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Abstract: Agriculture is pivotal to human health and for the growth of the nation, but to reap quality food, the maintenance of crops by 

evading pests is the vantage point. So, precision farming technology is very essential to solve this problem, and thereby it eases to yield 

more harvest. Crop health can be determined automatically from images which significantly paves the way to increase yields and profits 

for farmers along with reducing costs and time. In this study, two techniques have been proposed to solve the problem, (i) identifying the 

pest based on odor using gas sensors, and (ii) finding the pest infestation based on infected crops. Gas sensors are used as a substitute for 

human olfaction to detect gases emitting from pests. The FAW detection algorithm uses the Faster R-convolutional neural network (CNN) 

models VGG16, VGG19, MobileNetV2, and InceptionV3 to determine whether or not maize leaves have been infected. . Internet of Things 

(IoT) and Machine Learning are being used by the next generation of farmers to automate agricultural production and thereby eliminating 

the need for physical labour on the land while keeping on their crops. Models were developed to analyze pest and infected leaves which 

are captured by a Camera via remote sensing.  Processes and actions are automatically triggered by the data and in specific environmental 

conditions to safeguard crops. Simulations were carried out using Shi-Thomas corner detection techniques. Compared to earlier proposed 

models, this proposed model is found to be relatively more accurate as well as more efficient.  Also, the result for the object detection using 

odor increased to 8% compared with the previous detection and as a result of the modified image training, the models were found to be 

more accurate, having the accuracy range increasing from 93.35%, 93.32%, 98.01%, and 98.35% to 96.17%, 97.15%, 99.23%, and 99.13% 

respectively. 

 

1. Introduction  

In India, maize is cultivated throughout the year. India's third-

largest cereal crop is maize followed by rice and wheat. As a 

major producer of maize, India ranks fourth in the field area and 

seventh in production, contributing around 4% of the world’s 

crop area and 2% of global production. Globally, 13% of 

malnourished children and 900 million poor households prefer 

corn as their staple food [1]. The maize crop has been plagued 

by various diseases and pests since 2016, and the most harmful 

pest was fall armyworms [2]. A study suggests that FAW may 

have been stowed away in cargo containers or aircraft holds of 

commercial planes before being dispersed by the wind 

throughout Africa. At least 12 African countries were infected 

by Faw, including Tanzania, from the western African tropics in 

2016. In mid-May 2018, the occurrence of invasive fall 

armyworms on maize was reported for the first time in 

Karnataka, India [3]. Many studies have used digital cameras, 

unmanned aerial vehicles, and mobile phone cameras to 

photograph maize leaves remotely from farms to identify 

diseases and pests affecting them. Sensors and cameras were 

used in this study to capture images of the crop field to detect 

hidden pests. The Internet of Things allows devices on farms to 

measure a variety of data remotely, and share the information 

with the farmers in real-time. Devices connected to the Internet 

of Things can collect information like chemical application, soil 

moisture, dam levels, and livestock health. In addition, they can 

monitor fences, vehicles, and the weather. Farmers are forced to 

use a whole lot of chemicals on their crops to protect them from 

pests. It will be easier to ward off pests and eliminate pest 

infestation. Unfortunately, the repercussions of these also affect 

humans and animals by the changes. 

The deep learning algorithm is used in this paper to resolve the 

issue. Objects and things can be located using the Internet of 

Things (IoT) and deep learning systems under any 

circumstance. In deep learning, object detection methodology is 

an efficient method of identifying objects accurately. This 

technology could potentially assist farmers in detecting pests at 

an early stage in order to prevent or mitigate damage. A primitive 

challenge for farmers is controlling pests at an early stage 

because it affects the growth and economy. The analysis of pests 

using odor substances has been developed in this study to 

improve productivity. Every pest exhibits different odors. Using 

odor detection, it is possible to locate hidden pests, like deep-

buried or swirling in the leaves. So, the proposed system takes 

smells and odors as a key element, and uses five gas sensors to 

detect pungent, misty, sweet, and musty smells, followed with 

Faster R-CNN algorithm to extract features. Using an Odor-

based object detection system, better accuracy can be attained 

and helps to avoid disseminating pest infestations. In this study, 

two patterns are used to analyze the objects: 1) Odor-based 

detection and 2) Corner classification with Feature Classification 

to determine whether the crops are infected. The two patterns are 
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fully independent and perform separate tasks. The analysis is 

