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Abstract: A new impulse noise detection algorithm is proposed in this paper. The most popular method for detection of impulse noise is to 

classify every pixel with intensity 0 or 255 as noise. Other techniques involve the detection of noise candidates in the first stage followed 

by false-positive reduction process in the second stage. Both types of techniques have some problems such as the first approach fails to 

distinguish between a noisy pixel and pure white or black background region. The second type detection algorithm often results in the 

detection of an unwanted amount of false positives. They also demand more CPU elapsed time. The proposed method is a two-stage 

impulse noise detector that first detects all the true positives along with false positives that are the result of the appearance of pure white 

or pure black uniform regions in the image. It then applies morphological operators such as erosion and pixel connectivity to avoid the 

detection of uniform regions as noisy pixels. Simulation results show that the proposed impulse noise detector method outperformed 

existing noise detection methods. The proposed method can be applied as an initial noise detection step for the removal of salt & pepper 

noise using any spatial filter. 
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1. Introduction 
Image processing is widely used almost everywhere. It has 

enormous applications in most of the scientific fields such as 

aerospace, astronomy, particle physics, biology, photogrammetry, 

geology, the science of material, and medical sciences [1]. Usually, 

images are corrupted by noise due to the usage of the corrupted 

sensor during the acquisition process or due to their transmission 

through a corrupted medium [2]. Noise can be of additive or 

multiplicative nature. Noise can be of different types according to 

the pdf that they are represented with. Some of the most occurring 

noise types are Gaussian noise, impulse noise, Laplacian noise, 

speckle noise and Rayleigh noise, impulsive noise, Gaussian noise, 

Rayleigh noise, and Laplacian noise, to name a few [3], [4], [5]. 

Salt & pepper noise is a type of impulse noise where corrupted 

pixels are replaced by the extreme intensities. Salt & pepper noise 

usually corrupt image due to the corrupted sensors. In salt & pepper 

noise, corrupted pixels are replaced by extreme intensity values. 

Mathematical model of salt & pepper noise is given in (1) as 

𝑌 = {

0,                                 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝1

𝐿 − 1,                           𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝2

𝑥,                  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝1 − 𝑝2

             (1) 

where 𝑥 denote the uncorrupted intensity value that are not 

affected by the interference of noise. 

Salt & pepper addition is the problem that affect the output of 

MRI[3], CCTV [6], and TV[7]. Because salt & pepper noise 

seriously deteriorates picture quality and disrupts image 

processing, an efficient noise-removal algorithm is a core image 

processing technology. For removal of Salt & pepper noise, filters 

are applied to the image. 

Applying filters help us to estimate the value of the pixel that is 

currently under consideration. Applying filters to all pixels in an 

image result in more blur and doesn’t provide the desired output as 

uncorrupted pixels are also replaced by their estimated values. 

Instead, a common approach is to apply a two-stage image noise 

removal method that comprises of noise detection followed [8]-

[17] by the application of the simple or adaptive filter. 

The two-stage salt & pepper noise removal process produces 

less blur as selected pixels are filtered instead of applying filters to 

the whole image. The performance of such methods depends on 

the performance of both detection and filtering stage, however, in 

most of the case, detection matters the most. A detector that 

produces false negatives is of no use as some of the noisy pixels 

are left unprocessed. A detector that produces a higher percentage 

of false-positive also leads to the production of blur along edges 

and other details as many noise-free pixels are also processed for 

filtering. 
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(a) 

(b) 

Figure 1. Results of considering pixels with intensities 0 or 255 

as noisy: (a) input noisy images with 10% noise density; (b) 

output binary images. 

