

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 1

A Survey on Smart Contract Vulnerabilities and Safeguards in

Blockchain

Mrs. Rohini Pise1, Dr. Sonali Patil2

Submitted: 05/09/2022 Accepted: 24/12/2022

Abstract: Blockchain technology is developing rapidly as a result of its numerous applications, security features and smart contracts

embedded in it. Smart contracts are software codes written in a programming language. They get automatically executed on the

Blockchain network when certain condition is met written in that program code. The distinctive characteristics of smart contracts led

Blockchain technology to be used in applications beyond cryptocurrencies, including healthcare, IoT, supply chain, digital identification,

digital asset exchange, crowdfunding, intellectual property, and many more. Millions were stolen and lost as a result of technical flaws

and various vulnerabilities present in smart contracts. Many tools and methodologies have been proposed to address these challenges,

and additional research is underway to build unique tools that enable the discovery of vulnerabilities in smart contract code.

Ethereum is a well-known public Blockchain platform supporting smart contracts. Additionally, Hyperledger Fabric is private

Blockchain platform featuring smart contracts in private sector. This survey presents, a bird’s eye view of smart contract languages,

vulnerabilities and security tools in Public and Private Blockchain. The paper also looks at the different formal verification approaches

used to identify the vulnerabilities present in the smart contract.

The intent of the paper is to focus on smart contract challenges and vulnerabilities, Security tools in Public and private Blockchain and

Formal verification Methods for validation of smart contracts.

Keywords: Smart contracts, Blockchain, security, Ethereum, Hyperledger fabric, Formal Verification

1. INTRODUCTION

Blockchains are incredibly popular nowadays and are a

relatively new technology with the primary purpose of

achieving security. Blockchain stores information in

blocks. Initially, this concept and the technology were

described by some researchers with a major intention of

timestamping the digital documents to avoid tampering

with them. After that, Satoshi Nakamoto took forward

this technology in 2009 to create the digital

cryptocurrency Bitcoin[1]. A Blockchain is a digital

ledger of transactions, decentralized, distributed database

that duplicates and distributes transactions across the

entire network. It is highly transparent and open to

anyone. Satoshi Nakamoto [1]has introduced this

technology to provide a platform for exchanging

cryptocurrencies by eliminating third parties.

1.1 Structure and Working of Blockchain

To study the structure of Blockchain[2], first, let us

understand the structure of a block. Every block contains

information for instance data, the hash of the previous

block and hash of block itself. The type of Blockchain

decides which data is to be stored inside that block. In

particular, Bitcoin Blockchain[1] stores the details about

a transaction, for example a sender, receiver, and the

amount, along with some other information. As

discussed, earlier block also has a hash that identifies a

block and its contents. The hash of every block is always

unique, just as the fingerprint. When any transaction is

successful, a block is created along with its hash value.

The third element inside each block is the hash value of

the previous block. This effectively creates and

maintains a chain of blocks known as Blockchain.

The figure shows the structure of Blockchain[2]. As

discussed, data blocks in Blockchain are chronologically

linked to one another. The first block in every

Blockchain is special, as being first, it cannot point to

previous blocks. This block is known as genesis block.

Header block contains the information about which

1Pimpri Chinchwad College of Engineering, Pune, Maharashtra,

India

Email: rohini.pise@pccoepune.org
2Pimpri Chinchwad College of Engineering, Pune, Maharashtra,

India

Email: sonali.patil@pccoepune.org

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 2

block will be appended next. This block sequence is

retained in the Markle root block, and all transaction

information is kept safe in this block[3]. As blocks are

connected to each other, making changes in a block will

make all following blocks invalid. To generate the hash

of a block, hashing algorithms are used, such as SHA-

256. Another benefit of blockchain technology is that

data replication is not possible. This minimizes the

number of data blocks that aren't needed or duplicated.

Figure 1. Structure of Blockchain

1.2 Blockchain Features:

Blockchain technology comes with many incredible

features[4]. One of them is it provides transparency and

privacy to the transactions. Transactions stored in blocks

are transparent; that is, every user is aware of the

transactions. Immutability is another feature that means

the data cannot be changed. Greater transparency

enhances security, and easier traceability in Peer-to-Peer

networks makes secure Transactions[5].

Along with hash, it also has another feature known as

Proof-of-Work which contributes in improving the

security of Blockchain. Proof-of-work is an oldest

consensus algorithm which validates the transactions.

