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Abstract: Buoyancy-driven convection, commonly referred as conventional convection or Rayleigh convection, arises when a fluid is 

subjected to a temperature gradient in a gravitational field and there is a change in density and viscosity with regard to temperature. Unlike 

buoyancy-driven convection, Marangoni convection, also known as interfacial tension gradient-driven convection, can occur in a fluid 

even when no gravitational field exists. The suggested inquiry approach in this study is based on a natural convection analysis combined 

with a numerical examination of the effect of variable viscosity on Rayleigh-Benard Marangoni convection in a hydrodynamic surface. 

The effects of viscosity fluctuations in the Rayleigh-Benard-Marangoni convection process, which causes different physical changes, are 

taken as key objective to analyze. The relationship between viscosity and surface tension, the viscosity and buoyancy values are computed 

to find their dependence relationship, followed by the temperature dependence of variable viscosity of fluids with high and low 

molecular spacing. Finally, the density is related with the viscosity. As a result, the impacts of changing viscosity are accounted using the 

resulting equations to represent the Rayleigh number and Marangoni number effects. Convection are determined using microscopic fluid’s 

dynamic parameters, allowing for a better understanding of fluid dynamics under natural convection. 

Keywords: Rayleigh Benard convection, Marangoni convection, Viscosity, Buoyancy, Surface tension, Density. 

 

1. Introduction 

Evaporation of solutions affects a variety of physical and 

technological mechanisms including the drying of saline lakes, the 

drying of paint films, crystal formation, and distillation. Rayleigh-

Benard or Benard-Marangoni convection, which is caused by a 

temperature gradient, is often confronted during the evaporation of 

pure liquids and has been ubiquitously researched [1]. Convection 

in multilayer systems is a common occurrence that is of special 

concern in a wide range of technological fields [2]. Consider a 

sheet of liquid that is bounded vertically by two horizontal rigid 

surfaces, one of which is hotter than the other. As the temperature 

differential exceeds the critical temperature difference, the 

gravitational instability overcomes the viscous and thermal 

damping effects, and the fluid is set in motion, resulting in 

buoyancy-driven convection [3]. When a fluid is subjected to a 

temperature gradient in a gravitational field and there is a 

difference in density and viscosity with respect to temperature, 

buoyancy-driven convection, also known as normal convection or 

Rayleigh convection, occurs [4]. The kinematic viscosity and 

thermal diffusivity of the fluid dampen disruptions to the liquid, 

while buoyancy forces intensify them. Under steady-state 

conditions, equilibrium between these effects is formed, which is 

expressed by the dimensionless Rayleigh number [5]. 

Unlike buoyancy-driven convection, Marangoni convection or 

Interfacial tension gradient-driven convection may occur in a fluid 

even though there is no gravitational field. The thermal diffusivity 

of the fluid will conduct away the heat faster than the disruption 

will amplify if the temperature differential through the liquid is 

minimal enough [6]. The flow would be resisted by the dynamic 

viscosity, allowing the interface to flatten and the interfacial stress 

to remain steady [7]. In addition, scaling the equations that model 

the interfacial momentum equilibrium results in a dimensionless 

category, that shows a balance between the dissipative effects of 

viscosity, thermal diffusivity and the promoting effects of 

interfacial stress gradient. The Marangoni number refers to this 

dimensionless attribute [8]. 

For several years, the topic of thermal instability has been studied 

scientifically, numerically, and experimentally. For stability 

analyses, most studies assume a steady basic state [9]. Convection, 

on the other hand, often occurs in evaporative processes until the 

system enters a steady state. The magnitude of Rayleigh 

convection or Marangoni convection is largely determined by the 

fluid depths [10]. Rayleigh convection is proportional to the cube 

of the fluid depth, and Marangoni convection is directly 

proportional to the fluid volume, according to previous studies 

[11]. We may infer that buoyancy-driven convection is more 

common in deep waters, interfacial tension gradient-driven 

convection is more common in shallow fluids, and Rayleigh and 

Marangoni convection can occur at intermediate fluid depths [12]. 

And, for most convective heat transfer, the corresponding wave 

number is approximately the same. Even at moderate Rayleigh 

numbers, the Bow and temperature gelds become unstable in a 

two-dimensional cavity, exhibiting a fluctuating convective 

condition similar to that observed for the constant viscosity event 

[13]. In conclusion, recent research has focused on the volatility of 

flow and temperature fields induced by changes in viscosity [14]. 

The variable viscosity effect must be considered when the viscosity 

of a working fluid is subject to temperature variations or when the 

temperature differential of the system is high. It may cause a 

significant error in the heat transfer coefficient if it is ignored [15]. 
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Since the viscosity have a high influence on the convection 

process. There is a great need to study the characteristics of the 

fluid and their reaction based on the variation in the viscosity in 

Rayleigh-Benard Marangoni Convection. 