To detect 100% true positives, few researchers [12]-[14] have 

proposed the simplest detection methods. They considered all 

those pixels noisy that have intensities of 0 or 255. This approach 

produces no or very few false positives, however, they fail on 

images that have pure white or pure black objects or uniform 

regions. Figure 1 shows examples of the application of such 

detection. It can be seen from the images, that although, their 

accuracy of true positives is 100%, however, it also detected a 

group of background non-noisy pixels as false positives. For any 

adaptive filtering algorithms [11], [12], [15], [17] that extends 

window size based on detected noise present in the scene will be 

unable to produce good results for such images as for most of the 

pixels detected as noisy pixels, any window size will contain all 

the false positives along with some true positives and hence 

adaptive filtering will either not be able to make a decision, or it 

may replace a false positive with the intensity value of a true 

positive. 

Instead of considering maximum and minimum intensity values 

as noisy pixels in an image, researchers [15]-[17] have proposed 

other techniques that detect less false positives in extreme intensity 

regions. These methods also provide reasonable detection for 

random valued impulse noise as well in the presence of some 

unwanted false negatives.  

This paper presents a simple and efficient two-stage salt & 

pepper noise detection method that detects 100% true positives in 

the presence of a fractional percentage of false positives. The 

proposed method first consider all the pixels with intensities 0 or 

255 as noisy pixels, apply pixel connectivity based second stage to 

ensure that the detected pixels don’t belong to a uniform region. 

The algorithm produces encouraging results for all types of images 

and takes a fraction of time to execute. The proposed algorithm 

shows consistent performance for both low and high densities of 

noise. The proposed method can be combined with any type of 

adaptive filter to provide image restoration from salt & pepper 

noise in the presence of minimum blur. 

The rest of the paper is organized as follows: Section 2 describes 

some of the conventional methods. Section 3 describes the 

proposed salt & pepper noise detection algorithm. Section 4 shows 

the results and discussion of the proposed filter followed by the 

conclusion in Section 5. 

 

2. Conventional Methods 
This section discusses some of the conventional state-of-the-art salt 

& pepper noise detection methods proposed by the researchers. 

Boundary discriminative noise detection (BDND) [16], Kumar [18], 

Ma [19], Ghanekar detector [15], and Khan detector [17] are 

discussed. 

BDND [16] is a two stage noise detection method that has the 

following steps 

i. Around every pixel of interest, impose a 21x21 

window while keeping the pixel of interest as 

center. 

ii. Find the median value “med” after sorting the 

window and storing it in vector 𝑣0. 

iii. Divide 𝑣0 into two groups. First group will have 

sorted intensities from 0 to med whereas second 

group will have sorted intensities from med to 255.  

iv. For both groups, find the difference between 

consecutive sorted intensities. Calculate 𝑏1 and 𝑏2 

as sorted intensities that corresponds to maximum 

difference index of both groups. 

v. If the pixel of interest is less than or equal to 𝑏1 or 

is greater than or equal to 𝑏2, it is marked as noisy 

candidate in the first stage of the algorithm. 

Otherwise, it is marked as non-noisy pixel. 

vi. Impose a 3x3 window and repeat the process ii-v 

to see if the noisy candidate is still marked as noisy 

or not. If a noisy candidate is not marked as noisy 

in the second stage, mark it noise-free. 

Kumar et al. [18] suggested a basic salt-and-pepper noise detector 

that chooses a pixel with an intensity of 0 or 255 as a candidate. The 

number of pixels in a 3x3 window with intensities of 0 or 255 is then 

counted. If the count passes a certain threshold, the pixel is 

considered noise-free because it could be in a flat region with 

intensities of 0 or 255. If the count is smaller than the threshold, the 

pixel is chosen as a noisy pixel. 

Due to the use of a smaller window, the Kumar detector will produce 

a large number of false negatives for high density noise images. A 
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similar solution was proposed by Ma and Nie [19], which addresses 

the window size issue. It determines if a pixel is noisy based on the 

number of dissimilarities between it and its neighbours. It counts the 

number of nearby pixels whose absolute differences 𝐺𝑘 with the 

candidate pixels are larger than the threshold for a window of size 

nxn. If the count exceeds a certain threshold, the pixel is designated 

as a noisy pixel. 