When PoW is used, it is resistant to tamper with the

blocks because if one block gets tampered, then it is

required to recalculate the proof-of-work for all the

following blocks, and it is very time-consuming.

Another feature to make Blockchain more secure is its

distributed nature[6]. In Blockchain there is no central

entity responsible for managing the chain, instead it uses

peer-to-peer network where each and every one in

Blockchain manages the data.

1.3 Evolution in Blockchain

Blockchain has many unique and considerable benefits.

The tremendous advancement in Blockchain technology

has addressed the numerous research gaps and

opportunities for researchers. Initially Blockchain was

introduced as Bitcoin Cryptocurrency[1] by Satoshi

Nakamoto. With the tremendous features of Bitcoin, it

gained a massive popularity. But the block size and

scalability are the limitations in Bitcoin Blockchain[7].

So, the next advancement in Blockchain is use of Smart

contracts. Smart contracts were developed in public and

private Blockchain platforms as they are secure,

transparent and immutable. The challenges for smart

contracts are writing smart contracts in programming

languages and various vulnerabilities present in it. Then

as a step forward, Blockchain is used now in

Decentralized Applications (DApp). With rapid need of

DApp in industry and society, there is need of integration

towards business needs and demands of Industry 4.0[7].

This evolution is represented in given below figure 2.

Figure 2. Evolution in Blockchain

1.4 Applications of Blockchain beyond

cryptocurrency:

Cryptocurrency is the first real-world application of

blockchain technology. But it is only the beginning.

Apart from cryptocurrency[8], the Blockchain can be

used for various applications simply as a digital record.

A critical review is performed to study Blockchain

applications[9] . Here are a few more incredible

applications of blockchain technology, such as tracking

the Real Estate, Finance[10][11], Property transfers[8],

[12], Digital Asset exchange[13], use of smart contracts

for IoT applications [14], and also IoT security[15].

Medical data sharing[16], [17], and Healthcare

applications [18] are gaining more attention. Digital

Identity and access management [19] is another

important application area where Blockchain is used

very efficiently. Retail Loyalty Programs, Money

Transfers across Borders, and Crowdfunding[13] are

some booming application areas. Supply Chain

Management [20], Food Safety, Digital Voting[21], or e-

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 3

Voting[22] are the applications where Blockchain

technology is being used, and it is proving to be more

secure and efficient.

Figure 3. Application Domains of Blockchain

1.5 Blockchain Types:

Public and private Blockchains are the two most popular

types[5]. Other variants based on hybridization, such as

Hybrid Blockchain and the federated notion,

Hyperledger, are also proposed based on the needs of the

applications.

1. 5.1 Public Blockchain

As the name suggests, it is a Non-restrictive,

permissionless distributed ledger system[23]. Any person

with the internet becomes an authorized node by signing

in to the Blockchain platform and can input transactions

and be involved in the consensus process.

Public Blockchain Use Case: Bitcoin,

Ethereum, Stellar, and Dash

1.5.2 Private Blockchain

It is a restrictive and permissioned Blockchain[23]. In

this case, a central in-charge selects who gets to mine

and who doesn't and also has the rights in the consensus

process or decision-making. So, the users who are

permitted by central authority can join the Blockchain

and submit and read the transactions or participate in a

consensus mechanism.

Private Blockchain Use Case: Hyperledger Fabric,

Hyperledger Sawtooth, Corda, and Multichain.

1.5.3 Consortium Blockchain

It is a combination of both public and private

Blockchains, i.e., semi-decentralized. As the access to all

the users is restricted, only permissioned users have the

right to add transactions and involve in the consensus

process.

Use case: Quorum, Corda, and Hyperledger, J.P. Morgan

Coin

1.5.4 Hybrid Blockchain

It combines features of a public and private Blockchain.

Use case: Dragonchain

1.6 Challenges in Blockchain:

Though Blockchain has tremendous applications and

demand, it has specific challenges[24]. Few of the

challenges are related to performance and security with

Blockchain. When the blocks are processed faster, more

forks are to be maintained, leading to security issues.

The next challenge is with Block size. If we consider an

example of Bitcoin, it has block size as 1 MB means

very few transactions per second and so limitation on a

greater number of transactions. 'Selfish mining attacks' is

one of the significant challenges for Blockchain.

