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Abstract: A developing trend in current science and technology is the emphasis on software codes, which places greater attention on the 

quality of software codes. In today's quality assurance procedure, static analysis plays a significant role. The important feature is that any 

fault or vulnerability in the code is discovered without the need to execute it. The key challenge is identifying complex code blocks and 

possible system faults. For unsafe programming languages like C and C++, various static code analyzers are used. Each of them has unique 

importance and constraints. To date, no technique has yet been able to guarantee that the software will not ever halt, crash, or behave 

bizarrely. However, more effective techniques may be chosen to reduce software coding defects. Our objective is to examine various static 

analysis tools to identify their uniqueness and specification. In this paper, we examine static analysis tools, their methods and determine 

their performance measures. Our focus is to compare various tools that assess C programs according to capabilities for detecting 

vulnerabilities and to identify the strengths and limitations of each tool. As an empirical study, we evaluate various performance parameters 

for the Juliet Test suit for C programming language.  
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1. Introduction 

Software needs to be reliable and secure in today's software-driven 

environment. Security and software quality issues are becoming 

important in the rapidly expanding world of modern technology. 

The software application is defined by the quality of the code and 

the coding standards that it conforms. An effective way to examine 

the software system coding strategy is through Static Code 

Analysis (SCA). Tools for SCA assist programmers in creating 

robust software that is free of flaws and vulnerabilities [1][2]. 

Inadequate software quality is the primary cause when it comes to 

information security breaches. Low-quality code that has a few 

flaws might result in insecure software and because of it, 

knowledgeable adversaries can take advantage [3]. Manual 

inspection through the source code and seeking faults is a time-

consuming and laborious process. In the worst-case scenario, it 

could not even be a practical strategy. Static analysis tools are 

useful in such situations [4]. Tools save time and effort for the 

inspector by alerting them to potential defects and code mistakes. 

But still, require someone to run them and manually review the 

indicated potential problems. If analysis results are used skilfully, 

they are a great resource for flaw finding [5]. 

Static analysis tools have significantly improved over the last 10 

years, going beyond simple lexical analysis to incorporate far more 

complex algorithms. However, most static analysis challenges are 

undecidable, that is, it is difficult to devise an algorithm that always 

yields the right response in every situation. Therefore, not all 

vulnerabilities in source code are found by static code analysis 

tools and are likely to provide information that, upon closer 

inspection, is not a security vulnerability [6]. An SCA tool must 

uncover as many vulnerabilities as feasible, ideally all of them, 

with the least number of false positives—ideally none—to be 

useful. This work aims to better understand the advantages and 

disadvantages of static code analysis techniques by conducting a 

comprehensive empirical evaluation of their capacity to identify 

security flaws. The following are the primary contributions of this 

paper: 

1) We represent comprehensive details of tools and prepare the 

comparison study between them.  

2) We examine tool evaluation on Juliet Test Suit. It is a 

benchmark for assessment of static code analysers tools. 

3) We consider performance measures such as accuracy, recall, 

time for execution, detection ratio for accountable Common 

Weakness Enumeration (CWE).  

The remaining contents of this paper is organized as follows: The 

Section 2 contains the literature review; the Section 3 describes 

tool overview in detailed comprehensive way. Section 4 gives 

analysis of each tool mentioned in section 3. Section 5 discusses 

the result and performance measures affected by each tool 

followed by conclusion. 

2. Literature Survey 

Static code is a method in which a source code is examined for 

quality and safety. For identifying vulnerabilities in C/C++ 

software, we look for automated tools. In [7], the author reviewed 

various programme analyzers that are used by Google, Facebook, 

and Microsoft. Many static analyzers did not consider all potential 

runtime faults. Others pay particular attention to the ones that were 

likely to be useful to them. We search for memory related 

vulnerability detection using such tools. Authors in [8], compared 

12 different tools with various parameters and defect types. For 
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each tool, they have written their own parser for analysis of reports 

and mentioned the tools priority for specific defect type. In various 

comparisons papers [9], [4], [6], [10], [2], [11], they have either 

said about the two or three tools with limited vulnerabilities. Even, 

the names of the tools are not mentioned by authors. They also 

considered the fact that commercial instruments are both expensive 

and not readily available. Additionally, although not in 

comparison, they outlined each tool's specific strengths and 

weaknesses in publications. 

