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Abstract: Automatic modulation classification (AMC) becomes the important process in the various communication systems including 

commercial, telecommunication and military applications. Further, the accuracy of AMC impacts the performance of these applications. 

Various machine learning approaches were developed to improve the performance of AMC. However, they failed to classify the different 

modulation schemes, which needs to satisfy all the spectrum requirements under multipath fading environment. Further, the conventional 

methods are suffering with computational complexity in training to satisfy the real-time operational requirements.So, this article focuses 

on implementation of extreme learning machine (ELM) for reduction of training complexities and improves the classification 

performance. Initially, deep leaning convolutional neural network (DLCNN) model is introduced for extracting the inter dependent 

modulation features based on different modulation types. Further, the hybrid ELM with bagging (HELM-B) classifier is used to classify 

the various modulation types, i.e., families. The simulation results shows that the performance of proposed AMC system is superior to 

the conventional AMC systems with an accuracy of 99.15%, and F1-score of 98.73%, respectively. 

Keywords: automatic modulation classification; extreme learning machine; convolutional neural network; deep learning. 

 

1. Introduction  

Real time mobile, satellite, and military communications 

[1]needs higherdata rates, improved spectrum efficiency, 

energy efficiency and reduced error rates, synchronization 

issues [2]. All these are requirements were easily satisfied by 

selecting appropriate modulation scheme. Further, selection of 

the modulation type mainly depending on the carrier 

frequencies, offset values, signal to noise ratio (SNR) levels, 

transmission rate, and bandwidths under different channel 

conditions. So, manual modulation selection schemes [3] are 

failed to select all these parameters at a timeand they failed to 

enhance the transmission efficiencyin an attempt. 

The 5G and future generation communications needs to 

perform the constraint specific modulation operation. 

Therefore, the manual selection of modulation class is difficult, 

which needs to satisfy the higher data rates with effective 

bandwidth utilization. Therefore, the AMC is used to meet 

these requirements in the future generation communications.So, 

AMC plays the crucial role in this process and AMC is used to 

properly categories the modulation types in order to get the best 

results. In most commercial systems, the receiver may make 

acknowledgement signals about the modulation scheme of the 

signal being delivered.  The conventional AMC systems [4] are 

utilized this received signal for classification purpose.Butit is 

impossible to precisely predict the communication 

characteristics of receivers in military applications.Further, the 

received signals in military communications are affected by the 

jammers. 

Recently, modulation systems are focusing on utilization of 

different characteristics and classified as two AMC types [5]. 

First type of AMCs isfocused on statistical modelsfor 

estimating the received signal and probability 

functions.However, this approach has poor performance 

because of the inaccuracy that happens due to time varying 

nature of different channel models in the real-world 

scenario.Furthermore, the complexity of this AMCmethods 

becomes quite intricate, and number of calculations arealso 

high, when multiple modulation types are taken into 

account[6]. The second type of AMC makes use of a machine-

learning approach to accomplish the various real-worldgoals. 

This AMC approach makes use of training data by using 

support vector machine (SVM)[7], k- nearest neighborhood, 

random forest, naive bayes methods, which may be used to 

categories modulation type in various ways. TheSVM 

technique outperforms among the various machine learning 

classifiers, when the training data is comparable to the real 

data, but it may still get decent results even when the 

computing cost is smaller. But the machine learning algorithms 

are failed to provide the maximum classification accuracy and 

the complexity of these methods are increasing as the 

modulation features are increased. Further, the machine 

learning classifiers are suffering with the speed related issues 

during training and testing process.  

In order to improve the AMC, different strategies have been 

investigated, including recurrent neural networks (RNNs) [8], 

convolutional neural networks (CNNs) [9], and deep neural 

networks (DNNs) [10].  These deep learning-based models are 

mainly focused on feature extraction and classification stages. 

The CNN models were improving the performance computer 

aided systems in various applications [11] including image 

processing, signal processing, signal analysis, data processing 
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and video processing.  The CNN modelsconvertinput (audio, 

video, text, and signal) data into feature vectors and analyzes 

the relationship between various features. This property of 

CNN is effectively used to classify the signals based on their 

unique features. Further, the RNN models [12] also extracts the 

features from these data and additionally they were used for 

time-series data.But RNN is computationally difficult and 

needs a significant amount of calculating work in comparison 

to its performance. In addition, DNNs are used to extract the 

features from complex conjugated data of inputs and has shown 

excellent performance for a variety of applications.Recently, 

DLCNN[13]are developed by combining the properties of 

CNN, DNN and RNN, which overcomes the problems of 

individual models. Further, DLCNN models are used to extract 

the wavelet coefficient, phase dispersion, frequency, and 

amplitudes from the modulation’s schemes. 