For noise levels less than 50%, Ma detector proposes using 3x3 or 

5x5 windows, whereas for densities between 60 and 80 percent, 7x7 

windows are employed. For a noise density of 90%, 9x9 windows 

are employed. The issue with the Ma detector is that it does not 

provide any way for estimating the image's noise density.  

Ghanekar detector [15] is a two stage noise detection filter. The first 

stage comprises of the following steps 

i. Create a binary image 𝐵 of size of input image, 

mark all pixels in 𝐵 as zero.  

ii. Move 3x3 window across every pixel of interest 

𝐼(𝑖, 𝑗). 

iii. Sort all the pixels to form an array 𝑅 such that 

𝑅(𝑖, 𝑗) = [𝑟1(𝑖, 𝑗), 𝑟2(𝑖, 𝑗), … . . , 𝑟9(𝑖, 𝑗)]. 

iv. Mark the pixel of interest as noisy pixel if the 

following condition is satisfied if(𝐼(𝑖, 𝑗) =

𝑟1(𝑖, 𝑗))   𝑜𝑟   (𝐼(𝑖, 𝑗) = 𝑟9(𝑖, 𝑗)), mark pixel of 

interest as noisy candidate by assigning value of 1 

to 𝐵(𝑖, 𝑗). 

The second stage of Ghanekar detector comprises of the following 

steps 

i. For all noisy candidates 𝐼(𝑚, 𝑛), move 11x11 

window across them, sort 11x11 window to get 

array 𝑅 of size 1x121. 

ii. Calculate difference between consecutive 

elements in 𝑅, and store them in array 𝐷 such that  

𝐷(𝑚, 𝑛) = [𝑑1(𝑚, 𝑛), 𝑑2(𝑚, 𝑛), … . . , 𝑑120(𝑚, 𝑛)] 

iii. Find four largest distances 𝑑𝑚𝑎𝑥1,𝑑𝑚𝑎𝑥2, 

𝑑𝑚𝑎𝑥3 and 𝑑𝑚𝑎𝑥4 in 𝐷 such that    

𝑑𝑚𝑎𝑥1 = 𝑑𝑖(𝑚, 𝑛); 𝑑𝑚𝑎𝑥2 = 𝑑𝑗(𝑚, 𝑛); 𝑑𝑚𝑎𝑥3 =

𝑑𝑘(𝑚, 𝑛); 𝑑𝑚𝑎𝑥4 = 𝑑𝑙(𝑚, 𝑛); 

where 𝑑𝑖(𝑚, 𝑛) > 𝑑𝑗(𝑚, 𝑛) > 𝑑𝑘(𝑚, 𝑛) >

𝑑𝑙(𝑚, 𝑛). 

iv. Find the values of 𝑚 and 𝑛 such that 

𝑜 = min[𝑖, 𝑗, 𝑘, 𝑙] ;        (2) 

𝑛 = max[𝑖, 𝑗, 𝑘, 𝑙] ;          (3) 

Define boundary values 𝑤𝑚𝑖𝑛  and 𝑤𝑚𝑎𝑥  for comparison such that 

𝑤𝑚𝑖𝑛 = 𝑟𝑜+1(𝑚, 𝑛)               (4) 

 

𝑤𝑚𝑎𝑥 = 𝑟𝑛(𝑚, 𝑛)            (5) 

Noisy candidate is marked as noisy or non-noisy pixel on the basis 

of criteria 

𝑖𝑓(𝐼(𝑚, 𝑛) < 𝑤𝑚𝑖𝑛 𝑜𝑟 𝐼(𝑚, 𝑛) > 𝑤𝑚𝑎𝑥) 

𝐵(𝑚, 𝑛) = 1 

𝑒𝑙𝑠𝑒 

𝐵(𝑚, 𝑛) = 0 

The problem with the Ghanekar method is that it produces false 

negatives during the second stage as it marks some of the pepper 

noisy pixels as non-noisy. Khan detector [17] modified the second 

stage of the Ghanekar detector to avoid the occurrence of false 

negatives in the detection process. The slight modification that Khan 

detector proposed in step v of the second stage of Ghanekar detector 

is 

𝑖𝑓(𝑑𝑚 == 0) 

𝑤𝑚𝑖𝑛 = 𝑟𝑜+1(𝑚, 𝑛) + 1 

 

 

 

 

 

Figure 2. Flowchart of the proposed salt & pepper noise detection algorithm. 