conducted via odor-based detection, which uses the foul smell of 

the pest to detect the pest. Due to some pests being small and 

camouflaged, this method is more accurate than previous 

methods for detecting them. Odors of pests are used to identify 

their chemical combinations, which allows to identify their 

species. Here, it was determined that the pest has an ammonia-

like odor. The pest was also identified based on chemical 

combinations collected. The second pattern is feature 

classification based on corner detection, it can separate 

parameters and indicate whether an object has transpired or not, 

because previous methodologies only had predicted the object 

occurrences, so there was no confirmation whether the 

obstruction was a pest or not. hence, to classify the contaminants 

according to their shape, size, and color, an improved version of 

Faster R-CNN (I-SWFRN) was developed.  Additionally, 

automated corner identification enhances the efficient 

identification of the affected area by identifying hidden 

objects. There are several models that can detect objects quickly 

and accurately, such as Faster R-CNN, Mask R-CNN, Fast R-

CNN, Yolo, etc.   Although faster R-CNNs perform better than 

others, their time-consuming nature will lead to inevitable 

consequences. With the improvement of Faster R-CNN, 

developed a new algorithm based on the processing and 

classification of images of captured leaves using improved 

convolutional neural networks (CNNs). InceptionV3, 

MobileNetV2, and VGG16 were used to determine whether 

leaves are affected by FAW. The accuracy of the models was 

improved to 93.35, 93.32%, 97.15%, 98.01%, and 99.23% using 

the Shi-Tomas corner detection technique for VGG16 and 

VGG19, as well as MobilenetV2 and InceptionV3. 

The paper is divided into five sections: the second section 

reviews related research. The methodology of the study is 

discussed in Section 3. The findings and performance analysis 

are described in sections 4 and 5. Section 6 presents the 

conclusion. 

 

2. Related Research 

The background study found several publications dealing with 

odors and features. Wu.et.al developed a CNN model that could 

unveil pleasant and unpleasant smells more accurately than 

manual segmentation [5]. The model developed by Sharma, 

Anju, et.al envisage the correlation between chemical structure 

and smell by combining neural networks with image data [6]. As 

per Guo et al, LSTMs can be used to learn spatial and temporal 

features from E-nose signals to find smells through 

convolutional learning.  [7]. Tengteng Wen, et.al developed a 

CNN encoder and decoder with odor-labeling for odor 

identification in machine olfaction and evaluated for 

effectiveness [8].  Lucy, et.al generate time-series data, test 

samples were attached to a pressure sensor, similar to a dog's 

sniff. By using this sensor, the smell can be identified and 

categorised [9]. According to Jana et.al, CNN was proposed as a 

way to detect rotten and fresh fruits respectively from the 

images [10]. In their study, Xiong et. using the computational 

efficiency of Spiking neural networks, and a convolutional 

Spiking neural network odor recognition algorithm was 

developed.  [11].  Deep Learning has gained popularity because 

it can produce high-quality crop infestation identification in a 

very short period, and it can extract valuable information from 

large image datasets [12]. Bhatt et al. Adaptive boosting 

cascading, in conjunction with CNN-based decision tree 

classification, was used to segment corn leaf images into four 

categories: healthy, late blight, common rust, and leaf spot 

[13]. Ahila Priyadharshini et.al proposed a modified LeNet-

based architecture for categorizing maize leaf 

infestations. These maize leaf images were tested using the 

village plants dataset. This Modified LeNet uses principal 

component analysis (PCA) whitening to reduce the correlation 

between features available in maize leaves. Based on a modified 

LeNet classification system, 97.89% of maize leaves were 

identified among the northern leaf blight, common rust, gray leaf 

spot, and healthy. [14].  Uddin et al. experimented to show the 

advantages of using feature extraction overusing the entire 

original dataset in terms of cost-effectiveness and improved 

classification performance. In terms of space and time 

complexity, MNF provides the highest classification accuracy, 

whereas FPCA provides the lowest [15]. Fan et al. proposed a 

genetic programming approach including new functions, new 

terminals, and a new program representation. Using the new 

approach, features can be extracted, constructed, and classified 

automatically and simultaneously [16]. Chen et.al proposed an 

alternative bottleneck for the improvement of feature extraction, 

called Multipath feature recalibration DenseNet. Additionally, 

multipath dense blocks were constructed using the 

SqueezeExcitation (SE) module to represent the interdependent 

relation between Dense Blocks [17]. Sheema et.al Implemented 

five sensors for analyzing five different scents, such as pungent, 

misty, sweet, musty, etc., then combined Faster R-CNN with the 

analysis. [18]. Ye et.al Shows a brief assessment of recent 

advances in feature extraction, modeling, and sensor drift 

compensation for E-Nose, this review sums up recent advances 

in this area. [19].  Kumar et.al provides an overview of the major 

feature extraction techniques. A comparison of different feature 

extraction methods for various parameters is presented using two 

benchmark spectral images [20].  

 

3. Methodology 

3.1. Area of study 

Approximately three hectares of land were covered in this study 

at Coimbatore, Tamil Nadu (India). Field observations were 

conducted through the days 15 to 21 November 2021. 

Identifying fields with infected symptoms on maize leaves was 

done over a period of five days, followed by a period of two days 

of photographing these fields. The infected leaves are usually 

found with short holes, flesh frass, and semi-transparent patches. 

The infection rate was higher in maize fields at Coimbatore. Data 

collection was done on a three-month-old maize plant. 