Primarily, static code analysis tools use two basic approaches. It is 

a compiler based or machine learning based approach. Here in our 

survey, we found more work in compiler-based approach and very 

less in machine learning based. Researchers employ SCA for a 

variety of applications, including embedded systems, IoT systems, 

etc., in addition to various techniques in general application 

software. In [12], it used as fault detection tool for limited 

resources and considered phase-wise analysis for software 

development. In [3], IoT based applications, the authors took 18 

open-source system and found unsafe commands related with 

memory and string. This direction is helpful for secure coding and 

high-quality standards. Apart from empirical evaluation on limited 

set, authors in [1] have counted and listed theoretical concepts of 

tools along with CWE categories that are available in manuals. 

There are tools that used general purpose languages and domain 

specific languages. Many papers used Toyota ITC Test Suit and 

Juliet Test Suit for evaluation of tools and listed out vulnerability 

on CWE category for defect type or their own category for it 

[13][4]. There was a possibility that the same vulnerability is listed 

with different name and CWE number as per their interpretations. 

Instead of using ITC Test Suit or Juliet Test Suit, researchers also 

worked on preparing their own test suits for analyzing various 

parameters [14]. 

Other work carried out with static code analysis is related with 

report generated by tools. Authors analyzed and labelled the 

vulnerability in report and performed analysis on report. In 

addition, they tried to find false positives and true positives in the 

report. In [15], they presented a systematic review of the work 

carried out till 2018 for SCA tools. They had more focused on the 

language domain instead of detailing of the performance of tools.  

3. Tools Overview 

In this section, we introduce 14 tools in more detail with their 

general information along with their capabilities mentioned in 

manual of tools. Below table 1, shows the tool general information, 

its description. Basically, we focus on tools that work in the C 

language. We also compare them based on information such as the 

platform they support, whether tools are extensible or not and 

availability of tools. We consider both types of tools that are open 

source and commercial products used in industry. We also reflect 

the form of the output generated by tools, their version and first 

release year.   

Table 1. Tool Parameter Description 

Parameter Name Description 

Language (L) Language supported by specific tool. 

Platform (P) It describes the platform on that tool run. 

Extensibility (E) It is extendable or not. If yes(Y) else no(N) 
Availability (A) Tool is available Commercial (C), Open 

Source(O), or Free(F). 

Output It gives the format of output generated 
after tool runs. Command Line (CMD), 

HTML, XML, CSV 

Version 
It provides the current version number 
available in market.  

Release Year 
It gives release year of the tool when it was 

first in use. 

 

Table 2 describes this information for all considered tools. Astree 

[17] developes for a specific domain of embedded systems. It looks 

for variables’ issues, memory usage, dangling references in C. 

ClangSCA [18] is fast, light, and scalable. It has library-based 

architecture. CodeSonar [19] works as a listening software that 

scans for applications that could use a C/C++ compiler. CppCheck 

[20] is an open-source tool, detects many rules. The most recent 

version of 2017 covers a vast list of checks, whereas the prior 

version could only verify a small list of criteria. FlawFinder [21] is 

simple but useful tool. The built-in database is examined by this 

tool to check if any so-called "flaws" or vulnerabilities exist. It also 

lists the severity of the problems. Frama-C [22] is a reliable 

framework for the analysis of C program that includes a few 

plugins for static analysis or verification. Infer [23] checks for null 

pointer dereferences, memory leaks, coding standards, and 

inaccessible APIs. Infer is integrated with Facebook's code review 

system. 

ITS4[24] effectively notices the huge number of code lines. It also 

works on pattern matching. MOPS [18] basically checks for 

security properties and identify whether it is observed or not. 

Parasoft [26] employs as a testing tool, but it also analyzes source 

code files. RATS (Rough Auditing Tool for Security) [27] notices 

destructive function calls. Its goal is to provide a reasonable 

starting point for performing manual security audits. Sparse [28] 

uses for kernel security and it is one of the command line semantic 

scanners for files written in C language. Splint is also an open-

source static code analysis tool. It is only for C. 