 

3. Methodology 
The objective of this paper is to propose a simple salt & pepper noise 

detection method that detects all the noisy pixels in the presence of 

negligible false positives. Marking all the pixels with intensity values 

of 0 or 255 will lead to the detection of 100% true positives, 

however, it will result in the detection of few percent of false 

positives as well. The percentage of false positives will be much 

higher for the images that have pure black or white regions as can be 

seen from Figure 1. This paper aims to reduce those false positives 

to a great extent. 

Flowchart of the proposed impulse noise detection algorithm is 

shown in Figure 2. The proposed algorithm is a two-stage impulse 

noise detector. The steps for the first stage of the proposed algorithm 

are given below 

i. Create a binary image 𝐵 of size of input noisy 

image. Assign 0 to all the indices of 𝐵. 

ii. If our pixel of interest at 𝐼(𝑖, 𝑗) have intensity value 

of either 0 or 255, detect it as noisy candidate by 

assigning value of 1 to 𝐵(𝑖, 𝑗). Otherwise, don’t 

change the value of 𝐵(𝑖, 𝑗). 
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The output of the first stage will contain 100% true positives, 

however, false positives will be there as well. From Figure 1, it can 

be seen that white uniform regions are also detected as salt noise in 

this case. From Figure, it is clear that the false detection of the 

uniform region results in a group of connected pixels in the binary 

image. Therefore, the connectivity information can be used to reduce 

the detection of false positives in such cases. Therefore, the second 

stage of impulse noise detection involves few morphological image 

processing algorithms. The steps for the second stage are given 

below 

i. Apply erosion with square structuring element of 

size 2 to image 𝐵. This step is applied in order to 

isolate the possible pepper or salt noise pixels 

attached to the boundaries of pure black or white 

uniform regions so that they cannot be selected as 

noise-free pixels in step iv. 

ii. For every detected noise candidate at positions 

(𝑚, 𝑛), detect all the connected pixels groups that 

have number of connected pixels (with 8-

connected components) greater than or equal to 𝑇. 

Where 𝑇 is given below 

𝑇 = 𝑀 × 𝑁 ×
δ

100
                  (6) 

Where 𝑀 and 𝑁 are rows and column of the input 

image.  

iii. For all the connected pixels group, detected in step 

ii, calculate the number of pixels that have 

intensity values of 0 and 255. Store these numbers 

in 𝑁0 and 𝑁255 respectively. 

iv. If 𝑁0 > 𝑁255 in a group, it means that the uniform 

region have intensities of 0 in the region of 

interest. Obtain the indices of all 0 intensity indices 

𝐼𝑛0 in that group, assign 0 values to all 𝐼𝑛0 indices 

in binary image 𝐵. In case if 𝑁255 > 𝑁0 for a 

group, repeat the process of step iv for intensities 

of 255. 

Step i of the second stage is applied to ensure the removal of noisy 

pixels attached to the boundary of a connected group. For example, 

if a uniform region has intensities of 255, there is a strong possibility 

that few noisy salt pixels may be connected to the boundary of that 

region. Therefore, in order to retain the detection of those noisy 

pixels, connected boundary elements from all groups are removed 

using erosion. Step iv is used to detect whether the uniform region 

that is mistakenly detected as a group of a connected noisy pixel in 

the first stage contains intensity values of 0 or 255. If the uniform 

region has intensity values of 0, the number of black pixels will 

dominate the number of white pixels and vice versa. 