3.2. Detection based on Odor 

Deep Learning techniques allow neural networks to accomplish 

sundry amazing tasks. Today, deep learning is performing a 

larger scale of tasks that humans can’t do. A sense of smell 

simulation based on an E-Nose or electronic nose is the next step 

in deep learning [21]. In India, this device is not affordable for 

the farmers, as a majority of them live in, an average and poor 

economy. A Conceptual pest tracking process was developed 

using odor functionality. A Faster R-CNN-based system is 

specifically designed to detect Fall Army Worms (FAW). The 

proposed name for this system is I-SWFRN, ie. Improved 

Speckle Warner based on Faster R-CNN. A maize crop can be 

eaten by this pest at any stage of growth and is easy to spread. In 

the past, pest control techniques included traps, poisonous foods, 
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and pesticides, but these methods are harmful to human and 

animal life. This method must be monitored regularly to be 

countered.  Infestations of pests can be eliminated when this 

technology is used properly. The pest could be identified with 

ease by applying ensemble learning to the odor analysis-based 

technique. Object detection is typically limited to detecting only 

visible objects, but not camouflaged ones. This technique helps 

even to locate the precise area of the camouflaged object in dense 

areas. An unpleasant smell is often released from the early stage 

of the FAW pest, which is pungent. 

 

.  

Figure 1: The detection of pests: a. Thermal Image b. 

Classification of features 

 

Using this key technique, the pest can be identified even from a 

twirled leaf, and regular updates can be provided regardless of 

its location.  This technique bonds the input of a chemical 

formula, which is obtained from Gas Sensors, and identifies the 

smell [22]. the pungent smell is primarily concentrated to 

identify the FAW and to find other species sweet smell, sting, 

minty, and pungent are used. Hence, the five odors of chemical 

combinations are taken in digital forms for analysis.  As shown 

in Figure 1, pests can be detected. a. Pests are detected based on 

odor extracted from Thermal Camera features and b. Features 

are used to detect pests. In Figure 2. an infrared camera measures 

the values collected from five sensors. Using RGB images, the 

appearance, shape, and texture of each image will be displayed. 

Thermal cameras can capture images from a range of up to 60 

degrees. The gas concentration is used to extract the features of 

compactness, speed, and long-term service from the sensor. 

Once the data has been retrieved from the storage, it can perform 

the prediction process. The below following formula is to 

determine the concentration of a chemical substance. According 

to Table 1, the pseudocode is applied to the concentration 

formula using the following characteristics. 

𝑓(𝑔𝑐) =
𝑔𝑐0 + 𝑔𝑐1

𝑔𝑐0
          (1) 

The concentration of odorous molecules f(gc) is represented by 

an odorous sample and an odorless sample. The odor units per 

cubic meter will be expressed as (ou/m3). 

 

 
Figure 2: Process of Training data 

Begin 

                     initialize gc into or 

                     set load gc into or 

                     read od from storage 

        compare: 

 if gc>=400 ≈1   //ppm 

                     Then gc=𝑔𝑐0  +  𝑔𝑐1/𝑔𝑐0           --→ Applied 

Equation (1)  

     End 

 

Table 1: Sensor for Odor Gases and the Sensitivity 

Sensors Sensitives   Chemical 

Name 

Chemical 

Formula 

MQ 3 Alcohol Ethanol C2H5OH 

MQ 7 Sting  Formic Acid HCOOH 

MQ 135 Sweet smell Methyl 

acetate 

C3H6O2 

MQ 137 Pungent Ammonia NH3 

MSR 

Detection  

Minty  P-

anisaldehyde 

C8H8O2 

 

3.2.1 Thermal Camera 

The infrared light of a thermal camera is used to 

measure temperature variations. An image sensor on a camera is 

made up of pixels that measure temperatures synchronously. The 

images are generated in RGB format and are displayed according 

to temperature format. There is no requirement for thermal 

cameras to be placed in dark environments, so they can work 

anywhere, regardless of how dark it is or how textured it is. Our 

work was conducted using a compact thermal camera called the 

SEEK thermal camera, which has 206 x 156 thermal sensors, a 

36-degree field view, and measurements between 400 and 330 

degrees Celsius. A thermal image with a frame rate of 9 Hz and 

32,136 thermal pixels can be obtained [24]. The developed 

fusion model is trained and tested using gas sensors and thermal 

cameras simultaneously. 

3.2.2 An Analysis of the Performance Matrix 

 The proposed model retrieves the gas sequence data 

by checking the similarity of the existing gas sequence and the 

retrieved data. An error message will be generated if a common 

object is not found, otherwise, the operation will continue as 

normal. An accurate classification was achieved using the four 

chemical properties of the pest described in Table 1. The 

accuracy, precision, recall, and F1 scores of Faster R-CNN and 

I-SWFRN are calculated in Table 2. A graphical representation 

of Faster R-CNN and I-SWFRN performance metrics can be 

found in Figures 3 and 4. 