Scalability and Privacy leakage are also major challenges

while using Blockchain technology. Smart contract

security [5], [25]is another main challenge in

Blockchain, as smart contracts are more prone to attacks

because of their vulnerabilities.

1.7 Introduction to Smart Contracts

There are continues improvements and inventions

happening in Blockchain. The most popular and recent

development is the creation of Smart Contracts[26]. The

immutable program code stored on Blockchain is known

as a smart contract[27]. It is responsible for

implementing business logic and executing it when

specific criteria are satisfied. Smart contracts are used to

automate corporate activities in both public and

permissioned blockchains[28]. The need of automation

of traditional legal contracts along with certain laws of

execution led smart contract to be invented[29]. Recently

it has been an important feature of Blockchain

applications. The self-executing nature of smart

contracts[30] provides a tremendous opportunity in many

fields. It is used in a range of applications, including

finance, e-voting system, supply chain, digital identity,

healthcare system, business process management, and

even the Internet of Things and more, thanks to smart

contracts. In the early 1990s, Nick Szabo invented and

proposed the concept of smart contracts [25], [31]. The

execution flow of the smart contract can be explained as

shown in the figure below.

https://hedgetrade.com/how-to-buy-ethereum/
https://hedgetrade.com/stellar-surpasses-eos-for-top-5-spot-on-coinmarketcap/
https://www.blockchain-council.org/hyperledger/hyperledger-sawtooth-or-hyperledger-fabric-which-is-better/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 4

Figure 4. Smart contract execution

While doing a literature review of smart contracts, the

answers were needed to various questions such as

RQ1. What platforms are available and what

programming languages are used for smart contracts?

RQ2. Do smart contracts have any security flaws or

limitations?

RQ3. Are there any solutions available to identify the

vulnerabilities in smart contracts?

A search is done towards related publications in IEEE,

ACM, Springer, and Elsevier, among other places. A lot

of information was discovered about various Blockchain

platforms and languages used to write smart contracts.

Along with the different security issues and

vulnerabilities that exist in contract code, the methods to

address them were also discovered.

RELATED WORK

Many publications on smart contract challenges and

vulnerabilities are studied throughout this review. Some

articles have contributed to the discovery of various

vulnerabilities in public Blockchains by studying the

Ethereum platform. The weaknesses of smart contracts in

private Blockchain are discussed in a few studies, and

they did this by researching Hyperledger Fabric

Blockchain. After studying significant number of the

papers, around 27 papers are shortlisted here which

focuses on smart contracts and their security in Ethereum

platform, whereas being private Blockchain very few

research is found on smart contract security in

Hyperledger Fabric Blockchain. Around 20 papers are

studied here on Formal verification techniques to verify

the code of smart contracts.

This research study can be found unique as it highlights

the majority of the flaws in both public and private

Blockchain smart contracts at one place. Also, it covered

the tools and strategies for detecting deficiencies in both

blockchain platforms. The focus of this document is to

present the study in an effective way so as to find an

efficient solution for identified issues and facilitate the

research in that direction. As a result, this article

explores various smart contract platforms and domain-

specific programming languages along with

vulnerabilities.

The organization of the rest of the paper is as follows.

Section 2, covers literature survey which elaborates

security challenges in smart contracts. Section 3

addresses the vulnerabilities and attacks in smart

contracts on public (Ethereum) and private Blockchain

(Hyperledger Fabric). In section 4 security solutions for

smart contracts containing tools and formal methods are

explained. Finally, the survey is summarized with the

help of research challenges, future directions and

research needs.

2. LITERATURE SURVEY

This section presents study of different Blockchain

platforms and Smart contracts[32]. The first subsection

describes the platforms and languages[33] used to write

smart contracts. In the following subsection, various

challenges faced by developers while developing smart

contracts[28] are discussed. The next subsection

describes multiple vulnerabilities in smart contracts

detected in Public and Private Blockchains[34]. The

tools and methods to address these vulnerabilities[35] are

discussed in the following subsection.

2.1 Platforms and Smart Contract Languages

Bitcoin was one of the first digital currencies to be

utilized in a public blockchain. It is a decentralized

digital currency developed for transferring Bitcoin (its

cryptocurrency) without the need for intermediaries.

Also, another public blockchain platform is

Ethereum[34][36]. It is a decentralized open-

source blockchain technology with smart

contract functionality.

One of the famous and widely accepted private

Blockchain frameworks is Hyperledger Fabric[37].