2. Literature Survey 

Varé et al [16] in their paper investigated the context of amplitude 

equations, Rayleigh–Bénard convection for shear-thinning fluids 

with temperature-dependent viscosity. The Carreau model 

describes the fluid's rheological behavior, and the relationship 

between viscosity and temperature is of the exponential form. 

Using a multiple scale extension, Ginzburg–Landau equations with 

non-variational quadratic spatial terms are derived directly from 

the simple hydrodynamic equations. For various values of the 

shear-thinning degree, the stability of hexagonal patterns against 

spatially uniform disturbances (amplitude instabilities) and long 

wavelength perturbations (phase instabilities) is investigated for 

different values of the shear-thinning degree α of the fluid and the 

ratio r of the viscosities between the top and bottom walls. Future 

work may consider the temperature-dependence of other material 

properties such as the volumetric thermal expansion coefficient 

and investigation could be carried out to include side wall effects. 

Lopez-Nuñez et al [17], in this article reviews the linear stability 

of a thermo convective problem in an annular domain. The flow is 

heated from below, with a linear decreasing horizontal temperature 

profile from the inner to the outer wall. The top surface of the 

domain is open to the atmosphere and the two lateral walls are 

adiabatic. The effects of several parameters in the flow are 

evaluated. Different kind of competing solutions appear on 

localized zones of several pairs a dimensional numbers planes 

appear. The boundaries of these zones are made up of co-

dimension two points. Future works to find a new geometry such 

that the transition between thermos capillarity and thermo-

buoyancy would be sharper, in order to better identify the structure 

coming from these effects. 

Chunhui et al [18], in their paper made arithmetical simulations of 

the thermal–hydraulic performance of the thin metallic layer are 

carried out to reduce the uncertainties in the heat flux evaluation. 

Specifically, the Rayleigh-Bénard and Bénard-Marangoni 

convections are considered in the heat transfer models of the 

metallic layer. The Trio CFD code is validated for the Bénard-

Marangoni convection, then applied into the numerical simulations 

of the metallic layer with dissimilar top boundary conditions: pure 

radiative heat transfer, and radiative heat transfer plus positive or 

negative Marangoni effects. The high temperature profile, mean 

temperature and focusing effect of the metallic layer are evaluated 

and compared for various cases. Results show that the Marangoni 

effects have to be considered for small metallic layer thicknesses. 

Furthermore, in future work, the layer can be divided into two 

regions, of which the heat flux correlations can be evaluated 

independently, giving a better estimation of the heat flux profile. 

Yu et al [19], investigated Rayleigh-Bénard convection of a gas-

liquid medium near its density maximum was offered in this paper. 

The influences of the density inversion parameter and Rayleigh 

number on the flow constancy, flow pattern evolution, and heat 

transfer ability of Rayleigh Bénard convection were analyzed. The 

results show that the critical Rayleigh numbers for onsets of a 

steady convection and an unsteady convection rise with the 

increase of the density inversion parameter. The flow pattern 

evolution powerfully relies on the density inversion parameter. As 

future works the scaling relationship for the average Nusselt 

number in terms of the density inversion parameter and Rayleigh 

member is proposed. 

Fantuzzi et al [20], in their work showed a new rigorous upper 

bound on the vertical heat transport for Bénard– Marangoni 

convection of a two- or three-dimensional fluid layer through 

infinite Prandtl number. Precisely, for Marangoni number Ma >>1 

the Nusselt number Nu is bounded asymptotically by Nu 6 const. 

× Ma2/7 (ln Ma) −1/7. In the future, it would be stimulating to 

investigate logarithmic corrections with negative exponent are 

provable for other flows, starting with extensions of the basic 

model considered in this work. 

Doering Charles [21], in his paper confounded efforts to 

discriminate between two competing theories for how boundary 

layers and interior flows interact to determine transport through the 

convecting layer asymptotically far beyond onset. In a 

conceptually new approach, Bouillaut, Lepot, Aumaître and Gallet 

devised a procedure to radiatively heat a portion of the fluid 

domain bypassing rigid conductive boundaries and allowing for 

dissociation of thermal and viscous boundary layers. Their 

experiments reveal a new level of complexity in the problem 

suggesting that heat transport scaling predictions of both theories 

may be realized depending on details of the thermal forcing. As 

further works new experimental investigations aimed both at 

independent confirmation and at understanding Prandtl number 

influence on the empirical scaling function should be stimulated. 

[16] the temperature-dependence of other material properties such 

as the volumetric thermal expansion coefficient and investigation 

could be considered, for [17] a new geometry such that the 

transition between thermos capillarity and thermo-buoyancy can 

be made sharper, in order to better identify the structure, for [18] 

the layer can be divided into two regions, of which the heat flux 

correlations can be evaluated independently, giving a better 

estimation of the heat flux profile, for [19] the scaling relationship 

for the average Nusselt number in terms of the density inversion 

parameter and Rayleigh member is only proposed, for [20] it would 

be stimulating to investigate logarithmic corrections with negative 

exponent are provable for other flows, starting with extensions of 

the basic model considered in this work, and for [21] new 

experimental investigations aimed both at independent 

confirmation and at understanding Prandtl number influence on the 

empirical scaling function should be stimulated. To investigate the 

process in a convection more convincing and detailed evaluation 

should be developed. 