The following formula can be used to calculate the Average 

Precision, (Psà Precision Score, RsàRecall, FsàF1 Score) 

 

Ps=
TPve+ TNve 

TPve+ TNve 
+FPve+ FNve 

𝑥100%     -------------------------(2) 

 

   Rs=
TPve

TPve+ TNve 

𝑥100%    ------------

-----------------------(3) 

 

   Fs= 2𝑥
𝑃𝑠   𝑥    𝑅𝑠

𝑃𝑠   +   𝑅𝑠
   -------------------

------------------------(4) 
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Table 2: A Performance Metric for Faster R-CNN using Odor 

Substance 

Odor/Sm

ell 

No 

Ga

s 

Punge

nt 

Alcoh

ol 

Stin

g 

Swe

et 

Smel

l 

Mist

y 

Precision 

0.9

9 0.86 0.85 0.84 0.83 0.89 

Recall 

0.9

9 0.89 0.87 0.89 0.85 0.91 

F1 Score 

0.9

9 0.87 0.88 0.9 0.85 0.88 

 

 
Figure 3: Performance Analysis of Faster R-CNN with 

Different Gases 

 

Table 3: A Performance Metric for I-SWFRN using Odor 

Substance 

Odor/S

mell 

No 

Gas 

Pung

ent 

Alco

hol 

Sting Sweet 

Smell 

Mist

y 

Precisio

n 

1 0.94 0.91 0.89 0.91 0.9 

Recall 1 0.93 0.9 0.9 0.92 0.91 

F1 

Score 

1 0.93 0.9 0.9 0.92 0.91 

 
                 Figure 4: Performance Analysis of I-SWFRN with 

Different Gases 

3.3 Feature Classification 

The analysis of previous samples revealed that pests are 

impossible or harder to detect due to its tiny nature. In this sense, 

Faster R-CNN is not adequate for detecting the pest in maize 

fields on a large scale. With Faster R-CNN, convergence will 

take a long time since the anchors in RPN will come in 256 

different sizes [25]. The Faster R-CNN model can identify the 

pest at any complexity level based on this intricate view. By 

combining multiple features, the I-SWFRN architecture can 

decrease computation time and improve operation speed. Further 

to separate overlapping boxes from single bounding boxes, non-

max suppression is used. Images and other parameters, such as 

shape, size, and color, can be extracted more efficiently in this 

way. In Figure 6, the structure of the Improved-SWFRN network 

is shown. 

 

 
Figure 5: Proposed Architecture: Improved Speckle Warner 

based on Faster RCNN (I-SWFRN) 

 

3.3.1 A method of detecting corners using Shi-Tomas 

J.Shi and C. Tomasi (1994) proposed a technique to 

detect corners in images by examining significant variations in 

all directions. The Shi-Tomasi method is used by OpenCV to 

find the corners of the image to increase the effectiveness of the 

detection [26]. Based on Equation (2), pixels with an eigenvalue 

less than a threshold(R) are discarded, while the remaining 

pixels are sorted according to their quality ascendingly. 

 

  R = min (⋌ 1,⋌ 2)  ----->  (2) 

In this case, R represents the predefined threshold and are 

eigenvalues of correlation. The below pseudocode is used to find 

the N-strongest corners in the image. 

 

Pseudocode for Corner Detection 

Begin 

        Initialize img; 

        Read img = imread (input); 

        gy = implement convert operation 

        // Corner_Det =cv2. goodFeaturesToTrack(gy,25,0.01,10) 

       Corner_Det= np. into (Corner_Det) 

       Set img into store(i) then 

             i/nxn 

Call loc (t,b,h,l) 

Hl=1 then 

Cal (size, shape,color)| no object found         

        For i Σ c: 

        Flatten parameter 

        Circle(img,x,y)[3,255,-1] 

        Output i; 

End 

 

3.3.2 Augmentation of Data 

To augment the dataset for analysis, augmentation techniques 

can be used. Augmentation of data is the process of transforming 

existing data into current information without changing its form. 

Mirroring, rotating, shifting, and various photometric 

transformations are among the most commonly used 

augmentation techniques [27]. To increase the dataset, random 

rotations of 900 and flips of horizontal and vertical directions 

were applied. This helped to reduce overfitting in the training 

stage by extending the dataset. The augmented method with 
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corner detection has been used in this study to increase the size 

of images to get better accuracy, as can be seen in Figure 6. 

 
Figure 6: Data Augmentation with Corner Detection 

 

3.3.3 Convolutional Neural Network 

Recent years have seen a rise in the popularity of machine 

learning methods, especially neural networks. ANNs (artificial 

neural networks) are the primary type of neural network. A huge 

amount of training data is generated by connecting the neurons 

from prior layers. The three types of layers in CNN are 

convolution, pooling, and fully connected [27]. Layers such as 

convolution and pooling are used to map these extracted features 

into outputs. 

According to our previous analysis, the pests FAW can 

hide inside plants and are tiny. Due to the small scale of this pest, 

Faster R-CNN cannot detect it in the maize field. In Faster R-

CNN, 256 different anchor sizes are trained on a single image, 

so convergence is slow. This complex view of pests improves 

the accuracy of the Faster R-CNN model. By increasing the 

number of maps in the I-SWFRN architecture, feature fusion 

reduces computation time and speeds up the network. Non-max 

suppression is also used to determine the exact bounding box 

from the overlapped boxes. Hence, it is then possible to extract 

constraints like color, shape, and size from an image. 