Multiple studies have concentrated on machine-learning 

approaches rather than examining the properties of data 

provided as input in order to get the desired results. 

Consequently, this work employs DLCNN model for feature 

extraction, those features that have a significant improvement 

on classification performance, thereby reducing the 

computational complexity and increasing the speed with which 

the received signal is identified while employing the 

fundamental DLCNN algorithm. These models improvise the 

importance of each feature map as compared to DNN, RNN. 

Further, the correlation coefficient is used to select the best 

features from the extracted data.This correlation coefficient is 

selecting the features based on mutual signal properties of 

various modulation schemes.In order to obtain trustworthy, 

resilient, and efficient AMC performance under various fading 

channels, every stage of AMC should be implemented by using 

artificial intelligence based deep learning models. The research 

area of AMC should be improvised by using deep learning 

models. As of now there is no controlled, inclusive and 

comprehensivespecific dataset for AMC process. The existing 

datasets are failed to considerthe multipath fading effects in 

various time, frequency varying channels.Thus, this work 

considered a new publicly available HisarMod2019.1 dataset. 

Further, this dataset is developed by considering Nakagami–m 

(m = 2), Rician (k = 3), Rayleigh, static and ideal channel 

conditions with multiple number of taps.The major 

contributions of this work are as follows: 

• Initially,a novel DLCNN model is developed for 

extracting the AMC features, which has the potential 

capacity to improve the classification performance by 

analyzing the diverse features. 

• Further,HELM-B classifier is developed for classifying 

modulation types, or kinds, as opposed to their 

individual characteristics, which reduces the 

computational complexity and improves the accuracy of 

the system.  

• Simulation results shows that the performance of 

proposed method is improved as compared to the state 

of art approaches. 

Rest of the article is organized as follows: Section 2 delas with 

the related work with their problems. Section 3 delas with the 

detailed analysis of proposed method. Section 4 delas with the 

results and discussions. Section 5 concludes the article. 

 

 

2. Related Work 

This section delas with the literature survey that goes through 

the conventional methods of obtaining information. Machine 

learning, deep learning approaches are utilized for AMC 

classification, although expert knowledge is required for deep 

learning classification of RF signals. Basic AMC approaches 

are developed by utilizing the machine learning classifiers with 

standard feature extractors. In [14] authors developed the 

cooperative AMC system with by using CNN models, which is 

specifically designed for the multi-input multi output (MIMO) 

modules.But this system is failed to classify the time domain 

modulation schemes. Thus, pruning technology [15] is 

developed for improving the CNN performance by using the 

statistical moments-based features. Butthis method is 

applicable to only edge computing devices but this method is 

not applicable to MIMO devices.   Further, spectral correlation-

based methods are used to extract the deep AMC features by 

using Born-Jordan distribution and smooth pseudo-wigner-ville 

distributionmodules.Here, Born-Jordan distribution extracts the 

time sample-based features and smoothed pseudo-Wigner-Ville 

distribution extracts the frequency bands-based features. 

Previous to the advent of machine learning, most signal 

classification approaches needed extensive domain knowledge 

as well as the capacity to extract features from recognized 

signals in order to be classified.Further, Fusion based CNN 

methods are presented in [17].  This method fused the different 

features by using deep learning models. However, that careful 

attention must be given to the preprocessing procedures even 

after all of this has been done.  Further, DLCNN [18] models 

are used to classify the AMC system.This is exactly why the 

AMC's work has emphasized time-domain representations 

throughout its history. To describe a radio frequency signal in 

the time domain, many people choose to use IQ values.In 

addition, Lightweight AMC (LightAMC) [19] was developed 

by using compressive sensing-based feature extraction and 

deep learning classification.In order to get an amplitude-phase 

representation, it is common to transform the IQ values to polar 

coordinates, which is another prominent time-domain format. 

But this method is applicable to only frequency-based 

modulation classifications. 