VisualCodeGrepper (VCG) [10],[12],[15],[16] is open source and 

mostly used widely in industry. 

Static code analysis tools work either on program files or binary 

files. They internally work on different rules from simple pattern 

matching to complex symbolic execution. They consider different 

flows within a code.  

 

Table 2. Tool General Information 

Citation Tool Name L P E A Output Version 
Release 

Year 

[17] Astree C/C++ W N C CMD 22.04 2001 

[12] Clang SCA C/C++ L Y O CMD, HTML 3.8 2009 

[6] CodeSonar C/C++ WL Y C Text, HTML, XML, CSV 3.3 2007 

[7] CppCheck C/C++ WL Y O Text, HTML, XML, CSV 1.86 2007 

[10] FlawFinder C WL Y O Text, HTML, XML, CSV 2.0.6 2001 

[3] Frama-C C/CC++ L Y O Text 21 2008 
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[14] Infer C, Java, PHP L/M Y O Text, HTML, XML, CSV 0.15 2008 

[12] ITS4 C/C++ L N C Text - 2000 

[18] MOPS C L Y O Text, HTML, XML, CSV 0.9.2 2004 

[19] Parasoft 
C/C++, Java, 

Python 
W Y C Pie Chart / Text - 1987 

[26] RATS 
C/C++, Perl, PHP, 

python 
WL Y O HTML, XML 4.18 2001 

[27] Sparse C L Y F Linux OS output - 2003 

[28] Splint  C L Y O Text, HTML, XML, CSV 3.1.2 2007 

[30] 
Visual Code 

Greeper VCG 

C++, C#, VB, PHP, 
Java, PL/SQL 

W  Y O Graph, HTML, XML, CSV 2.2.0 2014 

 

Table 3: Tools working Details 

Tool Name Specific Purpose Rule Usage Command 

Astree 
Embedded Software 

Security 
Abstract Interpretation 

GUI, Batch mode with 

annotations - 

Clang SCA Security 
Symbolic Execution, inter procedural 

data-flow analysis 
Command Line scan-build clang filename.c 

CodeSonar Security Data Flow, Symbolic execution GUI 

codesonar hook-html 

<project-name> 

<command> 

CppCheck General Purpose 
Pattern Matching, AST, intra-

procedure 
Command line, GUI cppcheck filename.c 

FlawFinder General purpose 
Pattern Matching from built-in 

Database 
Command Line flawfinder filename.c 

Frama-C General / Security abstract interpretation  Command Line/GUI 
frama-c file.c -<plugin> / 

frama-c-gui file.c 

Infer 
Security, Runtime 

errors 
biabduction, Inter procedural 

Online, Command prompt, 
GUI 

Infer run – gcc –c 
filename.c 

ITS4 Bad function 
Abstract Syntax Tree, Pattern 

matching 
Command line -  

MOPS Security FSM, Control Flow Graph - 
gcc –B filename.c > 

filename.cfg 

Parasoft Security 
pattern-based analysis, dataflow 
analysis, abstract interpretation 

GUI Based -  

RATS Security Pattern Matching - rats filename.c 

Sparse Security Semantic Checker for Kernel Code - sparse filename.c 

Splint   security  
Intra-procedural data flow analysis, 

Annotation 
Command Line splint filename.c 

Visual Code 

Greeper 

VCG 

Security  Pattern Matching 
GUI and Command 

Prompt 
visualcodegrepper.exe -c -

v -l -t --results 

 

They are data flow or control flow analysis. With reference to code 

information about data, they are either flow-sensitive or flow-

insensitive, content-sensitive, or insensitive, field sensitive or 

insensitive. For the tools that have been tested, we haven't 

concentrated on the code information in our work. So, we have not 

included that part of the tool’s details. Table 3 shows the rules, 

specific purpose, usage, and command used to run the tool. 

4. Tool Analysis 

The following is the primary justification for empirically 

examining the tools employing Juliet Test Suit test cases:  

1) Use the tools and evaluate their results to identify various 

vulnerabilities.  