3. Analyzing the Effect of Variable Viscosity on 
Rayleigh-Benard Marangoni Convection 

Rayleigh-Benard-Marangoni convection can occur due to 

concentration gradients caused by variable viscosity as well as 

convection caused by temperature variations when the fluid is a 

binary solution. This difference in viscosity must be taken into 

account in order to correctly estimate the heat transfer rate. 

Previous researches have focused solely on the macroscopic roles 

of viscosity though the real explanation for variations in the 

majority function is the impact of viscosity on microscopic 

function. Hence, there is a persuasive and critical need to 

investigate the impact of viscosity on the different microscopic 

parameters used to generate Rayleigh-Benard-Marangoni 

convection and its effects on the fluid in a convection phase. To 

overcome these issues, the investigation in this research is based 

on the analysis of natural convection with the numerical 

Investigation of the Effect of Variable Viscosity on Rayleigh-

Benard Marangoni Convection in a Hydro Dynamic Surface. It 

mainly focuses on the consequences of viscosity variations in the 

Rayleigh-Benard-Marangoni convection mechanism which 

induces various physical changes. Initially the relation between the 

viscosity and surface tension are determined using the Arrhenius 

equation, which gives the temp dependence on the surface tension, 

is utilized instead of the Boltzmann constant, and the temperature 

of viscosity divergence is then equated with the surf temperature. 

Following that, the viscosity and buoyancy values are related by 

considering the drag force in Stokes law and using the terminal 

velocities. Also, the temperature dependence of variable viscosity 

of fluids with high molecular space is then calculated using Hard-

sphere kinetic theory and Power-law force, while that of fluids with 

low molecular space is determined using Andrade equation and 

Walther formula, as well as the Wright and Seeton model. The 
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viscosity is then related to density, and the relationship between 

them is directly proportional. As a consequence, the effects of 

variable viscosity are taken into account using the derived 

equations to describe the effect related to the Rayleigh number and 

Marangoni number. This study gives a detailed investigation on the 

effect of variable viscosity on Rayleigh-Benard Marangoni 

Convection using the fluid dynamic parameters hence an optimum 

understanding related to the dynamics of the fluid under natural 

convection can be determined. 

 

 

Figure 1: Rayleigh-Benard Marangoni Convection 

 A temperature difference is imposed normal to the free surface of 

a thin liquid layer of fluid with unlimited horizontal extension but 

finite thickness, d. There is no fluid motion in the system's initial 

steady state and the temperature profile throughout the layer is 

linear. 𝑈∗ = 0 and 𝑇∗ = 𝑇𝑖
∗ − 𝛽𝑧∗are the simplest expressions for 

the velocity and temperature. The base flow velocity and 

temperature are 𝑈∗ and 𝑇∗, respectively, where the asterisk "*" 

signifies dimensional quantities. The temperature gradient of the 

base state, is defined as 𝛽 =
∆𝑇𝑑

∗

𝑑
⁄ where ∆𝑇𝑑

∗ = 𝑇𝑖
∗ − 𝑇∗. The 

lower surface is stiff and temperature-controlled and the top 

surface is open to the atmosphere which transfers heat. Although it 

is widely known that free surface deformation influences the 

critical temperature differential that leads to fluid motion, this 

paper focuses on the variable viscosity effect and assumes that the 

free surface is flat. Because dynamic viscosity is the fluid 

characteristic that is most affected by temperature, which allows it 

to fluctuate with temperature, while all other thermo physical 

variables, like density and surface tension, are also considered. 

The Rayleigh–Bénard condition in a liquid is described by the 

following magneto hydrodynamic equations: 

Continuity equation is given by: 

∇. 𝑉 = 0                                                  [1] 

Motion of fluid is given by 

𝜌0 (
𝜕𝑣

𝜕𝑡
+ 𝑉. ∇V) = −∇P − 𝜌(𝑇)𝑔 + 𝜇∇2𝑣          

[2] 

Energy equation is given by 

𝜌0𝐶𝑣(𝜕𝑇/𝜕𝑡 + 𝑉. 𝛻𝑇) = 𝑘∇2𝑇  [3] 

The velocity vector, temperature, pressure, and time are 

represented by V, T, P, and t, respectively. The non 

dimensionalization reference values for length, velocity, 

temperature, pressure, and time are d, 

𝑘∗

𝑑⁄ , 𝛽𝑑,
𝜌∗𝑘∗

𝑑2⁄ , 𝑑2

𝑘∗⁄ respectively. The fluid density is ρ*, 

while the fluid thermal diffusivity is K*. The subscript denotes that 

the characteristics are selected at a lower surface temperature, T. 