Later on, researches are focused on implementationhybrid 

AMC systems by considering both time and frequency-based 

modulation families.In [20] authors focused on hybrid 

implantation of hybrid feature extractors with time domain and 

frequency domain properties. Then the features were trained 

and tested with the SVM classification. This method suffers 

with low classification performance with higher complexity.In 

[21] authors developed the deep learning-based AMC system 

by using long short-term memory (LSTM) modules. This 

system is used to classify the various wireless signals and 

modulation types for low-cost spectrum sensors. But this 

method is failed to provide maximum classification accuracy 

for higher SNR values. Further, time varying nature of the 

channels also effecting the performance of this systems. Thus, 

Convolutional Long- Short Term Deep Neural Network 

(CLDNN) [22] model is developed to overcome the problems 

presented in LSTM based AMC systems. The CLDNN is a 

hybrid model, which is developed by combining the CNN, 

LSTM, and DNNs.The CLDNN model optimizes the losses 

generated in the LSTM-based AMC and improves the 

classification performance. Thetraining speed of CLDNN 
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model is improved 2 to 5 % as compared to conventional 

approaches. But, the CLDNN models are resulting in the poor 

performance in signal analysis applications. 

Transfer learning models are efficient and capable of extracting 

the deep features as compared to deep learning models. 

Residual Network (ResNet) is one of the prominent transfer 

learning models. The ResNet based AMC [23] analyzed the 

features of various modulation types by using probability 

analysis and resulted in better performance. Furthermore, an 

effective feature selection algorithm is introduced in [24] to 

further improve the performance of ResNet. They used CNN 

model for feature extraction, RNN model for representative 

value extraction and the correlation coefficient is used to select 

the best feature and representative values. Finally, DNN is used 

to classify the various classes of modulation.But this method is 

suffering with the high computational complexity and low 

speed. Thus, Robust CNN [25]based AMC is improved the 

performance as compared to conventional models. This method 

developed hybrid CNN model by considering the noise layer, 

IQ-Matrix layers. These layers are specialized layers and 

improved the training, testing speed. 

 

3. Proposed Methodology 

The demand for increased data rates in real-time mobile, 

satellite, and military communications necessitates 

improvements in spectrum efficiency, energy efficiency and 

error rates, as well as challenges with synchronization. All of 

these needs were readily met by picking the most suitable 

modulation scheme for the situation. Furthermore, the carrier 

frequencies, offset values, SNRlevels, transmission rate, and 

bandwidths under various channel circumstances are all taken 

into consideration when selecting the modulation style. 

Consequently, manual modulation selection techniqueshave 

failed to pick all of these parameters at the same time and have 

also failed to improve the transmission efficiency in their 

attempts at selection. Consequently, AMC is critical in this 

process, and AMC is utilized to appropriately categories 

modulation types in order to get the greatest outcomes possible. 

In most commercial systems, the receiver may provide 

acknowledgment signals indicating that the modulation scheme 

of the signal being sent has been recognized by the transmitter. 

The typical AMC systems make use of the received signal for 

the purpose of categorization. However, it is hard to accurately 

forecast the communication properties of receivers used in 

military applications because of the nature of the technology. 

Furthermore, jammers have an impact on the signals that are 

received in military communications systems. Thus, this work 

implemented deep learning-based AMC system. 

Figure 1 shows the block diagram of proposed approach for 

AMC, which contains DLCNN based feature extraction and 

HEL-B based classification.  Initially, the system is trained 

with the HisarMod2019.1 dataset. Here, the DLCNN is used to 

extract the features from quadrature amplitude modulation 

(QAM), phase shift keying (PSK), pulse amplitude modulation 

(PAM), and frequency shift keying (FSK) based modulation 

schemes. The DLCNN has the capability to identity 

interdependent relationship of various modulations schemes by 

analyzing each feature of RF signal. Furthermore, DLCNN is 

used to extract the features from both analog and digital 

modulation signals under multipath and varying channel 

conditions. In addition, DLCNN is also maintain the time, 

frequency, amplitude and phase synchronization of modulation 

signals during the feature extraction process. Then, the 

extracted features are applied to HELM-B classifier. Usually, 

the standard deep learning models are suffering with high 

computational complexity for achieving the higher accuracy. 

The ELM models are developed to improve the performance 

speed, reduced the training time, computational complexity as 

compared to the traditional models. Thus, the proposed HELM-

B classifier resulted in the superior performance and classifies 

the various modulation types. 

 
Figure 1: Block diagram of proposed AMC approach using 

HELM-B classifier. 