3.3.4 Transfer Learning  

  Several neural network training methods exist, 

including training from scratch and transfer learning. Before 

applying network weights to new tasks, transfer learning uses 

pre-trained network weights [28]. By applying network weights 

to generalize, better results can be achieved. In the study, CNN-

based models (VGG16, VGG 19, Inception V3 and Mobilenet 

V2) were used and trained with the transfer learning technique 

to reduce cost and compute time. With 16 layers and 3*3 sized 

filters, the VGGNet consists of 16 convolutional layers. A 

neuron’s receptive field measures 5*5 when two 3 * # layers are 

stacked. A stacked 3 * 3 layer had 18 parameters, whereas a 

stacked 5 * 5 layer had 25, resulting in a reduction in parameters. 

Two convolutional layers can be attached instead of just one 

Rectified Linear Unit (ReLU) layer. There are only three 

convolution layers and two pooling layers in VGG16 and 

VGG19. As a result, the classifier has two layers with 4096 

nodes each. Images taken as input by connected layers have a 

size of 224 * 224 pixels. Instead of using more layers, an 

inception module has been used which reduces the memory 

space and power consumption. The inception V3 model was 

developed as a successor to the InceptionV1 and InceptionV2 

models. Consequently, the network’s parameters are reduced 

while fully connected layers are replaced with typical pooling at 

the top. The model identified 1000 classes on the ImageNet 

dataset with a top 5 error rate of 3.5% and a top 1 error rate as 

low as 17.3% from images with a 299 x 299-pixel size. Memory 

management is more efficient with this model than with other 

CNNs [29]. In addition, MobileNet is an embedded system 

model proposed by Google. The model builds thin deep neural 

networks by using depth-wise separable convolutions, compared 

to GoogleNet and Inception models. MobileNet is a lightweight 

framework developed by Google for embedded systems and 

mobile devices [30]. In this model, depth-wise separable 

convolutions are used to decrease the number of parameters 

required to train a network. The result is that it is easier to shape 

thin deep neural networks than Inception V3 and GoogleNet 

models. 

3.4 The Results 

The following section describes the experiment's 

setup, the parameters that defined the evaluation model, and the 

results. Images were taken using the Phantom 4 Pro v2 

quadcopter drone, which has a built-in camera that has a 

resolution of 5472*3078 pixels and an aperture of F/2.8 at 

infinity. In total, 189 pictures were taken at 5m altitude on both 

fields. To maintain the same altitude during image capture, the 

drone was manually controlled. By using Python code (python 

3.7 and pillow 6.0), the collected images were cropped into 450 

x 300 pixels. OpenCV (open-source computer vision) was used 

to process and classify the images using the Shi-Tomasi corner 

detector method. Infected, non-infected, and background images 

were categorized from a 150 x 150 pixel cropped image. As the 

leaf was infected, it shows the indication of infestation, the non-

infected group had images of healthy individuals and the 

background group consisted of grass, a tree trunk, and soil. The 

Figure illustrates the process used to acquire the images used in 

the experiments. Two groups of images were considered during 

training, ie infected and non-infected. These two groups 

contained a total of 11280 images, where 5670 are infected 

images and 5640 are non-infected images. The training set 

(7896), validation set (1692), and test set (1692) were divided by 

a ratio of 70:15:15. The models were developed using 

TensorFlow 2.0 and Python. Tensorflow's codes are easy to 

customize since they are written as low-level libraries, whereas 

Python has a large number of libraries and a moderate learning 

curve. With momentum of 0.9, a learning rate of 0.01, and a 

dropout rate of 0.2, stochastic gradient descent was employed to 

optimize the model. Based on these parameters, the optimizer 

produced a good result. The training was performed on a 

machine equipped with an Intel Core i5-7200u CPU running at 

2.50 GHz and 2.71 GHz with 16 GB of memory. When it comes 

to image processing, the Shi-Tomas corner detector can be 

applied to the dataset to detect additional images. Both the 

original and modified images were subjected to a corner 

detection algorithm for model training. Model training takes a 

long time. This translates to a total of 5 hours for the 

MobileNetV2 model, 7 hours for the InceptionV3 model, 8.5 

hours for the VGG16 model, and 9 hours for the VGG19 model. 

All four models were trained at the same time with modified and 

original images. Training VGGNet-based models take a long 

time because of the large number of parameters involved. A total 

of 30 training sessions were conducted on all four models to 

confirm the accuracy. Based on the training and validation sets, 

the models were evaluated and compared.  

3.4.1 Metrics for Evaluation 

Evaluation of the classification models was based on 

accuracy, specificity, sensitivity, precision, and F1-score. The 
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accuracy of a sample statistic refers to how close it is to a 

parameter of the population. It is calculated by taking the sum of 

the correct predictions and dividing it by the total predictions. 

Equation (3) can be used to represent accuracy. 

