditing Tool for Security) [27] notices

destructive function calls. Its goal is to provide a reasonable

starting point for performing manual security audits. Sparse [28]

uses for kernel security and it is one of the command line semantic

scanners for files written in C language. Splint is also an open-

source static code analysis tool. It is only for C.

VisualCodeGrepper (VCG) [10],[12],[15],[16] is open source and

mostly used widely in industry.

Static code analysis tools work either on program files or binary

files. They internally work on different rules from simple pattern

matching to complex symbolic execution. They consider different

flows within a code.

Table 2. Tool General Information

Citation Tool Name L P E A Output Version
Release

Year

[17] Astree C/C++ W N C CMD 22.04 2001

[12] Clang SCA C/C++ L Y O CMD, HTML 3.8 2009

[6] CodeSonar C/C++ WL Y C Text, HTML, XML, CSV 3.3 2007

[7] CppCheck C/C++ WL Y O Text, HTML, XML, CSV 1.86 2007

[10] FlawFinder C WL Y O Text, HTML, XML, CSV 2.0.6 2001

[3] Frama-C C/CC++ L Y O Text 21 2008

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 695–700 | 697

[14] Infer C, Java, PHP L/M Y O Text, HTML, XML, CSV 0.15 2008

[12] ITS4 C/C++ L N C Text - 2000

[18] MOPS C L Y O Text, HTML, XML, CSV 0.9.2 2004

[19] Parasoft
C/C++, Java,

Python
W Y C Pie Chart / Text - 1987

[26] RATS
C/C++, Perl, PHP,

python
WL Y O HTML, XML 4.18 2001

[27] Sparse C L Y F Linux OS output - 2003

[28] Splint C L Y O Text, HTML, XML, CSV 3.1.2 2007

[30]
Visual Code

Greeper VCG

C++, C#, VB, PHP,
Java, PL/SQL

W Y O Graph, HTML, XML, CSV 2.2.0 2014

Table 3: Tools working Details

Tool Name Specific Purpose Rule Usage Command

Astree
Embedded Software

Security
Abstract Interpretation

GUI, Batch mode with

annotations -

Clang SCA Security
Symbolic Execution, inter procedural

data-flow analysis
Command Line scan-build clang filename.c

CodeSonar Security Data Flow, Symbolic execution GUI

codesonar hook-html

<project-name>

<command>

CppCheck General Purpose
Pattern Matching, AST, intra-

procedure
Command line, GUI cppcheck filename.c

FlawFinder General purpose
Pattern Matching from built-in

Database
Command Line flawfinder filename.c

Frama-C General / Security abstract interpretation Command Line/GUI
frama-c file.c -<plugin> /

frama-c-gui file.c

Infer
Security, Runtime

errors
biabduction, Inter procedural

Online, Command prompt,
GUI

Infer run – gcc –c
filename.c

ITS4 Bad function
Abstract Syntax Tree, Pattern

matching
Command line -

MOPS Security FSM, Control Flow Graph -
gcc –B filename.c >

filename.cfg

Parasoft Security
pattern-based analysis, dataflow
analysis, abstract interpretation

GUI Based -

RATS Security Pattern Matching - rats filename.c

Sparse Security Semantic Checker for Kernel Code - sparse filename.c

Splint security
Intra-procedural data flow analysis,

Annotation
Command Line splint filename.c

Visual Code

Greeper

VCG

Security Pattern Matching
GUI and Command

Prompt
visualcodegrepper.exe -c -

v -l -t --results

They are data flow or control flow analysis. With reference to code

information about data, they are either flow-sensitive or flow-

insensitive, content-sensitive, or insensitive, field sensitive or

insensitive. For the tools that have been tested, we haven't

concentrated on the code information in our work. So, we have not

included that part of the tool’s details. Table 3 shows the rules,

specific purpose, usage, and command used to run the tool.

4. Tool Analysis

The following is the primary justification for empirically

examining the tools employing Juliet Test Suit test cases:

1) Use the tools and evaluate their results to identify various

vulnerabilities.

2) Find false positive, true positive addition to that find true

negative (i.e., tools not able to detect vulnerabilities). We were able

to assess recall and accuracy using these performance measures.

3) We also examined a significant number of test cases to

determine the tools' detection capability.

For each vulnerability, we have assigned a CWE number and

divided them into two broad group such as input data vulnerability

and operating system (OS) vulnerability. We part them as you

focus on memory related vulnerabilities. The vulnerabilities that

we find using tools are described in input data vulnerability (table

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 695–700 | 698

4) and operating system (OS) vulnerability (table 5).