3.1 Features extraction using DLCNN 

Recently, deep learning models resulting in superior 

performance in many constraint-related problems. This work 

utilized the DLCNN for extracting the features of multiple 

modulations schemes with low complexity.In this case, the 

DLCNN is used to extract features from QAM, PSK, PAM, 

and FSK modulation families. In order to identify 

interdependent relationships between these modulation 

schemes, the DLCNN must first analyses each aspect of the RF 

signal in order to do so. Furthermore, DLCNN is used to 

extract features from both analogue and digital modulation 

signals when the signals are subjected to multipath and variable 

channel circumstances, among other things. Additionally, 

throughout the feature extraction process, DLCNN is 

responsible for maintaining the time, frequency, amplitude, and 

phase synchronization of modulation signals.Figure 2 presents 

the detailed feature extraction architecture of DLCNN, and 

Table 1 presents the layer size related details of each DLCNN 

model. Table 2 presents the detailed feature extraction 

algorithmby using DLCNN model.The proposed DLCNN 

model contains the one input layer, three convolutional layers 

(Conv2D), three MaxPooling (MaxPool2D) layers, one batch 

normalization layer, one flatten layer, two dense output layers 

and SoftMax classifier. Furthermore, these layers are controlled 

by rectified linear unit (ReLU) activation function and the 

complexity of the network is reduced by Adam optimizer. The 

operation of each layer is described as follows: 

 
Figure 2. Proposed DLCNN model for feature extraction. 
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Input layer: This layer is responsible for converting the digital 

signal data into the feature maps.The input features are 

produced based on random weight mapping according to any 

continuous distribution function, and output weights are 

calculated analytically by the minimal norm solution of a linear 

system. Here, for each epoch noise will be added, which is used 

to measure the performance of system for various values of 

SNR.  

Conv2D Layer:This layer is mainly responsible for extracting 

the feature maps based on interdependent modulation 

relationships. Consider input of this layer is denoted as 𝑥𝑖𝑛, 

which generates the outcome as 𝑥𝑜𝑢𝑡with 𝑁𝑥𝐷 matrix. Here, 

𝑁is the total number of samples in input with dimension 𝐷. 

Further, this layer implements the stochastic probability-based 

weight function (𝑊). The convolution operation is performed 

between 𝑊 and 𝑥𝑖𝑛, which generated the interconnected 

features.  Finally, conditionaldistribution based bias function 

(𝑏) is used to classify the features.Equation 1 represents the 

operation carried out by using Conv2D layer.  

𝑥𝑜𝑢𝑡 = max⁡(0,𝑊 ∗ 𝑥𝑖𝑛 + 𝑏)    

 (1) 

ReLU:The extracted features of convolutional layer are applied 

to ReLU activation, which selects the features based on the 

conditional reliability. The ReLU activation resulted is a 

piecewise linear function, which maintains the relationship 

between output to input. The ReLU activation function 

overcomes the vanishing gradient problem and improves the 

training speed as compared to sigmoid, hyperbolic tangent 

activation functions. 

MaxPool2D layer:This layer is used to gather the detailed 

features from previous layers. This layer contains a hidden 

matrix (𝐻), which performs universal approximation operation 

by using nonlinear piecewise continuous function(𝐺(·)). The 

performance of this layer is superior as compared to average 

pooling layer, which does not eliminate (reduce) the features. 

Table 1. Layer details of DLCNN architecture. 

Layer name Layer 

dimension 

Filter 

size 

No. of 

filters 

Input layer 1024 x 1024 7x7 64 

Conv2D-1 1024 x 1024 5x5 64 

MaxPooling2D-1 512 x 512 5x5 64 

Conv2D-2 512 x 512 3x3 32 

MaxPooling2D-2 256 x 256 3x3 32 

Conv2D-3 256 x 256 3x3 32 

MaxPooling2D-3 128x128 3x3 32 

Batch 

Normalization 

64x64 - - 

Flatten  1x8192 - - 

Dense-1 1x128 - - 

Dense-2 1x26 - - 

SoftMax 1x26 - - 

Table 2 DLCNN based feature extraction algorithm. 

Input:HisarMod2019.1 dataset. 

Output:Modulation type specific features. 

Step 1: Apply the dataset to input layer, which converts the 

dataset values into basic features for multiple SNR 

values. 

Step 2: Convolution layer is used to generate the inter 

dependent modulation specific features as mentioned 

in Equation 1. 

Step 3: MaxPooling layer is used to grab the maximum 

individual (subtypes) modulation related features. 

Step 4: To improve the efficiency, two sets of convolutions 

and MaxPoolinglayers are used. 

Step 5: Batch Normalization layer is used to reduce the 

imbalances in the resultant features. 

Step 6: Flatten layer is used to generate the feature maps in an 

array format. 

Step 7: Dense layers are used to interconnect the various 

feature maps (neurons) and generates the robust 

features. 

Step 8: Adam optimizer is used to reduce the losses in the 

overall deep learning model. 

Step 9: Finally, SoftMax classifier is used to generate the 

modulation specific features as mentioned in Eq. (2). 