The characteristic value of the fluid's dynamic viscosity, is 

represented as 𝜇. 

Moreover, the study of Rayleigh demonstrates that the mere 

presence of a temperature gradient is insufficient to assure the 

initiation of convective movement. The buoyancy created by this 

gradient must be greater than the dissipative effects of viscous drag 

and heat diffusion. The buoyant force divided by the product of the 

viscous drag and the rate of heat diffusion is a dimensionless ratio 

that describes the relationship between these effects. The Rayleigh 

number, R, which has the following form: 

𝑅 =
𝑔 α∆T𝑑3

 ν κ
                                            [4] 

In the Rayleigh theory, convection begins when the Rayleigh 

number exceeds a critical value, Rc. 

When surface tension is included into the convection equation, a 

new dimensionless ratio is used in which the surface-tension 

gradient force is divided by the product of viscous drag and heat 

diffusion rate. The Marangoni number, M is given by, 

𝑀 =
𝛾∆𝑇𝑑

𝜌𝜈𝑘
    [5] 

In the context of this theory, as in the Rayleigh one, convection 

begins when the Marangoni number exceeds a critical value, Mc. 

By dividing both equations, an intriguing link between the 

Rayleigh number and the Marangoni number can be determined. 

𝑅

𝑀
= (

𝜌𝛼𝑔
𝛾⁄ )𝑑2    [6] 

Where: 

g  acceleration due to gravity 

 α  coefficient of thermal volume expansion 

T  vertical temperature gradient 

 ν  kinematic viscosity 

 κ   thermal diffusivity of the fluid  

d  thickness of the liquid layer 

 γ   the temperature derivative of the surface tension 

 ρ   density at a reference temperature 

 

This equation is taken as a base and the various dependence of the 

convection microscopic characteristics over the Rayleigh Benard 

Marangoni convection is determined. The following section 

elaborates the derivation relating the change of viscosity in the 

convection process based of four microscopic parameters. 

3.1 Relationship of Surface tension and Viscosity 

Initially the relation between the viscosity and surface tension are 

determined. Since there is no direct relationship between the 

viscosity and surface tension, the Arrhenius equation, which gives 

the temp dependence on the surface tension, is used instead of the 

Boltzmann constant, and the temperature of viscosity divergence 

is then equated with the surf temperature.  

The relation between the surface tension and the viscosity 

proposed by Pelofsky is stated as [22] 

ln 𝜎 =  𝑙𝑛𝐴 + 𝐵
𝜂⁄                                      [7] 

where A and B are constants that are substance-dependent. This 

empirical relationship can be applied to both the organic and 

inorganic phases of pure and mixed components. Investigations 

shows that it had Absolute Average Deviation (AAD) values of 

less than 2% and also more than 20% were discovered for water, 

oxygen, and deuterium oxide, indicating that the P model is 

definitely insufficient for these molecules of AAD less than 2% 

and more than 20%. Instead of which, the MP expression was 

utilized by which the investigation results can be improved. 

ln 𝜎 = ln 𝐶 + 𝐷 [
1

𝜂
]

𝜙
                                   [8] 

The substance-dependent coefficients are C, D, and the exponent𝜙. 

This correlation enhanced the outcome over the previous one, 

owing to the addition of additional adjustable coefficient. The 

surface tension results were replicated using the MP correlation 

with AADs of less than 2% and with the worst value being 7.3 

percent high. 

Also, an alternate version of MP expression can be upgraded in the 

viscosity calculation: 

(
1

𝜂
)

𝜙
= 𝐴1 + 𝐵1 ln 𝜎                               [9] 
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One of the drawbacks of the upgraded formula is that it can't be 

used simply at the critical point, where the surface tension is zero 

and the natural logarithm is unknown. As a result, an alternate 

formulation with a comparable number of adjustable coefficients 

but omitting the logarithm of the surface tensions is required.  

The surface tension-temperature relationship in linear equation can 

be expressed as 

𝜎 = 𝑎 + 𝑏𝑇                                 [10] 

Constants a and b remain substance dependent so it can’t be used 

for wide range fluids. For a wide range of fluids at higher 

temperatures, the following equation can be used as 

𝜎 = 𝑎1(1 − 𝑇𝑟)𝑛                            [11] 

The crucial characteristics of fluids, the acentric factor, and the 

Riedel parameter all can be connected to the coefficient a1which 

can be produced as an adjustable coefficient n. 

As a result, the Arrhenius equation is the most widely used 

equation for explaining the temperature dependence of viscosity 

which induces the Rayleigh Benard Marangoni effect. 