Hyperledger Fabric uses general-purpose programming

languages, e.g., Go, Node.js, and Java, to implement

smart contracts (called chain code in Hyperledger

Fabric) [37].

In Table.1. a comparative study is given, including the

various platforms, their features like type, languages

used to write a smart contract, and whether it is turning

complete and its paradigm.

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Blockchain_(database)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 5

Table 1: Blockchain Platforms and languages

Platform Public or

Permissioned

Supports

Smart

Contracts

Smart Contract

Language

Bitcoin

Cryptocu

rrency

Turing

Complete

Paradigm

Bitcoin Public Yes Ivy, RSk, BitML Yes No Stack-Based

(High Level)

Ethereum Both Yes Solidity, Flint,

SCILLA

Yes Yes Object-

Oriented

Hyperledger

Fabric

Permissioned Yes Go, Node.js, Java No Yes General-

purpose

language

Neo Both Yes C#,VB.Net, Java,

Kotlin, Python

Yes Yes Object-

Oriented,

interpreted

Quorum Permissioned Yes Solidity No Yes Object-

Oriented

Cardano Public Yes Plutus (Functional

language)

Yes Yes Functional

language

EOS Public Yes C++ Yes Yes Object-

Oriented

R3 Corda Permissioned Yes Kotlin No Yes General-

Purpose

Language

2.2 Security Challenges in Smart Contracts:

Despite the increasing popularity of smart contracts,

there are few potential challenges that developers are

facing[25]. As described earlier, Blockchain technology

has its own challenges, and among those, one crucial

challenge is Smart contract security[38]. While writing

the smart contracts and maintaining their security [38]

[39], the developers found more challenges. Some of

them are mentioned below.

2.2.1. Security: There is a high requirement for code

security because of the sensitive nature of the

information. The transactions are irreversible, and code

is unmodifiable after deployment, so code must be

secure enough. Then another challenge is, it is hard to

guarantee security because of certain flaws in the

compiler, limited tools or techniques to verify the code's

correctness, and auditing the code. There is a need to

apply best practices to write safe code and demand for

efficient Formal verification techniques

2.2.2. Debugging: Debugging is painful as there are

limited powerful interactive debuggers and current

practices need improvement.

2.2.3. Programming Language: There are limited

programming languages used for developing smart

contracts. There are also limitations on logging or

reporting features and a lack of standards or rules in

available programming languages. There are also

constraints on several local variables.

2.2.4. Ethereum Virtual Machine (EVM): One of the

critical challenges is EVM. EVM's limitations include

limited support for debugging, the inefficiency of

bytecode execution, and limited stack size.

2.2.5. Gas: Special attention to gas consumption and

error handling is needed. There are difficulties in

handling gas problems, so there is a need for a tool to

estimate gas usage.

2.2.6. Limited standardized knowledge and support from

the Community: There is a lack of awareness of the

technology and its societal features and challenges.

3. SMART CONTRACTS VULNERABILITIES IN

PUBLIC AND PRIVATE BLOCKCHAIN

The last part states that smart contracts on the Ethereum

Blockchain are written in the Domain-specific language

(DSL) Solidity. In contrast, smart contracts on the

Hyperledger Fabric network are written in the Go or

JAVA languages. The following sections explain

numerous vulnerabilities in Ethereum and Hyperledger

Fabric smart contracts [41]in the form of a table that

summarises the vulnerability name, description, and

severity.

3.1 Vulnerabilities in Public Blockchain: Ethereum

Table 2 attempts to describe Ethereum smart contract

vulnerabilities[41], [42]. It is discovered that three

factors cause these flaws: first, the Solidity programming

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 6

language, second, the platform employed, and third,

misunderstanding of standard practices. So here prepared

the table listing these vulnerabilities and their

description, explaining their rationale, and suggesting

ways to mitigate them.

Table 2: Smart contract vulnerabilities in Ethereum

Cause Vulnerability

Name

Description Weakness Severity

Solidity

Language

Reentrancy[41] A function makes an external call to

another untrusted contract, which now

controls flow and calls back calling

contract leading to exploitation of

loophole and money withdraw

Improper behavioral

workflow

Severe

Unprotected self-

destruct[41]

permitting access to an unauthorized

actor

Improper access

control

Severe

Integer overflow

(underflow)[41]

It occurs when an arithmetic operation

results in an out-of-range number.

(Maximum or minimum) of a type. So,

use SafeMath libraries.