 

Batch Normalization layer: Using batch normalization, a 

transformation is applied that keeps the mean output near to 0 

and the standard deviation output close to 1 while maintaining 

the variance output close to 1. It is important to note that batch 

normalization behaves in a distinct way during training and 

inference. In the context of training extremely deep neural 

networks, this is a method that standardizes the inputs to a layer 

for each mini batch of data. Consequently, the learning process 

becomes more stable, resulting in a significant reduction in the 

number of training epochs necessary for deep networks to be 

trained. 

Flatten Layer:The flatten layer has been used to transform a 

multidimensional input into a one-dimensional input. It is often 

utilized in the transition from the Conv2D layer to the fully 

connected layer. A flatten layer reduces the spatial dimensions 

of the input to the channel dimensions by using a flatten layer. 

Dense Layer: This layer is used to connect (map) the 

numerous neurons and generates the generalized outcome. The 

reliabilities of the data changed continuously, so these dense 

connections are useful for making the constant unchanged 

output. 

SoftMax Classifier: This layer is used to classify the nature of 

modulation type and generated the modulation specific 

features. Here, the classification process is used to identify the 

interdependency of each modulation type feature map with 

other features. Further, features of each modulation type are 

grouped together and formed as the trained features. Equation 2 

represents the classification process. 

𝑆(𝑦𝑖) = ⁡
𝑒𝑦𝑖

∑ 𝑒𝑦𝑖𝑗
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖, 𝑗⁡ = 1,2,… . . , 𝑁  

    (2) 

where 𝑆(𝑦𝑖)⁡represents features, 𝑦𝑖 represents dense layer 

output and 𝑁 number of modulation classes, respectively.  

Adam optimization: Usually DLCNN models are suffering 

with losses due to multiple number of layers for each epoch. 

These losses can cause to reduction of overall performance of 

the systems. Thus, the Adam optimization is used to reduce the 

losses by analyzing the complexity of modulation specific 

signals. This model updated the weights of each layer and 

resulted in better performance as compared to stochastic 

gradient process. Finally, loss optimized modulation specific 

features are generated. 

 

3.2 HELM-B Classification 

In machine learning, bootstrap aggregation (also known as 

bagging) is an ensemble approach that is utilized to 

improveaccuracy and stability of algorithm by reducing 

classification problem. The bagging is used to divide the main 

training dataset into sub-datasets. During this division process 

sampling and replacing of datasets is used. Then different types 
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of classifiers are used to train the data and predict the outcome 

based on the average of all tested samples.The conventional 

ELM is regarded as the "base learner" for the bagging 

technique because of its simplicity.But the ELM is failed to 

identify the week learners in sub training datasets and unable to 

improve the accuracy of week learners. Further, conventional 

ELM is failed to predict the best predicted class, this is due to 

the fact that bagging helps to reduce the unpredictability of 

forecasts. Thus, the ultimate choice in a classification model 

that employs bagging is reached via the use of a majority 

voting system.  

Incorporating the bagging ensemble model into the HELM is 

primarily intended to increase the classification accuracy and 

stability. The suggested HELM-B classifier's structure is shown 

in Figure 3. The operation of HELM-B is illustrated as follows: 

1. Bagging module of HELM-B divides the dataset into 

𝑘 groups of various training data subsets. 

2. Train 𝑘HELM classifiers using appropriate training 

data subsets, and then acquire 𝑘 trained HELM 

features as a result of the training process. These 

HELMs are functioned in a parallel fashion. 

3. Identify the week learners during the training process 

and improved the performance of week learners by 

changing the dataset applied. 

4. Calculate the predicted modulation class label for the 

test data set based on the 𝑘 trained HELM classifier, 

and HELM-B generates 𝑘 prediction results from the 

test features. 

5. Finally, HELM-B applies majority voting operation 

on the individual HELM classification results, which 

generates the final modulation type classification. 

The deep learning structure of HELM is represented in Figure 

4, which contains 𝑁 number of hidden nodes, 𝑁 number of 

input nodes, and 𝑚⁡number of output nodes, and it is divided 

into three sub-layers. Consider the input features extracted 

from DLCNN as 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁)𝑇 and it is applied to input 

layer. A set of weights 𝑤𝑖=[𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝑁]𝑇is used to link all 

of the nodes of the input layer with nodes of hidden layers, 

where 𝑁 is the number of weights.Further, bias weights 𝐵𝑗  

=(𝐵𝑗1 , 𝐵𝑗2 , … , 𝐵𝑗𝑁)𝑇 are used to interconnect nodes of hidden 

layer with nodes of output layer. The hidden layer performs the 

operation using hidden matrix 𝐻 and it is mentioned as follows: 

𝐻 = 𝑔(𝑤𝑖
𝑇𝑥 + 𝑏𝑖)     (3) 

Here, 𝑔(. ) denotes the activation function of HELM, 𝑏𝑖 is the 

bias function of HELM. 