2) Find false positive, true positive addition to that find true 

negative (i.e., tools not able to detect vulnerabilities). We were able 

to assess recall and accuracy using these performance measures.  

3) We also examined a significant number of test cases to 

determine the tools' detection capability.  

For each vulnerability, we have assigned a CWE number and 

divided them into two broad group such as input data vulnerability 

and operating system (OS) vulnerability. We part them as you 

focus on memory related vulnerabilities. The vulnerabilities that 

we find using tools are described in input data vulnerability (table 
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4) and operating system (OS) vulnerability (table 5).  

We used the identical machine configuration to test each tool for 

evaluation. With 2GB RAM, we utilized Windows 11, Ubuntu 

18.04. Our goal was to provide them with a comparable 

environment. It was to check security flaws in C code related to 

input as well as OS weaknesses. 

Table 4. Input Data validation 

CWE-No 20 457 

 Name 
Improper Input  

Validation 

Uninitialized 

variable 

Astree Y Y 

Clang SCA N N 

CodeSonar Y Y 

CppCheck N Y 

FlawFinder N N 

Frama-C N Y 

Infer Y N 

ITS4 N Y 

MOPS Y Y 

Parasoft Y N 

RATS Y Y 

Sparse N N 

Splint  Y Y 

VCG Y N 

 

Table 5. OS vulnerability 

CWE-No 121 122 367 362 

Name 
Stack 

Overflow  

Heap 

Overflow 

TOC-

TOU 

Race 

Condition 

Astree N Y Y N 

Clang SCA N Y N N 

CodeSonar Y N Y Y 

CppCheck N Y Y N 

FlawFinder Y N N N 

Frama-C N N Y Y 

Infer Y Y N Y 

ITS4 N N Y Y 

MOPS Y N Y Y 

Parasoft Y Y N Y 

RATS Y Y N Y 

Sparse N Y N Y 

Splint  N Y Y N 

VCG N Y Y N 

 

In addition to further information, table 6 lists the security 

vulnerabilities we search for, and we express them using our 

notation and CWE number. 

5. Result and Discussion 

In our experiments, we investigated the detecting abilities of total 

fourteen tools. It quickly became evident that the tools built on 

annotations had promising results but also imposed more demands 

on their users. Other side, the highest technical competence was 

needed for Frama-C since it was difficult and time consuming to 

analyze its output. Even Splint verified software effectively with 

enough annotations, but this required about the same amount of 

programming effort in the annotation language, which may be 

unfamiliar to many developers. When employed with the 

necessary skill level, sufficiently integrated into the project, and 

used on the desired goals, all the tools that were chosen would be 

advantageous for software projects. Small enterprises found it 

exceedingly expensive to employ commercial tools. Modern tools 

were more stable and effective for detection. They also produce the 

output in user friendly way. CppCheck was extremely helpful, and 

it was also quite simple to comprehend its results. We noted that 

the CWE numbers provided by tools in reports varied from one 

another. They did not use the same CWE number. Therefore, it was 

challenging to distinguish between vulnerabilities based just on 

their CWE numbers. Due to space restrictions, not all screenshots 

from all categories are included here. Table 7 describes detection 

capabilities for finding security vulnerabilities for each tool. 

Table 6. Security Vulnerability notations 

NO CWE Name 

V1 134 Format string vulnerability 

V2 170 Improper Null Termination  

V3 244 Heap Inspection  

V4 251 Often Misused: String Management  

V5 787 Array Index Out of Bounds- Write 

V6 415 Double Free  

V7 416 Use After Free  

V8 468 Unintentional pointer scaling 

V9 478 Null Dereference 

V10 489 Leftover Debug Code 

V11 125 Out of Bound Array Indexing 

V12 190 Integer Overflow or Wraparound 

V13 369 Divide by Zero 

V14 785 
Use of Path Manipulation Function without Maximum 

Sized Buffer 

V15 401 Memory Leak 

V16 120 Buffer Overflow 

 

We employed four metrics—accuracy, recall, false alarm 

probability (PF), and detection ratio—as performance measures. 