A =
𝑡𝑛+𝑡𝑝

𝑡𝑛+𝑡𝑝+𝑓𝑛+𝑓𝑝
        ----→ 3 

Incorrectly predicting true positives, true negatives, 

and falsely negative outcomes is possible in the model. The 

model predicts the positive class correctly if Tp (True Positive) 

is a true positive and the negative class correctly if Tn (True 

Negative). 

 
Figure 7: A Description of the methods used 

Using the number of true positives divided by the number of 

false positives and false negatives, the sensitivity of the test can 

be determined. A dataset's relevance is determined by finding all 

relevant instances in it. Equation (4) depicts a dataset's 

sensitivity.  

Sensitivity (SE)  =  
𝑡𝑝

𝑡𝑝+𝑓𝑛
 -----→ 4 

Based on Zhao et. al, specificity can be calculated by dividing 

true negatives by total negatives. Equation (5) represents 

specificity. 

Specificity (SP) =  
𝑡𝑛

𝑡𝑛+𝑓𝑝
 --------→5 

 By dividing the number of true positives by the number of false 

positives, a precision ratio can be calculated. 

Precision (PN) =  
𝑡𝑝

𝑡𝑝+𝑓𝑝
 --------→6 

Additionally, F1 scores are needed when it comes to balancing 

precision with sensitivity. In comparison to the accuracy metric, 

it gives a more realistic picture of correctly classified cases.   

F1_Score =  2 ∗
𝑃𝑁∗𝑆𝐸

𝑃𝑁+𝑆𝐸
 --------→7 

An infected image is classified as sensitive if it can be 

detected using a model, but as specific if it can be excluded from 

the classification. Precision values with a high level of accuracy 

will result in fewer false positives and therefore a better 

classification. furthermore, a higher F1-score value indicates the 

model classifier has performed well. Performance parameters 

are said to be better if they are close to 1, indicating that a model 

has reached its steady state. 

3.4.2 Results of the experiment 

The original images are used to train the models, as 

shown in figure 4. Based on fig 1, the VGG19-based model and 

the VGG16-based model are not significantly different in 

precision 4(a) and (b). The accuracy of the model based on 

VGG16 is 92.26%, while the accuracy of the model based on 

VGG19 is 92.32%. Further, the InceptionV3 model and 

MobileNetV2 model were not too different in precision, which 

is shown in Figures 4 (c) and (d). Model InceptionV3 was 

computed with a 96.75% accuracy, while model MobileNetV2 

was computed with a 97.93% accuracy. The training curve was 

near to the validation curve in all four models. Validation curves 

are used to assess model performance. Fig 2 illustrates the 

accuracy of the trained model on revised images. In figure 3, the 

accuracy values for the original model, based on VGG16 and 

VGG19, were quite similar. It was found that the VGG16 model 

has an accuracy of 98.17%, while the VGG19 model has an 

accuracy of 99.00%. Furthermore, both the InceptionV3 and 

MobileNetV2 models were highly accurate, as shown in the 

following figures. According to InceptionV3 and MobilenetV2, 

both models were 100% accurate. In consequence, the modified 

images improved the performance of the models. From 92.26% 

to 98.17%, accuracy for a model based on VGG16 has increased, 

while that for a model based on VGG19 has increased from 

92.32% to 99.00%. In addition, the MobileNetV2 model's 

accuracy increased from 97.93% to 99.00%, while the 

InceptionV3 model's accuracy increased from 96.75% to 

99.00%. A few epochs of running the modes produced steady-

state accuracy values, which means that the modes must have 

been run for a long time with revised images, but a short run was 

sufficient since Shi-Tomasi corner detection tracked both short 

holes and windowpanes. As a result, the classifier could 

generalize images quickly. 

 

 
 

 
Figure 8:  Comparison between Infected leaf and 

Non-Infected Count 

 
Figure 9: Accuracy Prediction                   
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 Figure 10: Sensitivity Prediction 

 
Figure 11: Precision Metrics                  

   

 

Figure 12: F1-Score Metrics 

 
Figure 13: Working Process of I-SWFRN with InceptionV3 

and MobileNetV2 models 

 

The classification performance of the models is 

summarized in Table 3. Images modified with the labels VGG 

I6- I SWFRN, VGG 19_I-SWFRN, Inception V3 -I-SWFRN, 

and MobileNetV2 - I-SWFRN were used as input images, 

whereas original images were used with the labels 

VGG16_Faster RCNN, VGG19_Faster RCNN, 

InceptionV3_Faster RCNN, and MobileNetV2_Faster RCNN. 

The accuracy of the modified versions of VGG16, VGG19, 

InceptionV3, and MobileNetV2-mod is 96.17%, 97.15%, 

99.23%, and 99.13%, respectively, as shown in Table 3. This is 

a substantial enhancement over the performance of the original 

models, which were VGG16 (93.33%), VGG19 (93.23%), 

InceptionV3 (9.91%), and MobileNetV2 (9.13).  