Figure 3 shows the results of using multiple steps of the proposed 

technique to detect noisy pixels. With a salt and pepper noise density 

of 30%, Figure 3(a) and (g) display noisy briefcase and trashcan 

images. There are a considerable number of white pixels with 

intensities of 255 along the bottom left and top left corners of the 

briefcase and trashcan images, respectively. The ground truth in 

Figures 3(b) and (h) was determined using the equation below 

 

 

 

 

                        (a)                                                         (b)                                                    (c)  

 

(d)                                                         (e)                                                    (f)  

 

(g)                                                         (h)                                                    (i)  
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(j)                                                         (k)                                                    (l)  

Figure 3. Results of application of the proposed algorithm to detect noisy pixel; (a, g) Image with 30% noise density, (b, h) ground tru 

th; (c, i) Results of first stage; (d, j) eroded image; (e, k) Detection of uniform non-noisy region; (f, l) Final binary image. 

 

 

𝐺𝑇 = 𝑎𝑏𝑠(𝐼𝑛𝑜𝑖𝑠𝑦 − 𝐼𝑜𝑟𝑖𝑔) > 0                          (6)  

where 𝐼𝑛𝑜𝑖𝑠𝑦 is the noisy image and 𝐼𝑜𝑟𝑖𝑔 is the original image with 

no noise. Figure 3(c) and (i) illustrate the results of the first stage 

candidate selection, demonstrating that the image contains all noisy 

pixels as well as false positives, as the paper region in the briefcase 

and shining part of the chair in the trashcan images have intensities 

of 255. Figures 3(d) and (j) were created by using erosion to isolate 

any noisy pixels related to the paper and shining chair regions. This 

step ensures that boundary noisy pixels are removed when reducing 

false positives based on connectivity. Consequently, some false 

positives on the edge of the paper zone will be eliminated as well. 

The detected false positives white pixels with connection larger than 

and are segregated using the criteria given in stage two steps ii-iv are 

depicted in Figure 3(e) and (k). Figures 3(f) and (i) show the final 

binary pictures created. 

 

 

Figure 4. Densities of pixels with non-noisy 0 and 255 intensities 

in each of 47 images. 

4. Results 

For performance evaluation, a total of 47 images were used. Non-

noisy pixels with intensities of 0 or 255 in the range of 0-10 percent 

can be found in the selected images. Figure 4 shows the 

distribution of 0 and 255 intensities in non-noisy images. As 

demonstrated in Figure 4, the selected images provide a good 

variety of examples to study. On the basis of extensive simulations, 

the value of 𝛿=0.5 was chosen.  

 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑀𝑎 =
𝑁0 + 𝑁255

𝑀 × 𝑁
          (7) 

where 𝑀, 𝑁 , 𝑁0 and 𝑁255 are number of rows, columns, 0 

intensity pixels and 255 intensity pixels respectively. 

Figure 5-6 shows a comparison of true positive and false 

positive comparison for the detection of noise from 10%, 50%, and 

80%. True positive percentage were calculated using (8) as 

𝑇𝑃 =
𝑁𝑇𝑃

′

𝑁𝑇𝑃
× 100                 (8) 

where 𝑁𝑇𝑃
′  depicts number of true positives detected by 

algorithm for a specific image/case and 𝑁𝑇𝑃 are the true positives 

in the ground truth. False positives, on the other hand, are 

calculated using (9) as 

𝐹𝑃 =
𝑁𝐹𝑃

′

𝑁𝑡𝑜𝑡𝑎𝑙
′ × 100                 (9) 

where 𝑁𝐹𝑃
′  are total number of false positives detected by the 

algorithm for a specific image/case and 𝑁𝑡𝑜𝑡𝑎𝑙
′  are the total number 

of noisy pixels detected by the algorithm. 