Incorrect

Calculation

Severe

Locked

Money[41]

The wrong address is entered to transfer

the money.

Improper

Initialization

Severe

Delegate calls to

untrusted

contract[41]

Calling a function of another untrusted

contract.

Inclusion of

functionality from

untrusted control

Severe

EVM

bytecode

Immutable

bugs[39], [41]

Some bugs in the bytecode of Solidity

are not detected.

Bugs in bytecode Severe

Ether lost in

transfer[41]

Ethers are lost if the proper address of

the receiver is not mentioned.

Ethers lost if sent to

the orphan address.

Medium

Stack size limit Stack size is sometimes not adequate,

which leads to error.

Call stack size

limitation

Severe

Blockchain

Platform

Transaction order

dependence[42]

The reward is given to that person who

first solves the maths function. So,

commitment scheme is to be applied.

Race condition Medium

Weak randomness

from chain

attributes[42]

Random numbers generated by the

algorithm can be predicted. So do it in

two phases: 1. Commit 2. Reveal

Use of insufficiently

random source

Medium

Timestamp

dependence[41]

Malicious miners adjust the timestamp

so that they will get the benefit.

Inclusion of

functionality from

untrusted control

Medium

Misunderstan

ding of

common

practices

Mishandled

exceptions[41]

A mishandled exception may cause an

attack.

Improper handling

of exceptional

conditions

Severe

Replay attack[43] While using Digital signatures, users

have to be careful as impersonating

signatures can harm the system.

Improper

cryptographic

understanding

Severe

3.2 Attacks Exploiting the Vulnerabilities:

As per the study, there are various vulnerabilities in

smart contracts because of different causes like Solidity

language, EVM bytecode, or Blockchain system itself.

These vulnerabilities are exploited by attackers, and they

become successful in attacking the system, which leads

to substantial financial loss. The following table 3

summarizes the various vulnerabilities and attacks[34],

[35][43]

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 7

Table 3: Vulnerabilities causing various attacks.

Cause Vulnerability Name Attacks

Solidity Language Reentrancy The DAO attack[43]

Unprotected self-destruct Parity Multisig Wallet Attack[43]

Integer overflow (underflow) Integer overflow /underflow attack[43]

Locked Money The DAO attack[43]

Call to the unknown/ Delegate call to

untrusted contract

The DAO attack[43]

Gasless send, Exception disorders King of the Ether Throne [43]

Keeping secrets Multi-player games[43]

EVM bytecode Immutable bugs, stack size limit Rubixi, GovernMental attack[34], [43]

Blockchain Platform Transaction order dependence -

Unpredictable state GovernMental attack[35]

Weak randomness from chain attributes -

Timestamp dependence GovernMental attack [43]

Misunderstanding of

common practices

Mishandled exceptions The DAO attack [43]

Replay attack Replay attack [43]

3.3 Vulnerabilities in Private Blockchain:

Hyperledger Fabric

Table 4 covers the numerous Fabric chaincode

vulnerabilities[44]. The Fabric, as previously stated,

employs the Go programming language[44] to build

smart contracts. Three aspects are examined here as well

to categorize the source of vulnerabilities: The first is the

Go language, the second is the blockchain platform, and

the third is a misunderstanding of standard practices, as

well as the language's non-deterministic behaviour. In

this section, a comprehensive survey of the risks

developers faces while designing smart contracts and the

risks they face when implementing their business logic

on Hyperledger Fabric. The hazards and justifications are

summarised in Table 4.

Table 4: Smart Contract Vulnerabilities in Hyperledger Fabric

Cause Vulnerability Name Rationale

Go Language (Non-

determinism arising

from language

instructions)[44]

Global variables

(Global State

variables)

Global variables have a scope limited to only a single node,

and they might no longer be consistent over all peers, which

leads to inconsistency.

KVS structure Not deterministic

Reified object address Memory addresses used are dependent on the environment.

Non-determinism occurs because of reified object

addresses.

Concurrency

(Goroutines)

Non-deterministic behavior in Go is caused if programs

running concurrently are not handled appropriately.

Random number

generation

May give different results as during the endorsing phase

[19].

System Timestamp There may be variations in timestamp functions in peer-to-

peer.

Field declarations Variable declared in a structure field may have different

times for each peer

Non-determinism

Caused

From Accessing

Web Service The difference in results after calling web services.