 

Table 3: Classification Performance of the Models 

Class Infected Not Infected Accuracy Sensitivity Specificity Precision 

F1 

Score 

        

VGG 16_Faster RCNN 837 9 93.35 0.94 0.94 0.94 0.94 

VGG I6-I-SWFRN 858 18 96.17 0.96 0.96 0.96 0.96 

VGG 19_Faster RCNN 746 100 93.32 0.93 0.94 0.94 0.94 

VGG 19_I-SWFRN 837 100 97.15 0.97 0.97 0.97 0.97 

Inception V3 -Faster 

RCNN 841 139 98.01 0.98 0.98 0.98 0.98 

Inception V3 -I-

SWFRN 889 156 99.23 0.99 0.99 0.99 0.99 

MobileNetV2 - Faster 

RCNN 839 100 99.10 0.98 0.98 0.98 0.98 

MobileNetV2 - I-

SWFRN 870 150 99.13 0.99 0.99 0.99 0.99 

Relatively all the four models have been significantly improved 

in accuracy, but the InceptionV3-mod and MobileNetV2-mod 

networks achieved the highest accuracy of 99%. They achieve 

excellent performance with a minimal number of training cycles 

because they have a limited number of trainable parameters. 

According to Table 3, models with revised images perform 

better in terms of sensitivity, specificity, precision, and F1-score 

than models with original images with 0.99 each for InceptionV3 

and MobileNetV2, 0.98 for VGG16, and 0.99 for 

VGG19. InceptionV3 and mobileNetV2 were evaluated after 

reaching a steady state. Accordingly, the infected images are 

detected and classified with the highest accuracy by using 

modified images. 

 

 

4. Conclusion 

Three deep convolutional neural network models were 

compared to classify maize images infected with the fall 

armyworm: VGG16, VGG19, MobileNetV2, and InceptionV3. 

To detect short holes and windowpanes in images of maize 

(450*300 pixels), a Shi-Tomas corner detection method was 

applied during pre-processing. With this approach, the maize 

images were effectively identified with high precision, 

specificity, sensitivity, and F1 score. According to Inception V3 

and MobileNetV2, the accuracy, sensitivity, and F1 score were 

99.13 %. InceptionV3 and MobileNetV2 had 99 % accuracy, 99 

% specificity, 99 % precision, and 99 % F1 score. A few signs 

will be identified by the MobileNetV2 lite and InceptionV3 lite 

models on the maize images captured by the camera in real-time, 

to be shared with the remote stations. It will also be challenging 
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to identify the exact location where infections have occurred in 

the field. Pesticides do not need to be applied to the entire field 

once they are identified, especially in the early stages of an 

infection. As a result, treating infected fields that show early 

signs of infection will take less time and cost 

 

References 
[1] Murdia, L. K., et al. "Maize utilization in India: an 

overview." American Journal of Food and Nutrition 4.6 (2016): 

169-176. 

[2] Midega, Charles AO, et al. "A climate-adapted push-pull system 

effectively controls fall armyworm, Spodoptera frugiperda (JE 

Smith), in maize in East Africa." Crop protection 105 (2018): 10-

15. Kumar, Kasi Indra, Kanchhi Maya Waiba, and Mohinder 

Singh. "First report of natural infestation of Ovomermis sinensis 

(Nematoda: Mermithidae) parasitizing fall armyworm Spodoptera 

sp.(Lepidoptera: Noctuidae) in Himachal Pradesh, India." (2021). 

[3] Li, Ming, et al. "Odor recognition with a spiking neural network 

for bioelectronic nose." Sensors 19.5 (2019): 993. 

[4] Wu, Danli, et al. "POP-CNN: Predicting odor pleasantness with 

convolutional neural network." IEEE Sensors Journal 19.23 

(2019): 11337-11345. 

[5] Sharma, Anju, et al. "SMILES to smell: decoding the structure–

odor relationship of chemical compounds using the deep neural 

network approach." Journal of Chemical Information and 

Modeling 61.2 (2021): 676-688. 

[6] Mo, Zhuofeng, et al. "FPGA implementation for odor 

identification with depthwise separable convolutional neural 

network." Sensors 21.3 (2021): 832. 

[7] Guo, Juan, et al. "ODRP: A Deep Learning Framework for Odor 

Descriptor Rating Prediction Using Electronic Nose." IEEE 

Sensors Journal 21.13 (2021): 15012-15021. 

[8] Wen, Tengteng, et al. "An Odor Labeling Convolutional Encoder–

Decoder for Odor Sensing in Machine Olfaction." Sensors 21.2 

(2021): 388. 

[9] Withington, Lucy, et al. "Artificial neural networks for classifying 

the time series sensor data generated by medical detection 

dogs." Expert Systems with Applications 184 (2021): 115564. 

[10] Jana, Susovan, Ranjan Parekh, and Bijan Sarkar. "Detection of 

Rotten Fruits and Vegetables Using Deep Learning." Computer 

Vision and Machine Learning in Agriculture. Springer, Singapore, 

2021. 31-49. 

[11] Xiong, Yizhou, et al. "An odor recognition algorithm of electronic 

noses based on convolutional spiking neural network for spoiled 

food identification." Journal of The Electrochemical Society 168.7 

(2021): 077519. 