𝜂 = 𝐴0𝑒𝑥𝑝 [
𝐸𝑎

(𝐾𝐵𝑇)⁄ ]                       [12] 

Where: 

kB The Boltzmann constant and  

Ea  Activation energy for viscous flow 

The Vogel-Fulcher-Tamman (VFT) equation is another often used 

formulation. 

𝜂 = 𝜂0𝑒𝑥𝑝 [
𝐷𝑇0

(𝑇 − 𝑇0)⁄ ]                      [13] 

Where: 

ɳo fluidity constant 

D  velocity constant  

T0 Temperature constant.  

The ideal glass transition temperature, also known as the 

temperature of viscosity divergence, is defined as T0.  

When Eq. (10) is substituted for Eqs. (12) and (13), the relationship 

between surface tension and viscosity is as follows: 

ln 𝜂 = 𝐴2 +
𝐵2

𝜎+𝐶2
                               [14] 

This equation, as well as the MP, have three variable coefficients. 

One of the MP coefficients is an exponential, although only linear 

coefficients are utilized here. The expression obtained by applying 

Eq. (11) to Eqs. (12) and (13) is 

ln 𝜂 = 𝐴3 +
𝐵3

𝜎
1

𝑛⁄ +𝐶3

                            [15] 

This equation has four adjustable coefficients, one of which is an 

exponent n and then Ai, Bi, Ci are coefficients in eq 15. 

Furthermore, by setting the surface tension to zero at the critical 

point, they may be utilized to estimate the value of the viscosity at 

that location. This gives the relationship of surface tension in terms 

of viscosity. Which can be later on used to derive the changing 

variable in the Rayleigh Benard Marangoni effect. 

3.2 Relationship of buoyancy and Viscosity 

Following that, we can relate the viscosity and buoyancy values by 

considering the drag force in Stokes law and using the terminal 

velocities. 

The following parameters are directly proportional to the viscous 

force exerted on a sphere: 

• The sphere's diameter 

• Viscosity coefficient 

• The speed of the item 

This is expressed mathematically as 

𝐹 𝛼 𝜂𝑟𝛾                                   [16] 

we get by replacing the proportionality sign with an equality sign. 

𝐹 = 𝑘𝜂𝑟𝛾                               [17] 

The proportionality constant k is used here. The value of k for a 

spherical body was found to be 6𝜋 in evaluation. As a result, the 

equation gives the viscous force on a spherical body falling 

through a liquid. 

𝐹 = 6𝜋𝜂𝑟𝑣                           [18] 

Which is known as Stokes' law,  

where the drag force exerted by a viscous fluid on a sphere of 

radius r travelling at a velocity of v viscosity in a fluid η. For 

laminar flow, Stoke’s law probably applies in which the drag force 

on a sphere is proportional to the flow velocity, viscosity of the 

fluid, and radius of the sphere that can be determined by 

dimensional analysis. 

For example, In the case of droplets, it is gravity that accelerates 

them at first. The retarding force rises as the velocity increases. 

Finally, when the viscous and buoyant forces are equal to the 

gravitational force, the net force and acceleration are both zero. 

After then, the raindrop falls at a steady speed. As a result, the 

equation gives the terminal velocity in equilibrium. 

𝑉𝑡 =
2𝑎2(𝜌−𝜎)𝑔

9𝜂
                      [19] 

where ρ and σ are the sphere and fluid mass densities, respectively. 

It is clear from the equation that the terminal velocity is 

proportional to the square of the sphere's radius of fluid and 

inversely proportional to the medium's viscosity. 

Weight downwards, buoyancy upwards, and viscosity upwards are 

the forces acting on the sphere.  

𝑁𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑𝑠 =
4

3
𝜋𝑟3𝜌𝑔            [20] 

𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦 𝑓𝑜𝑟𝑐𝑒 =
4

3
𝜋𝑟3𝜎𝑔                  [21] 

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒 = 6𝜋𝜂𝑟𝑣                      [22] 

When the resulting force on the sphere is zero, it reaches its 

terminal velocity. To find the buoyancy, we need to solve the 

preceding equation. We get, 

4

3
𝜋𝑟3𝜌𝑔 =

4

3
𝜋𝑟3𝜎𝑔 + 6𝜋𝜂𝑟𝑣                [23] 

The velocity at which heat is generated is equal to the rate at which 

the viscous force does work, which is equal to its power. 

𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦 𝑓𝑜𝑟𝑐𝑒 =
4

3
𝜋𝑟3𝜎𝑔 + 𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦             [24] 

Thus, the relation relating buoyancy and viscosity is derived. This 

buoyancy changes the viscosity of liquid which in turn reacts with 

the change in Rayleigh Benard Marangoni convection 

3.3 The temperature dependence based on variable viscosity 

Temperature has a significant impact on viscosity. In liquids, 

viscosity typically reduces as temperature rises, but in most gases, 

viscosity rises as temperature rises. Several models of this 

dependency are discussed ranging from rigorous first-principles 

equations for monatomic gases to empirical correlations for fluids. 