It can be seen from Figure 5 that both the proposed method and 

Khan detector detected 100% true positives for both low and high 

densities of noise. Ma detector also detected nearly 100% true 

positives for all 47 images with true positives in the range of 98.8-

100%. BDND, however, shown true positive detection accuracy of 

95.6-100%. 

Figure 6 shows a false positive comparison for all four algorithms. 

It can be seen from Figure 6 that overall, BDND detected more false 

positives when compared to other algorithms. Khan detector 

performed better comparatively, however, for some images, false 

detection is more when compared to Ma. The proposed method, as 

can be seen, has overall outperformed all the other algorithms in the 

aspect of detection of less overall false positives. Table I shows the 

average percentage of true positives and false positives of all 

algorithms for 10%, 30%, 50%, 70%, and 80% noise densities. It can 

be seen from the table that the proposed algorithm and Khan detector 

detected 100% true positives. The proposed method detected very 

few false positives when compared to other methods.   

If results discussed in Figure 6 and Table I are analyzed 

collectively, it can be seen from Figure 6 that for some cases, the 

percentages of false positives for some images are higher compared 

to the average false positive caught. These are the images that have 

a good proportion of pure white or black uniform regions with non-

noisy extreme intensities. It is because of two reasons. One reason is 

ignoring the uniform white/black region pixels that are on the 

boundary due to the application of erosion. Another reason is that the 

cluster formed due to the non-noisy extreme values are either already 

smaller than the σ or they become smaller after the application of 

erosion. Erosion separates few of the regions from the bigger cluster 

by removing small bridges between them. However, for most of the 

images, false positive detection percentage is near to zero that results 

in very smaller percentage of average false positive detection. False 

positive detection becomes less as noise density increase as non-

noisy extreme values forms bigger clusters that are easily isolated 

with the application of threshold σ. However, making the threshold 
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σ extremely smaller by keeping the value of δ≪0.5 will result in 

detection of false negatives for high density of noise as noisy pixels 

seems to form clusters that may satisfy the threshold σ [22]-[25]. 

Figure 6 shows a false positive comparison for all four algorithms. 

It can be seen from Figure 6 that overall, BDND detected more false 

positives when compared to other algorithms. Khan detector 

performed better comparatively, however, for some images, false 

detection is more when compared to Ma. The proposed method, as 

can be seen, has overall outperformed all the other algorithms in the 

aspect of detection of less overall false positives. Table I shows the 

average percentage of true positives and false positives of all 

algorithms for 10%, 30%, 50%, 70%, and 80% noise densities. It can 

be seen from the table that the proposed algorithm and Khan detector 

detected 100% true positives. The proposed method detected very 

few false positives when compared to other methods.   

If results discussed in Figure 6 and Table I are analyzed 

collectively, it can be seen from Figure 6 that for some cases, the 

percentages of false positives for some images are higher compared 

to the average false positive caught. These are the images that have 

a good proportion of pure white or black uniform regions with non-

noisy extreme intensities. It is because of two reasons. One reason is 

ignoring the uniform white/black region pixels that are on the 

boundary due to the application of erosion. Another reason is that the 

cluster formed due to the non-noisy extreme values are either already 

smaller than the σ or they become smaller after the application of 

erosion. Erosion separates few of the regions from the bigger cluster 

by removing small bridges between them. However, for most of the 

images, false positive detection percentage is near to zero that results 

in very smaller percentage of average false positive detection. False 

positive detection becomes less as noise density increase as non-

noisy extreme values forms bigger clusters that are easily isolated 

with the application of threshold σ. However, making the threshold 

σ extremely smaller by keeping the value of δ≪0.5 will result in 

detection of false negatives for high density of noise as noisy pixels 

seems to form clusters that may satisfy the threshold σ. 

 

(a) (b) 

 

                                                                                           (c) 

Figure 5. True positive comparison of Khan detector, BDND, Ma detector and proposed method for detection of ; (a) 10%, (b) 50%, (c) 

80%noise densities. 