We used the identical machine configuration to test each tool for

evaluation. With 2GB RAM, we utilized Windows 11, Ubuntu

18.04. Our goal was to provide them with a comparable

environment. It was to check security flaws in C code related to

input as well as OS weaknesses.

Table 4. Input Data validation

CWE-No 20 457

 Name
Improper Input

Validation

Uninitialized

variable

Astree Y Y

Clang SCA N N

CodeSonar Y Y

CppCheck N Y

FlawFinder N N

Frama-C N Y

Infer Y N

ITS4 N Y

MOPS Y Y

Parasoft Y N

RATS Y Y

Sparse N N

Splint Y Y

VCG Y N

Table 5. OS vulnerability

CWE-No 121 122 367 362

Name
Stack

Overflow

Heap

Overflow

TOC-

TOU

Race

Condition

Astree N Y Y N

Clang SCA N Y N N

CodeSonar Y N Y Y

CppCheck N Y Y N

FlawFinder Y N N N

Frama-C N N Y Y

Infer Y Y N Y

ITS4 N N Y Y

MOPS Y N Y Y

Parasoft Y Y N Y

RATS Y Y N Y

Sparse N Y N Y

Splint N Y Y N

VCG N Y Y N

In addition to further information, table 6 lists the security

vulnerabilities we search for, and we express them using our

notation and CWE number.

5. Result and Discussion

In our experiments, we investigated the detecting abilities of total

fourteen tools. It quickly became evident that the tools built on

annotations had promising results but also imposed more demands

on their users. Other side, the highest technical competence was

needed for Frama-C since it was difficult and time consuming to

analyze its output. Even Splint verified software effectively with

enough annotations, but this required about the same amount of

programming effort in the annotation language, which may be

unfamiliar to many developers. When employed with the

necessary skill level, sufficiently integrated into the project, and

used on the desired goals, all the tools that were chosen would be

advantageous for software projects. Small enterprises found it

exceedingly expensive to employ commercial tools. Modern tools

were more stable and effective for detection. They also produce the

output in user friendly way. CppCheck was extremely helpful, and

it was also quite simple to comprehend its results. We noted that

the CWE numbers provided by tools in reports varied from one

another. They did not use the same CWE number. Therefore, it was

challenging to distinguish between vulnerabilities based just on

their CWE numbers. Due to space restrictions, not all screenshots

from all categories are included here. Table 7 describes detection

capabilities for finding security vulnerabilities for each tool.

Table 6. Security Vulnerability notations

NO CWE Name

V1 134 Format string vulnerability

V2 170 Improper Null Termination

V3 244 Heap Inspection

V4 251 Often Misused: String Management

V5 787 Array Index Out of Bounds- Write

V6 415 Double Free

V7 416 Use After Free

V8 468 Unintentional pointer scaling

V9 478 Null Dereference

V10 489 Leftover Debug Code

V11 125 Out of Bound Array Indexing

V12 190 Integer Overflow or Wraparound

V13 369 Divide by Zero

V14 785
Use of Path Manipulation Function without Maximum

Sized Buffer

V15 401 Memory Leak

V16 120 Buffer Overflow

We employed four metrics—accuracy, recall, false alarm

probability (PF), and detection ratio—as performance measures.

They stand for various tool performance qualities when it comes to

identifying security vulnerabilities. The confusion matrix, which

represents the total number of true positives (TP), false negatives

(FN), false positives (FP), and true negatives (TN), had to be

calculated before we calculated these performance measures. We

then computed these measures for our experimental study using

these confusion matrices. Below equations (1), (2) and (3) are the

way these four measures are defined.

The essential criteria to compare these tools is another metric

called detection ratio, which is used to categories vulnerabilities

and determine whether a certain tool identifies a given type of

vulnerability or not. Table 8 shows four performance measures for

chosen SCA tools.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 695–700 | 699

We found that just a few tools can perform the same task with

greater accuracy than with lower recall. So, vulnerability

categorization has been done and marked for each tool and then

detection ratio has been calculated.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝐹𝑃

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
… (1)

Table 7. Security Vulnerability detection

No V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

Astree Y N N Y Y Y Y N Y Y Y Y N N N N

Clang SCA Y Y Y N N Y N Y N N N N N N Y Y

CodeSonar N N Y Y Y Y Y N N Y Y N Y Y N N

CppCheck Y N N N N N N N Y N N N N N N N

FlawFinder N Y Y N N N N Y Y N N Y N Y Y Y

Frama-C N Y N Y Y N Y Y Y Y Y Y Y N Y Y

Infer Y Y Y Y N N Y Y N Y Y N Y N Y Y

ITS4 Y N N Y Y Y Y N Y Y Y N Y Y N N

MOPS Y N N N N N N N N N N Y N Y N N

Parasoft N Y Y N N N N Y N N N Y N Y N N

RATS N Y Y Y Y Y Y N Y N N Y N N N Y

Sparse Y N Y N Y Y Y N Y Y Y N N N Y N

Splint Y Y N N Y Y Y Y Y N N N N N Y Y

VCG N N N Y N N N Y N N N N Y Y Y N

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… (2)