[12] Liu, Yang, et al. "A survey and performance evaluation of deep 

learning methods for small object detection." Expert Systems with 

Applications 172 (2021): 114602. 

[13] Bhatt, Prakruti, et al. "Identification of Diseases in Corn Leaves 

using Convolutional Neural Networks and Boosting." ICPRAM. 

2019. 

[14] Ahila Priyadharshini, Ramar, et al. "Maize leaf disease 

classification using deep convolutional neural networks." Neural 

Computing and Applications 31.12 (2019): 8887-8895. 

[15] Uddin, Md Palash, Md Al Mamun, and Md Ali Hossain. "PCA-

based feature reduction for hyperspectral remote sensing image 

classification." IETE Technical Review 38.4 (2021): 377-396. 

[16] Fan, Qinglan, et al. "Genetic programming for feature extraction 

and construction in image classification." Applied Soft 

Computing (2022): 108509. 

[17] Chen, Bolin, et al. "Multipath feature recalibration DenseNet for 

image classification." International Journal of Machine Learning 

and Cybernetics 12.3 (2021): 651-660. 

[18] Sheema, D., et al. "Detection of pest using Odor substance based 

on Deep Learning Algorithms." 2021 5th International Conference 

on Electrical, Electronics, Communication, Computer 

Technologies and Optimization Techniques (ICEECCOT). IEEE, 

2021. 

[19] Ye, Zhenyi, Yuan Liu, and Qiliang Li. "Recent Progress in Smart 

Electronic Nose Technologies Enabled with Machine Learning 

Methods." Sensors 21.22 (2021): 7620. 

[20] Xiong, Yizhou, et al. "An odor recognition algorithm of electronic 

noses based on convolutional spiking neural network for spoiled 

food identification." Journal of The Electrochemical Society 168.7 

(2021): 077519. 

[21] Jing, Tao, Qing‐Hao Meng, and Hiroshi Ishida. "Recent progress 

and trend of robot odor source localization." IEEJ Transactions on 

Electrical and Electronic Engineering 16.7 (2021): 938-953. 

[22] Hirata, Yusuke, et al. "Biohybrid sensor for odor detection." Lab 

on a Chip 21.14 (2021): 2643-2657. 

[23] Liu, Kewei, and Chao Zhang. "Volatile organic compounds gas 

sensor based on quartz crystal microbalance for fruit freshness 

detection: A review." Food Chemistry 334 (2021): 127615. 

[24] Kumar, Brajesh, et al. "Feature extraction for hyperspectral image 

classification: A review." International Journal of Remote 

Sensing 41.16 (2020): 6248-6287. 

[25] Wu, Xiongwei, Doyen Sahoo, and Steven CH Hoi. "Recent 

advances in deep learning for object 

detection." Neurocomputing 396 (2020): 39-64. 

[26] Pal, Sankar K., et al. "Deep learning in multi-object detection and 

tracking: state of the art." Applied Intelligence 51.9 (2021): 6400-

6429. 

[27] Xiao, Bo, and Shih-Chung Kang. "Development of an image data 

set of construction machines for deep learning object 

detection." Journal of Computing in Civil Engineering 35.2 

(2021): 05020005. 

[28] Wu, Bizhi, et al. "Application of conventional UAV-based high-

throughput object detection to the early diagnosis of pine wilt 

disease by deep learning." Forest Ecology and Management 486 

(2021): 118986. 

[29] Shivappriya, S. N., et al. "Cascade object detection and remote 

sensing object detection method based on trainable activation 

function." Remote Sensing 13.2 (2021): 200. 

[30] Lu, Xiaocong, et al. "Attention and feature fusion SSD for remote 

sensing object detection." IEEE Transactions on Instrumentation 

and Measurement 70 (2021): 1-9. 

[31] Cheng, Gong, et al. "Prototype-CNN for few-shot object detection 

in remote sensing images." IEEE Transactions on Geoscience and 

Remote Sensing 60 (2021): 1-10. 

[32] Zhang, Ning, et al. "FPGA implementation for CNN-based optical 

remote sensing object detection." Electronics 10.3 (2021): 282. 

[33] Xiong, Yizhou, et al. "An odor recognition algorithm of electronic 

noses based on convolutional spiking neural network for spoiled 

food identification." Journal of The Electrochemical Society 168.7 

(2021): 077519. 

[34] Jing, Tao, Qing‐Hao Meng, and Hiroshi Ishida. "Recent progress 

and trend of robot odor source localization." IEEJ Transactions on 

Electrical and Electronic Engineering 16.7 (2021): 938-953. 

[35] Hirata, Yusuke, et al. "Biohybrid sensor for odor detection." Lab 

on a Chip 21.14 (2021): 2643-2657. 

[36] Liu, Kewei, and Chao Zhang. "Volatile organic compounds gas 

sensor based on quartz crystal microbalance for fruit freshness 

detection: A review." Food Chemistry 334 (2021): 127615. 

  

 