 

(a) (b) 
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(c) 

Figure 6. False positive comparison of Khan detector, BDND, Ma detector and proposed method for detection of; (a) 10%, (b) 50%, (c) 

80% noise densities. 

 

TABLE 1. 

AVERAGE TRUE POSITIVE AND FALSE POSITIVE COMPARISON OF ALL ALGORITHMS FOR DIFFERENCE NOISE DENSITIES. 

Noise 

density/method 

Khan  Ma BDND Proposed 

 TP FP TP FP TP FP TP FP 

10% 100 3.72 99.74 6.99 99.962 9.76 100 2.47 

30% 100 2.48 99.727 4.66 99.96 5.93 100 1.43 

50% 100 1.07 99.70 1.20 99.957 1.62 100 0.41 

70% 100 0.61 99.69 0.76 99.957 0.98 100 0.23 

80% 100 0.54 99.68 0.61 99.954 0.69 100 0.101 

  

Figure 7 shows comparison of application of all four algorithms 

to a crop patch of coffeemaker image. It can be seen from Figure 

7(d) that BDND detected some solid dense regions of false negatives 

when it comes to distinguish the non-noisy white regions from the 

noisy one. Ma, on the other hand, detected false negatives that are 

less in numbers than both BDND and Khan detector. For some 

images, as can be seen from Figure 7, Khan detects more false 

positives compared to the Ma. As far as proposed method is 

concerned, the only false negatives that are detected are along the 

boundary of pure white region of the coffeemaker region. The false 

positives along the boundary regions are due to the application of 

erosion and cannot be removed as ignoring the application of erosion 

may result in false negatives along the boundary. 

 

 

 

 

 

 

               (a)                                      (b)                         (c)                                      (d)                    

 

(e)                                    (f)                                       (g) 
 

Figure 7. Results of application of the different algorithms to detect noisy pixel; (a) Original noise-free image, (b) Image with 30% noise density, (c) 

ground truth; (d) BDND; (e) Ma; (f) Khan; (g) Proposed. 
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TABLE 2. 

AVERAGE CPU ELAPSED TIME COMPARISON OF ALL ALGORITHMS FOR DIFFERENCE NOISE DENSITIES. 

Noise 

density/method 

Khan  Ma BDND Proposed 

10% 1.778457 1.222167 6.67449 0.011233 

30% 1.939439 1.662968 6.872705 0.011315 

50% 2.947717 2.160008 6.654375 0.01237 

70% 3.474102 2.695277 6.350044 0.014666 

80% 3.960213 3.213243 6.969171 0.01953 

As far as execution time is concerned, the proposed method 

outperformed all the other algorithms as it apply simplest two stage 

detection method among which the first stage maybe implemented 

using vectorization methods whereas second is all about applying 

basic image morphology. Also, the proposed method rely mainly on 

global processing instead of relying heavily on local processing, this 

is also one of the reason of faster execution of the proposed method. 

5. Conclusion 
A new impulse noise detection method is proposed in this paper. 

Conventional methods can be classified into two categories. The first 

category is one stage simple detectors that classify every pixel that 

have an intensity value of 0 or 255 as noisy. Second category 

detectors usually detect noise in two stages, i-e, first they detect noisy 

candidates, followed by the final selection of noisy pixels. The first 

approach results in some serious problems when it comes to 

detecting noise from images having pure white or pure black 

background. Second category detectors, however, produce an 

unwanted percentage of false detection. The proposed method 

overcomes problems mentioned above to ensure the detection of 

100% true positives, in the presence of negligible detection of false 

positives. The proposed method is simple and takes very little CPU 

elapsed time to process a single image. The proposed method can be 

combined with any adaptive filter that depends on the input of the 

noise detector.  

In the future, the aim is to propose an efficient adaptive filter that 

outperforms other linear and non-linear filters by getting the full 

benefit of the proposed noise detector method. 
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