𝑃𝐹 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
… (3)

Important empirical findings include:

1) None of the selected tools was able to detect all

vulnerabilities. Specifically, out of the 22 C/C++ CWEs,

none of the tools was able to detect at most 15 CWEs

(i.e., 68%) were detected by a single tool and only 10

CWEs (approx. 31%) were detected by all tools.

2) The ability of the chosen SCA tools to identify security

vulnerabilities for the C programming language did not

demonstrate statistically significant differences.

3) One of the tools performed better than the others for C

vulnerabilities in terms of probability of false alarm and

recall.

Table 8. Performance Measures

Tool Name Accuracy Recall PF
Detection

Ratio

Astree 52.15 37.76 0.43 55.22

Clang SCA 69.39 57.68 0.91 67.95

CodeSonar 63.14 50.21 0.98 73.57

CppCheck 69.55 55.99 0.32 53.09

FlawFinder 51.1 73.51 0.5 69.59

Frama-C 50.8 76.54 0.98 51.75

Infer 78.94 61.13 0.64 69.6

ITS4 47.62 58.41 0.29 59.54

MOPS 68.56 51.24 0.65 46.57

Parasoft 56.12 77.34 0.23 48.54

RATS 74.91 60.58 0.15 53.13

Sparse 50.49 33.28 0.42 74.02

Splint 64.14 51.58 0.67 60.97

VCG 80.62 55.83 0.78 52.06

6. Conclusion

In this paper, our focus was on evaluating static code analyzers’

capacity to identify security vulnerabilities. We employed an

experimental strategy based on the Juliet benchmark test suite for

this objective. It enabled us to automatically assess many test cases

covering a wide range of C vulnerabilities to determine how

efficiently the tools performed. In a contrast to research interests

work, we have also provided thorough information regarding the

tools and rules required to make the tools function. Despite recent

advancements in this area and claims made by the tool's

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(4), 695–700 | 700

developers, our experimental findings indicated that static code

analyzers do not effectively identify security vulnerabilities in

source code. To conform the finding that static code analysis tools

have large false negative rates, we will need to integrate open-

source code in future studies.

References

[1] Fatima, S. Bibi, and R. Hanif, “Comparative study on static code

analysis tools for C/C++,” Proc. 2018 15th Int. Bhurban Conf. Appl.

Sci. Technol. IBCAST 2018, vol. 2018-Janua, pp. 465–469, 2018, doi:

10.1109/IBCAST.2018.8312265.

[2] H. Kaur and P. Jai, “Comparing Detection Ratio of Three Static

Analysis Tools,” Int. J. Comput. Appl., vol. 124, no. 13, pp. 35–40,

2015, doi: 10.5120/ijca2015905749

[3] S. M. Alnaeli, M. Sarnowski, M. S. Aman, A. Abdelgawad, and K.

Yelamarthi, “Source code vulnerabilities in IoT software systems,”

Adv. Sci. Technol. Eng. Syst., vol. 2, no. 3, pp. 1502–1507, 2017, doi:

10.25046/aj0203188.

[4] A. Wagner and J. Sametinger, “Using the Juliet Test Suite to compare

static security scanners,” SECRYPT 2014 - Proc. 11th Int. Conf.

Secur. Cryptogr. Part ICETE 2014 - 11th Int. Jt. Conf. E-bus.

Telecommun., pp. 244–252, 2014, doi: 10.5220/0005032902440252.

[5] I. Gomes, P. Morgado, T. Gomes, and R. Moreira, “An overview on

the Static Code Analysis approach in Software Development,” Fac.

Eng. da Univ. do Porto, Port., 2009.

[6] K. Goseva-Popstojanova and A. Perhinschi, “On the capability of

static code analysis to detect security vulnerabilities,” Inf. Softw.

Technol., 2015, doi: 10.1016/j.infsof.2015.08.002.

[7] M. Christakis and C. Bird, “What developers want and need from

program analysis: An empirical study,” ASE 2016 - Proc. 31st

IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 332–343, 2016, doi:

10.1145/2970276.297.

[8] A. Arusoaie, S. Ciobaca, V. Craciun, D. Gavrilut, and D. Lucanu, “A

comparison of open-source static analysis tools for vulnerability

detection in C/C++ Code,” Proc. - 2017 19th Int. Symp. Symb. Numer.