Finally, the convolution operation is performed between 𝐵𝑗  and 

𝐻, which generates the predicted vector 𝑦̅ = (𝑦̅1,𝑦̅2, … . , 𝑦̅𝑚)𝑇  

and it is given as follows: 

𝑦̅ = ∑ 𝐵𝑗
𝑁̅
𝑗=1 ∗ ⁡𝐻     (4) 

 
Figure 3. Block level structure of HELM-B classifier. 

 
Figure 4. Deep learning structure of each HELM. 

The conventional ELM selects the 𝐵𝑗  and 𝑤𝑖 are generated 

randomly from a pool of possible values, which are not 

generated by static training process. But, this resulted in the 

reduced performance, thus this work modified this property of 

ELM and formed as HELM, which generates the 𝐵𝑗  and 

𝑤𝑖weights from novel training set (𝑠) by using reinforcement 

learning. 

𝑠 = [(𝑥𝑘 , 𝑦𝑘)|𝑥𝑘 ⁡ ∈ 𝑅𝑘 , 𝑦𝑘 ⁡ ∈ 𝑅𝑚, k = [1, 2, ..., K]] 

  (5) 

Here, 𝑦𝑘 = [𝑦𝑘1, 𝑦𝑘2, … . , 𝑦𝑘𝑘]⁡ and 𝑥𝑘 = [𝑥𝑘1, 𝑥𝑘2, … . , 𝑥𝑘𝑘] is 

the output and input vectors 𝑘𝑡ℎ training instance. Further, 𝐵𝑗  

and 𝑤𝑖weights are generated by optimizing the training set. 

Equation 6 represents the objective function of optimization 

process, which needs to solved and minimized for efficient 

outcome. 

𝐿(𝐵, 𝜁) ⁡⁡= ⁡
1

2
‖𝐵2 ‖+

𝑐

2
∑ ‖𝜁𝑘

2‖𝑘
𝑘=1    (6) 

𝐻(𝑤𝑘) = 𝐿(𝑦𝑘 − 𝜁𝑘)    (7) 

Here, 𝐿() represents the feedback process, 𝐶 represents the 

regularization parameter, 𝜁𝑘 represents the predicted error of 

instance 𝑘, ℎ(𝑤𝑘)represents the hyperparameter of 𝑤𝑖 and it is 

feedback to hidden layer from output layer.E 

𝐻(𝑤𝑘) =

[
 
 
 
 
𝑔(𝑤1

𝑇𝑥𝑘 + 𝑏1)

𝑔(𝑤2
𝑇𝑥𝑘 + 𝑏2)

.

.
𝑔(𝑤𝑁̅

𝑇𝑥𝑘 + 𝑏𝑁)]
 
 
 
 

    (8) 
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For the purpose of solving the optimization constraint stated 

above, apply the Kuhn–Tucker conditions such as Lagrange 

multipliers, and the resulting solution is generated follows: 

𝜗𝐵𝑤 = (
𝐼𝑁̅×𝑁̅

𝐶
+ (𝐻(𝑤𝑘))

𝑇
𝐻(𝑤𝑘))

−1

(𝐻(𝑤𝑘))
𝑇
Υ  

 (9) 

Here,𝜗𝐵𝑤 is the optimized value of 𝐵𝑗  and 𝑤𝑖 weights, 

𝐼𝑁̅×𝑁⁡̅̅ ̅represents an identity matrix and Υrepresents output 

feedback constant. Finally, the layers of HELM updated with 

optimized 𝜗𝐵𝑤 weights and generates the output vector 𝑦𝑘. 