The molecules crossing layers of flow and transferring momentum 

across layers cause viscosity in gases. This momentum transfer can 

be viewed as a frictional force between layers of flow which 

increases the thermal energy. Increased thermal agitation of the 

molecules results in a higher viscosity because momentum transfer 

is generated by free mobility of gas molecules between impacts. 

As a result, gaseous viscosity rises as temperature rises. 

The temperature dependence of variable viscosity of fluids can be 

different for higher molecular space fluids and lower molecular 

space fluid. Since the convection process includes both higher and 

lower molecular space fluids there is a need to predict the value for 

both the cases. For high molecular space fluid, the dependency is 

calculated using Hard-sphere kinetic theory and Power-law force, 

while that of fluids with low molecular space is determined using 

Andrade equation and Walther formula, as well as the Wright and 

Seeton model. 
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The temperature-variation of gaseous viscosity may be accurately 

calculated using the kinetic theory of gases. The Boltzmann 

equation and Chapman–Enskog theory provide the theoretical 

foundation for kinetic theory, allowing for reliable statistical 

modelling of molecule motions. Given a model for intermolecular 

interactions, one may determine the viscosity of monatomic and 

other simple gases with great precision (for more complex gases, 

such as those composed of polar molecules, additional assumptions 

must be introduced which reduce the accuracy of the theory). 

When gas molecules are modelled as elastic hard spheres (with 

mass mm and dimension sigma), basic kinetic theory predicts that 

viscosity rises with the square root of absolute temperature T. The 

Chapman Enskog Theory defines the temperature dependence as 

𝜇 = 1.016
5

16𝜎2 [
𝑘𝐵𝑚𝑇

𝜋
]

1
2⁄
                          [25] 

where kB is the Boltzmann constant. The T1/2 concept, is not 

accurate in projecting the increase in viscosity of actual gases. 

More accurate models of molecular interactions, in particular the 

addition of attractive interactions, which are present in all real 

gases, are required to capture the true T dependency. 

A repulsive inverse power-law force, where the force between two 

molecules separated by distance r is proportional to 1 𝑟𝑣⁄ where 𝑣 

is an empirical parameter, is an improvement of the hard-sphere 

model. It shows how altering intermolecular interactions changes 

the anticipated temperature dependence of viscosity. 

In this scenario, kinetic theory predicts the temperature rise of Ts, 

with  

 

𝑠 =
1

2
+ 2

(𝑣 − 1)⁄                 [26] 

If 𝜇' is the known viscosity at T', then 

𝜇 = 𝜇′(𝑇
𝑇′⁄ )

𝑆
               [27] 

Where: 

𝜇′ Reference Viscosity 

T Static Temperature 

The Sutherland model is suggested, which adds weak 

intermolecular interactions to the hard-sphere model. If the 

attractions are minor, they can be handled in a perturbative manner, 

resulting in following equation 

𝜇 =
𝐶1𝑇

3
2⁄

𝑇+𝐶2
               [28] 

C1, C2  Coefficient 

T Static Temperature 

The coefficient value for air at moderate temperature and pressure 

can be given as 

C1=1.458*10-6 

C2=110.4 K 

where S, also known as the Sutherland constant, may be defined in 

terms of the intermolecular attractive force parameters. In other 

words, if mu' is a known viscosity at temperature T', then 

𝜇 = 𝜇′ (
𝑇

𝑇′
)

3
2⁄ 𝑇′+𝑆

𝑇+𝑆
               [29] 

𝜇′ Reference value = 1.716*10-5 

𝑇′ Reference temperature = 273.11 K 

S Sutherland constant = 110.56 K 

In general, it has been suggested that the Sutherland model is a 

poor description of intermolecular interactions, and that it is only 

effective as a basic interpolation formula for a small number of 

gases across a small temperature range. 

The kinetic theory prediction for 𝜇 may be expressed in the form 

under reasonably broad circumstances on the molecular model. 

𝜇 = 𝐴
(𝑚𝑘𝐵𝑇)

1
2⁄

𝜎2ΩT
                               [30] 

𝜎 bonding energy of the molecule 

m mass 

kB  Boltzmann constant 

T  temperature 

where Ω is referred to as the collision integral and is a function of 

temperature as well as the intermolecular interaction constants. 

The kinetic theory, which is stated in terms of integrals over 

collisional trajectories of pairs of molecules, determines it entirely. 

Ω is a complex function of temperature and molecular 

characteristics in general; the power-law and Sutherland models 

are unique in that Ω may be described using simple functions. As 

a result, the model is optimized for molecules that are spherically 

symmetric. It is, nevertheless, commonly employed for non-

spherically symmetric molecules that do not have a significant 

dipole moment. 

Generally, viscosity is generated by molecules exerting attractive 

forces on one another across layers of movement in liquids. 