System Command

Execution

The output after execution of the system command should

be the same for all peers.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 8

Outside

of Blockchain[44]

External File

Accessing

Once the external file is accessed, the results should be the

same.

External Library

Calling

The behavior of the external library should be considered.

Developers need to be careful while applying third-party

libraries.

State Database

Specification[44]

Range query risk

(Phantom reads)

In validation phase GetQueryResult are not re-

executed,i.e.phantom reads (dirty data) are not detected. For

example GetHistoryForKey() ,

GetPrivateDataQueryResult() need to be carefully used.

 Fabric Specification

(Undesired behavior

arising from platform

features)[44]

Cross Channel

Chaincode Invocation

If two chain codes use the same channel, invoke a chain

code from another[19]-[24]. But if not on the same channel,

the data will not be saved in another channel.

Read your write (read

after write)

Only after a transaction is committed, a written statement

takes its effect.

Misunderstanding of

common

practices[44]

Unhandled errors Return values generated after errors should not be ignored,

as ignored errors might lead to faulty execution.

Unchecked input

arguments

To avoid accessing a non-existent element, input arguments

must be checked carefully.

4. SECURITY SOLUTIONS FOR SMART

CONTRACTS SECURITY:

To solve these security problems, there are two

approaches:

• Using Vulnerability scanning tools[41]

• Using Formal Verification method[45]:

Mathematically proving the software is correct

Smart Contracts handles massive financial projects,

digital assets, stock, or governmental applications, which

can lead to many severe errors like money loss or

privacy leakage. For example, DAO (Decentralized

Autonomous Organization)[43] was the victim of an

attack that happened in June 2016. The reason was a bug

in its code and that cost loss of 60 million USD. The

attacker exploited the reentrancy vulnerability. In the

previous sections, we studied various vulnerabilities

present in smart contracts and Blockchain platforms. To

identify and detect these vulnerabilities, enormous tools

are available. Some of the tools available for Ethereum

Smart Contracts are:

• Security Tools - Input to this tool is provided in

the form of either source code or the bytecode.

• Visualization Tools - It gives outputs in

graphical form such as CFG (Control Flow

Graphs) or Dependency Graphs.

• Dissemblers – It performs reverse task as that of

assemblers. It converts the binary code back

into high-level language code.

• Decompilers – Using decompilers, the binary

code is converted to low-level language code.

• Miscellaneous Tools - which help give standard

code metrics

Security Testing Methods:

Figure 5: Security Testing methods

4.1 Security Tools or Vulnerability Scanning Tools

for Smart Contracts

This section gives a list of different tools that identify

specific security issues or vulnerabilities in a smart

contract in public and private Blockchain[46]. Table 5.

Summarizes tools used for Public Blockchain.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 9

4.1.1. Smart Contracts Security Analysis Tools In Public Blockchain (Ethereum)

Table 5. Security Tools in Public Blockchain

Sr. No Name Of the Tool Description Detecting Vulnerabilities

1 OYENTE[45] [46] Two inputs are provided to this tool. 1.

Ethereum smart contract bytecode 2. global

state. Four components work as CGFBuilder:

creates a Control Flow Graph

Explorer: Symbolically executes contracts

Core Analysis: Analyses to find any issue

Validator: Validates to help in removing false

positives

Timestamp dependency,

Reentrancy, Call stack depth,

Exception handling,

Transaction order.

Also detects Integer

overflow/underflow and The

DAO attack

2 EthIR[46][48] EthIR is an extended version of OYENTE,

which works as a decompiler. CFGs generated

by OYENTE are modified, and the bytecodes'

rule-based representation (RBR) is created.

Destroyable/Suicidal contract,

Unsecured balance. Reentrancy,

Unchecked, and failed send.

It also detects DAO.

3 SMARTINSPECT

[46][48]

Analyses the smart contracts which are

deployed with the help of decompilation

techniques and mirror-based reflection.

Reentrancy, highlight potential

vulnerabilities in the code.

It also detects The DAO attack

4 GASTAP[47][48] Calculates the upper bound (Maximum) of

Gas for Ethereum smart contracts to avoid the

out-of-gas vulnerability.

1.GasTap constructs CFGs with the help of

OYENTE

2. It decompiles low-level code to high-level

representation using EthIR.

3. SACO determines the size of the relations

4. It generates the closed-form gas bands and

even defines the equations required to

calculate Gas.