They stand for various tool performance qualities when it comes to 

identifying security vulnerabilities. The confusion matrix, which 

represents the total number of true positives (TP), false negatives 

(FN), false positives (FP), and true negatives (TN), had to be 

calculated before we calculated these performance measures. We 

then computed these measures for our experimental study using 

these confusion matrices. Below equations (1), (2) and (3) are the 

way these four measures are defined.  

The essential criteria to compare these tools is another metric 

called detection ratio, which is used to categories vulnerabilities 

and determine whether a certain tool identifies a given type of 

vulnerability or not. Table 8 shows four performance measures for 

chosen SCA tools. 
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We found that just a few tools can perform the same task with 

greater accuracy than with lower recall. So, vulnerability 

categorization has been done and marked for each tool and then 

detection ratio has been calculated. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝐹𝑃

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
… (1) 

 

 

Table 7. Security Vulnerability detection 

No V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 

Astree Y N N Y Y Y Y N Y Y Y Y N N N N 

Clang SCA Y Y Y N N Y N Y N N N N N N Y Y 

CodeSonar N N Y Y Y Y Y N N Y Y N Y Y N N 

CppCheck Y N N N N N N N Y N N N N N N N 

FlawFinder N Y Y N N N N Y Y N N Y N Y Y Y 

Frama-C N Y N Y Y N Y Y Y Y Y Y Y N Y Y 

Infer Y Y Y Y N N Y Y N Y Y N Y N Y Y 

ITS4 Y N N Y Y Y Y N Y Y Y N Y Y N N 

MOPS Y N N N N N N N N N N Y N Y N N 

Parasoft N Y Y N N N N Y N N N Y N Y N N 

RATS N Y Y Y Y Y Y N Y N N Y N N N Y 

Sparse Y N Y N Y Y Y N Y Y Y N N N Y N 

Splint  Y Y N N Y Y Y Y Y N N N N N Y Y 

VCG N N N Y N N N Y N N N N Y Y Y N 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… (2) 

𝑃𝐹 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
… (3) 

Important empirical findings include: 

1) None of the selected tools was able to detect all 

vulnerabilities. Specifically, out of the 22 C/C++ CWEs, 

none of the tools was able to detect at most 15 CWEs 

(i.e., 68%) were detected by a single tool and only 10 

CWEs (approx. 31%) were detected by all tools.  

2) The ability of the chosen SCA tools to identify security 

vulnerabilities for the C programming language did not 

demonstrate statistically significant differences. 

3) One of the tools performed better than the others for C 

vulnerabilities in terms of probability of false alarm and 

recall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Performance Measures 

Tool Name Accuracy Recall PF 
Detection 

Ratio 

Astree 52.15 37.76 0.43 55.22 

Clang SCA 69.39 57.68 0.91 67.95 

CodeSonar 63.14 50.21 0.98 73.57 

CppCheck 69.55 55.99 0.32 53.09 

FlawFinder 51.1 73.51 0.5 69.59 

Frama-C 50.8 76.54 0.98 51.75 

Infer 78.94 61.13 0.64 69.6 

ITS4 47.62 58.41 0.29 59.54 

MOPS 68.56 51.24 0.65 46.57 

Parasoft 56.12 77.34 0.23 48.54 

RATS 74.91 60.58 0.15 53.13 

Sparse 50.49 33.28 0.42 74.02 

Splint  64.14 51.58 0.67 60.97 

VCG 80.62 55.83 0.78 52.06 

 

6. Conclusion 

In this paper, our focus was on evaluating static code analyzers’ 

capacity to identify security vulnerabilities. We employed an 

experimental strategy based on the Juliet benchmark test suite for 

this objective. It enabled us to automatically assess many test cases 

covering a wide range of C vulnerabilities to determine how 

efficiently the tools performed. In a contrast to research interests 

work, we have also provided thorough information regarding the 

tools and rules required to make the tools function. Despite recent 

advancements in this area and claims made by the tool's 
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developers, our experimental findings indicated that static code 

analyzers do not effectively identify security vulnerabilities in 

source code. To conform the finding that static code analysis tools 

have large false negative rates, we will need to integrate open-

source code in future studies.  
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