Because bigger temperatures imply particles have more thermal 

energy, they are more easily able to overcome the attraction forces 

holding them together, increasing temperature causes viscosity to 

drop. Unlike gases, liquid viscosity does not have a systematic 

microscopic theory. However, based on existing experimental 

viscosities, some empirical models deduce a temperature 

relationship. 

Andrade equation is a two-parameter exponential which is efficient 

and commonly used as an empirical correlation for liquid viscosity. 

It precisely characterizes a wide variety of liquids at various 

temperatures. Its shape can be explained by modelling molecular 

momentum transfer as an activated rate process, however the 

physical assumptions behind the model has been further 

investigated. 

𝜇 = 𝐴𝑒
𝐵

𝑇⁄                           [31] 

The preceding equation is only used for two parameter 

exponentials, but it may be extended to include more parametric 

exponentials as  

𝜇 = 𝐴𝑒𝑥𝑝 (
𝐵

𝑇−𝐶
)  [32] 

Furthermore, 

𝜇 = 𝐴𝑒𝑥𝑝 (
𝐵

𝑇
+ 𝐶𝑇 + 𝐷𝑇2)             [33] 

𝜇  Viscosity 

𝑇  Temperature Dependence 

𝐴, 𝐵, 𝐶, 𝐷 Free parameters determined by least square analysis 

Thus, the equation gives the derivation for dependence of 

temperature on viscosity for both high molecular space and higher 

molecular space fluids. 

3.4 The density based on variable viscosity 

The viscosity is then related to density, and the relationship 

between them is directly proportional. A fluid's density is 

computed by dividing the mass of the fluid by the volume of the 

fluid. The standard unit of density is kilograms per cubic meter. 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
    [34] 

The resistance to flow of a fluid is described by its viscosity. The 

rate of shear strain is divided by the shear stress to get dynamic 

viscosity which is also known as absolute viscosity. 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 =
𝑓𝑜𝑟𝑐𝑒

𝑎𝑟𝑒𝑎×𝑡𝑖𝑚𝑒
   [35] 

The flow of a known volume of fluid from a viscosity measurement 

instrument is sometimes used to determine viscosity. The timings 

can be used with a formula to get the fluid's kinematic viscosity 

value. The head of fluid is the pushing force that propels the fluid 

out of the container. This fluid head is also a part of the equation 

that determines the fluid's volume. When the equations are 
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rationalized, the fluid head element is removed, leaving the units 

of Kinematic viscosity as 

𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 =
𝑎𝑟𝑒𝑎

𝑡𝑖𝑚𝑒
   [36] 

The relation between the viscosities and density is derived by the 

following equation 

𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 =
𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦

𝐷𝑒𝑛𝑠𝑖𝑡𝑦
  

 [37] 

It is clear that the viscosity and density are directly proportional to  

𝑎𝑟𝑒𝑎

𝑡𝑖𝑚𝑒
=

𝑓𝑜𝑟𝑐𝑒

𝑎𝑟𝑒𝑎×𝑡𝑖𝑚𝑒
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒

   [38] 

This can also be derived as, 

𝑎𝑟𝑒𝑎

𝑡𝑖𝑚𝑒
=

𝑓𝑜𝑟𝑐𝑒

𝑎𝑟𝑒𝑎×𝑡𝑖𝑚𝑒
×

𝑣𝑜𝑙𝑢𝑚𝑒

𝑚𝑎𝑠𝑠
   [39] 

As a consequence, the effects of variable viscosity based on surface 

tension, buoyancy, temperature dependence and density are taken 

into account using the derived equations. These equations are 

given to the Rayleigh Benard Marangoni equation thereby the 

effect related to the Rayleigh number and Marangoni number are 

obtained and graphs are determined relating the change in 

convective characteristics.  

The study thereby discovered that solutions with a viscosity greater 

than 10-3 Pa s (water) have either less or the same surface tension 

as water, and it is assumed that this is due to the fact that the 

intermolecular bonding (hydrogen bonding) between water 

molecules remained stable as viscosity increased, causing surface 

tension. The critical Rayleigh number for the onset of convection 

has been decreased significantly from its standard estimate. 

Furthermore, it is discovered that the slip velocities for normal and 

forced convection are similar. The research has also discovered 

that the viscoelastic effect can cause an oscillatory instability, 

while in the absence of it, only a monotonic instability occurs. As 

a result, the importance of convection is readily apparent. This 

study gives a detailed investigation on the effect of variable 

viscosity on Rayleigh-Benard Marangoni Convection using the 

fluid dynamic parameters hence an optimum understanding related 

to the dynamics of the fluid under natural convection can be 

determined. 

4. Result and Discussion 

This section provides a detailed description of the implementation 

results as well as the performance of the proposed system and 

comparison section to ensure that the proposed system analyzes 

efficiently. 