𝑦𝑘 = {𝑐𝑙𝑎𝑠𝑠⁡𝐴 ∶ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 𝜌𝑐𝑙𝑎𝑠𝑠⁡𝐴 > 𝜌𝑐𝑙𝑎𝑠𝑠⁡𝐵

𝑐𝑙𝑎𝑠𝑠⁡𝐵 ∶ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡else⁡⁡
  

  (10) 

Here, 𝑐𝑙𝑎𝑠𝑠𝐴 to 𝑐𝑙𝑎𝑠𝑠𝐵represents 26 classes of modulation 

types with 5 major modulation types.Here, 𝜌𝑐𝑙𝑎𝑠𝑠⁡𝐴represents 

probability of 𝑐𝑙𝑎𝑠𝑠⁡𝐴 modulation type and 𝜌𝑐𝑙𝑎𝑠𝑠⁡𝐵 represents 

probability of 𝑐𝑙𝑎𝑠𝑠⁡𝐵 modulation type.Now, this is HELM is 

applied to bagging classifier and Table 3 presents the algorithm 

of HELM-B. The process of HELM-B is divided into training 

and testing phases. The features generated from 

HisarMod2019.1 dataset are divided into 80% for training and 

20% for testing. During the training process optimized 𝐵𝑗  and 

𝑤𝑖 weights for each HELM classifier is calculated and they are 

applied as input to the HELM-B testing model. 

 

Table 3. HELM-B classification algorithm 

Input:Trained features: 𝑠,⁡Test feature:𝜓𝑡𝑒𝑠𝑡 

Output:Predicted modulation class of the test data sequence 

Step 1: Apply the DLCNN trained features (𝑠) to bagging 

classifier of HELM-B. 

Step 2: Initialize the bagging process and divide the dataset 

into multiple sub dataset. 

Step 3: Perform the HELM classification operation on each 

sub dataset. 

Training Phase 

Step 4: Generate the optimized value of 𝐵𝑗  and 𝑤𝑖 weightsfrom 

the training process. 

Step 5: Identify the week learners of HELM-B classifier and 

optimize the week learners with updated dataset. 

Step 6: Finalize the hidden matrix of hidden layer, output layer 

by using optimal weights. 

Testing phase: 

Step 7: Apply the test features (𝜓𝑡𝑒𝑠𝑡) to bagging classifier of 

HELM-B. 

Step 8: Apply the optimized 𝐵𝑗  and 𝑤𝑖 weights to testing 

model of HELM-B. 

Step 9: Improve the performance of each week learners by 

updating the weights in feedback manner. 

Step 10: Further, majority voting operation is performed 

between probabilities of sub datasets classification 

performance for final decision. 

Step 11: Finally, modulation classes are classified using 

equation 10. 

 

4. Results and Discussion 

This section gives the detailed result analysis of proposed 

method in comparison with the various state of art 

approaches.The state of art approaches and proposed method 

considered the same datasets. 

 

4.1. HisarMod2019.1 dataset  

The HisarMod2019.1 dataset[26] contains 26 modulation types 

from 5 distinct modulation families as shown in Table 4. 

Further, the datasetcontains analogue, QAM, PSK, PAM, and 

FSK modulation signals, which are considered under multipitch 

fading environment.For each modulation type, there are 1500 

signals in the dataset, each with a length of 1024 I/Q samples 

and a length of 1500 I/Q samples. HesarMod2019.1 has been 

designed to be comparable to RadioML2016.10a in order to 

provide a fair comparison. There are 20 distinct signal–to–

noise ratio (SNR) levels available between -20dB and 18dB. As 

a consequence, there are 780000 signals in total covered by the 

dataset. For the purpose of producing signals, the oversampling 

rate is set to 2 and a raised cosine pulse shaping filter with a 

roll–off factor of 0.35 is used. Furthermore, the dataset contains 

signals flowing via 5 distinct wireless communication channels, 

including Nakagami–m (m = 2), Rician (k = 3), Rayleigh, static 

and ideal.There are 300 signals for each modulation classes in 

the dataset because these channels are equally likely to be 

scattered across the datasetfor each SNR level. The term "ideal 

channel" refers to the absence of fading and the presence of 

additive white Gaussian noise (AWGN). Further, the static 

channel coefficients are set at the start of the propagation 

period by chance and stay constant throughout the propagation 

duration. By using signals that flow over the Rayleigh channel, 

it is possible for the system to be resistant to non–line–of–sight 

circumstances. The effects of the AWGN channel are induced 

to noise, interferences presented in the received signal, which 

degrades the AMC performance. So, the proposed method 

effectively extracts the noise dependent modulation features to 

overcome this problem.Due to the fact that the dataset contains 

only modest fading, Rician fading with a shape parameter, k, of 

3 is used on the other hand. Apart from these channel models, 

the Nakagami–m distribution of received power with a shape 

parameter of 2 is chosen for the remainder of the signals in the 

dataset, with m being the shape parameter. As a consequence, 

the collection contains signals with a variety of fading 

characteristics. It should be noted that the number of multipath 

channel taps will almost certainly be either 4 or 6, as specified 

in ITU–R M1225.  