Algorithms Sci. Comput. SYNASC 2017, pp. 161–168, 2018, doi:

10.1109/SYNASC.2017.00035.

[9] D. ucanu Andrei Arusoaie, Stefan Ciobaca, Vlad Craciun, Dragos

Gavrilut, “A Comparison of Static Analysis Tools for Vulnerability

Detection in C / C ++ Code,” vol. 190, pp. 161–168, 2017.

[10] M. Mantere, I. Uusitalo, and J. Röning, “Comparison of static code

analysis tools,” 2009, doi: 10.1109/SECURWARE.2009.10.

[11] A. Kaur and R. Nayyar, “A Comparative Study of Static Code

Analysis tools for Vulnerability Detection in C/C++ and JAVA Source

Code,” Procedia Comput. Sci., vol. 171, no. 2019, pp. 2023–2029,

2020, doi: 10.1016/j.procs.2020.04.217.

[12] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and

M. A. Vouk, “On the value of static analysis for fault detection in

software,” IEEE Trans. Softw. Eng., vol. 32, no. 4, pp. 240–253, 2006,

doi: 10.1109/TSE.2006.38.

[13] J. Herter, D. Kästner, C. Mallon, and R. Wilhelm, “Benchmarking

static code analyzers,” Reliab. Eng. Syst. Saf., vol. 188, no. March, pp.

336–346, 2019, doi: 10.1016/j.ress.2019.03.031.

[14] S. Shiraishi, V. Mohan, and H. Marimuthu, “Test suites for

benchmarks of static analysis tools,” 2015 IEEE Int. Symp. Softw.

Reliab. Eng. Work. ISSREW 2015, no. November, pp. 12–15, 2016,

doi: 10.1109/ISSREW.2015.7392027.

[15] D. Stefanović, D. Nikolić, D. Dakić, I. Spasojević, and S. Ristić,

“Static code analysis tools: A systematic literature review,” Ann.

DAAAM Proc. Int. DAAAM Symp., vol. 31, no. 1, pp. 565–573, 2020,

doi: 10.2507/31st.daaam.proceedings.078.

[16] J. Novak, A. Krajnc, and R. Žontar, “Taxonomy of static code analysis

tools,” MIPRO 2010 - 33rd Int. Conv. Inf. Commun. Technol.

Electron. Microelectron. Proc., no. March, pp. 418–422, 2010.

[17] J. S. Delmas David, “Astrée: from research to industry,” Int. Static

Anal. Symp. Springer, pp. 437–451, 2007, doi: 10.1007/978-3-540-

74061-2_27.

[18] ”Clang-Static Code Analyzer.” https://clang-analyzer.llvm.org/

(accessed Nov. 22, 2020).

[19] “CodeSonar.” https://www.grammatech.com/codesonar-cc (accessed

Nov. 22, 2020).

[20] D. Marjam¨aki, “CppCheck.” Cppcheck - A tool for static C/C++ code

analysis (sourceforge.io) (accessed Oct. 22, 2020).

[21] D. Wheeler, “FlawFinder.” Flawfinder Home Page (dwheeler.com)

(accessed Oct. 22, 2020).

[22] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B.

Yakobowski, “Under consideration for publication in Formal Aspects

of Computing Frama-C A Software Analysis Perspective,” 2012,

[Online]. Available: https://frama-c.com/.

[23] C. Calcagno et al., “Moving Fast with Software Verification –

Facebook Research,” [Online]. Available:

https://research.fb.com/publications/moving-fast-with-software-

verification/

[24] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, “ITS4: A static

vulnerability scanner for C and C++ code,” Proc. - Annu. Comput.

Secur. Appl. Conf. ACSAC, pp. 257–267, 2000, doi:

10.1109/ACSAC.2000.898880.

[25] H. Chen and D. Wagner, “Mops,” p. 235, 2002, doi:

10.1145/586110.586142.

[26] “Parasoft.” https://www.parasoft.com/ (accessed Oct. 19, 2020).

[27] “RATS.”https://github.com/andrew-d/rough-auditing-tool-for-

security (accessed Sep. 15, 2019).

[28] “Sparse.”https://man7.org/linux/man-pages/man1/sparse.1.html

(accessed Aug. 19, 2020).

[29] D. Evans and D. Larochelle, “Splint,” no. October 2001, 2002.

[30] “Visual Code Greeper.”

https://security.web.cern.ch/recommendations/en/codetools/vcg.shtml

(accessed Aug. 08, 2018).

https://frama-c.com/
https://research.fb.com/publications/moving-fast-with-software-verification/
https://research.fb.com/publications/moving-fast-with-software-verification/