4.1 Experimental Setup 

This work has been implemented in the working platform of 

MATLAB with the following system specification and the 

simulation results are discussed below, 

  Platform : Matlab2018b 

  OS : Windows 7 

  Processor: 64-bit Intel processor 

  RAM : 8GB RAM 

4.2 Implementation Results 

This section deals with various results obtained by the evaluation 

of the Rayleigh Benard- Marangoni convection process due to 

variable viscosity at different time. 

 

Figure 2: Rayleigh-Benard Marangoni convection at 11.7 secs 

The above fig depicts the reaction of a fluid under Rayleigh-Benard 

Marangoni convection. At 11.7 min the convection process tends 

to start from the direction of heat flow. The red colour depicts max 

heat and blue represents minimum heat. 

 

Figure 3: Rayleigh-Benard Marangoni convection at 16.5 secs 

The above image depicts the Rayleigh-Benard Marangoni 

convection at 16.5 secs. The heat is transferred slowly to the 

upper molecules via conduction process. 

 

Figure 4: Rayleigh-Benard Marangoni convection at 18.6 secs 

The heat is transferred to the upper boundary at 18.6 secs and the 

changes in the molecules of fluid due to buoyancy, surface tension, 

temperature gradient and density is clearly visualized in the 

Rayleigh-Benard Marangoni convection process. 

 

Figure 5: Rayleigh-Benard Marangoni convection at 20.7 secs 

The above image shows the transformation in next 2 secs. It is clear 

that the whole molecules attain a gradual convection structure as 

time increases. 

 

Fig 6: Rayleigh-Benard Marangoni convection at 27 secs 
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This image depicts the flow of heat in convection in a fluid at 27th 

sec at constant temperature maintaining the Rayleigh-Benard 

Marangoni number at 700. 

 

Figure 7: Rayleigh-Benard Marangoni convection at 30 secs 

This image depicts the continuous flow of the fluid molecules due 

to surface tension and buoyancy. The structure is continually 

makes the whole molecules heated till the equilibrium is attained. 

 

Figure 8: Variation in temperature based on viscosity 

Temperature changes as the viscosity changes. The above picture 

depicts that as the temperature increases the viscosity also 

increases. Initially the increase is large but as the viscosity attains 

a limit the viscosity starts to increase gradually. 

 

Figure 9: Variation in density based on viscosity 

This graph clearly shows that the viscosity drops down so the 

density is indirectly proportional to viscosity. As density increases 

the viscosity decreases constantly. 

 

Figure 10: Variation in surface tension based on viscosity 

This graph shows that surface tension and viscosity is directly 

proportional to each other. As the surface tension increases 

viscosity also increases constantly. 

 

Figure 11: Graph relating density and Rayleigh number 

The density of the molecules in fluid is compared with the change 

in RayleighBénard Marangoni number. The RayleighBénard 

Marangoni number increases as the density of the fluid is 

increased. 

 

Figure 12: Graph relating buoyancy and Rayleigh number 

The change in RayleighBénard Marangoni number is compared to 

the buoyancy of molecules in fluid. As the buoyancy of the fluid 

increases, the RayleighBénard Marangoni constant grows. 

 

Figure 13: Effect of temperature on Rayleigh-Bénard Marangoni 
convection 

The change in RayleighBénard Marangoni number is compared to 

the temperature of molecules in fluid. As the temperature of the 

fluid increases, the RayleighBénard Marangoni constant grows. 

 

Figure 14: Effect of surface tension on Rayleigh-Bénard 
Marangoni convection 

The RayleighBénard Marangoni number is compared to the 

surface tension of molecules in fluid. As the surface tension of the 

fluid rises, the RayleighBénard Marangoni number rises as well. 
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Figure 15: Comparing the parameters affecting convection 

The influence of temperature, Surface tension, buoyancy and 

density on convection process is compared. The results show that 

temperature affects highly when compared to others and density 

effects minimum than others. 

 

Figure 16: Parameters influence on viscosity 

The influence of temperature, Surface tension, buoyancy and 

density on viscosity is compared. The results show that 

temperature affects highly when compared to others and density 

effects minimum than others. 

5. Conclusion 

In this study, the impact of different indicators on fluid dynamics 

is explored. The physical properties are mostly concerned with 

changing viscosity with a flat open boundary condition. The 

interface between two fluid layers is examined. The study shows 

that surface tension is exactly proportional to viscosity when 

evaluating the features of surface tension as viscosity changes. The 

density, on the other hand, is related to the viscosity indirectly. 

When examining the temperature gradient, the temperature rises 

quickly as the viscosity increases, but then gradually shifts and 

maintains a limit until equilibrium is reached. The buoyancy of a 

fluid fluctuates with its density as its viscosity changes. Thus, the 

Rayleigh-Benard and Marangoni convection processes is studied 

and the intermolecular behavior-based changes are predicted, and 

the results are displayed. In overall research it is found that with 

changing viscosity, temperature has the greatest impact of 99% 

while density has the least of 60%. 
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