 

Table 4. List of 26 modulation classes of 5 modulation 

families. 

Modulation 

family 

Analog FSK PAM PSK QAM 

  

M
o

d
u

la
ti

o
n

 c
la

ss
es

 

AM–

DSB 

AM–

SC 

AM–

USB 

AM–

LSB 

FM 

PM 

 

2–

FSK 

4–

FSK 

8–

FSK 

16–

FSK 

 

 

4–

PAM 

8–

PAM 

16–

PAM 

BPSK 

QPSK 

8–PSK 

16–

PSK 

32–

PSK 

64–

PSK 

4–QAM 

8–QAM 

16–

QAM 

32–

QAM 

64–

QAM 

128–

QAM 

256–

QAM 

 

4.2. Classification results  

Figure 5 presents the confusion matrices of various modulation 

classification methods including LSTM [21], CLDNN [22], 

Robust-CNN [25] and Proposed approach. From figure 6, it is 

observed that the proposed approach contains the higher true 
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positive values and lower true negative values as compared to 

the conventional approaches, which significantly improves the 

accuracy for each modulation types.  The difference between 

various levels is used to classify each modulation type easily. 

Table 5 presents the detailed performance of various 

modulations schemes with respect to multiple performance 

metrics. From the comparison, it is observed that the QAM 

method resulted in better accuracy, precision, recall and F1-

score as compared to other modulation schemes. Even though, 

the other modulations schemes also achieved prominent 

classification results. 

 

 
Figure 5. Confusion matrices of various modulation 

classification methods. (a)LSTM [21]. (b) CLDNN [22]. (c) 

robust-CNN [25]. (d) proposed HELM-B classifier. 

 

 

 

 

Table 5.Performance estimation of variousmodulationtypes 

using proposed HELM-B classifier. 

Modulation 

type 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

Analog 94.276 97.001 96.701 96.907 

FSK 95.012 97.156 96.729 97.324 

PAM 97.991 97.569 96.866 98.988 

PSK 98.479 99.159 98.750 99.469 

QAM 99.820 99.972 99.101 99.545 

 

Table 6. Performance comparison of existing and proposed 

AMC using HELM-B classifier. 

AMC method Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

SVM [20] 54.728 57.847 77.032 63.694 

LSTM [21] 62.470 61.283 60.954 63.572 

CLDNN [22] 87.761 75.030 75.449 75.217 

ResNet [23] 81.402 82.667 81.525 82.078 

Robust-CNN 

[25] 

92.868 92.160 96.764 95.765 

Proposed 

HELM-B 

classifier 

99.158 98.936 97.262 98.735 

 

Table 6 compares the performance of proposed HELM-B 

classifier-based AMC systems with conventional AMC 

methods such as SVM [20], CLDNN [22], ResNet [23] and 

Robust-CNN [25]. The works SVM [20] is basic machine 

learning approach and CLDNN [22], ResNet [23] and Robust-

CNN [25] are standard deep learning approaches. The 

comparison results show that, the proposed method gives the 

superior performance in accurate modulation classification 

process as compared to the state of art approaches. Further, 

Figure 6 illustrates the performance metrics obtained for 

various modulation families using proposed HELM-B 

classifier, whereas Figure 7 demonstrate the performance 

comparison of obtained quality metrics using existing and 

proposed AMC models. 

 
Figure 6. Comparison of quality metrics obtained for different 

modulation family using proposed HELM-B classifier. 
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Figure 7. Performance comparison of obtained quality metrics 

using existing and proposed AMC models. 

 

5. Conclusion 

This work focused on implementation of deep learning-based 

AMC by using DLCNN feature extraction and HELM-B 

classification.The DLCNN was able to extract the modulation 

specific and inter dependent modulationfeatures from the 

HisarMod2019.1 dataset. The HELM-B was developed by 

using the hybrid version of ELM and bagging classifiers, where 

the problems presented in the conventional ELM is overcome 

by optimizing the weights.The performance of HELM-B is 

improved by dividing the dataset in subsets, which also reduced 

the training complexities. Further, the proposed method 

accurately classified the various modulation types, which meets 

all the spectrum requirements in a multipath fading 

scenario.The results of the simulation reveal that the suggested 

AMC system outperforms the performance of traditional AMC 

systems in terms of overall performance.Thus, the results 

proved that the proposed AMC is suitablefordifferent 

communication systems, such as commercial, 

telecommunication, and military applications.Further, this work 

can be extended with optimal feature selection basedDLCNN 

approaches, which can enhance classification accuracy. 
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