Detects Out of Gas

Vulnerability

5 SECURIFY[48] EVM bytecode is decompiled, and semantic

facts are extracted. It checks the security

pattern, which is represented in Domain-

specific language (DSL).

Transaction ordering ordering-

dependent amount, receiver and

transfer,

Unhandled exceptions, Call

stack depth limitation,

Unchecked and Failed send,

Non-validated arguments

Unrestricted ether flow

Detects Parity multisig wallet

attack

6 MAIAN[48] Analysis tool represented by Nikolicetal.. It is

used to detect the specific behaviors of

Ethereum smart contracts [28] as Greedy

contract: Locks Ethers

Prodigal contract: Leak Ether to an unknown

address

Suicidal Contracts: The contracts commit

suicide because of the arbitrary external

account.

Detects Greedy, Prodigal,

Destroyable /Suicidal contracts,

 Unsecured balance, Call stack

depth limitation, and Parity

Multisig wallet attack

7 VANDAL[48] Static security analysis framework. It

translates smart contract byte codes to logic

Destroyable/Suicidal contract,

Unsecured balance, Use of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 10

relations, including a bytecode scraper, a

disassembler, a decompiler, and an extractor.

Origin

Reentrancy,

Detects DAO and Parity

multisig wallet attack

8 SMARTCHECK[48] This tool translates the code written in

Solidity to the XML format and analyses

using XPath queries to identify the issue.

Checks XPath patterns to

highlight potential

vulnerabilities in the code.

9 GASPER[48] It detects overcharged representative patterns

automatically

Detects those codes patterns

which consume more Gas

10 MYTHRIL[48] It is an open-source tool that uses a symbolic

execution technique. Executes smart contract

bytecode in a custom-built EVM

Exceptions, External Calls,

Multiple Sends, Suicide

11 OSIRIS[46][48]

Tools are specifically designed to detect

integers numbers vulnerabilities

Vulnerabilities related to

integers

12 SLITHER[46][48]

Static analysis framework. It is used for

vulnerability detection, automated

optimization detection, code understanding,

and assisted code review

It shows the position of the

error in code and detection of

low false-positives

13 ZEUS[46][48] This tool is used to verify and validate the

fairness of smart contracts.

Detects re-entrancy, unchecked,

failed send, integer Overflow

/underflow.

4.1.2 Smart Contracts Security Analysis Tools in

Private Blockchain Hyperledger Fabric

In private Blockchain like Hyperledger fabric,

developers use GO language to develop smart contracts.

If developers use the GO tools properly for writing chain

codes, the risks can be prevented. With the help of Go

development tools used for chain code development,

developers can minimize the risks.

A. Go Tools:

To make developers' tasks easy, a collection of tools and

libraries are defined in GO-Tool[44].

In the table below, various Go tools are mentioned,

designed to code and detect risks.

Table 6: Go tools

Sr. No Name Of the Tool Description Detecting Vulnerabilities

1 gochecknoglobals Global variables may create vulnerability in

code, so no globals should be there in the code of

Go language.

Global Variable, KVS

Structure Iteration,

Random Number

Generation

2 Varcheck This helps find global variables and constants

that are not used in code [12][19].

Global Variable, KVS

Structure Iteration

3 Errcheck Unchecked errors are detected to prevent

“Unhandled Errors” risks.

unchecked errors

4 Gosec Gosec inspects the risks as Web Service System

Command Execution, Unhandled errors, and

Generating Random Number.

Random Number, web

service

5 Golint Golint makes suggestions for mechanically

checkable items and CodeReview Comments.

System Command

Execution, Unhandled

Errors, web service

6 Go test-race The aim is to avoid race conditions in code System Command

Execution

B. Chaincode Specific Tool

ChainSecurity has developed a vulnerability scanner tool

that was made available to the developers as a web

application known as Chaincode Scanner[44]. Whenever

any Go project for non-commercial purposes is to be

tested, the URL is provided to the Go project, and related

risks can be identified.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 11

Table 7. Chaincode specific tools

Sr. No Name Of the Tool Description Detecting Vulnerabilities

1 Goroutines Concurrency may lead to errors, so it is

not preferred in chain code, and for this

tool is used.

KVS Structure Iteration,

Random Number Generation,

global Variable, Web

Service, Field Declarations

2 Global State It takes care of global variable

vulnerability.

Global Variable

3 Blacklisted Imports Takes care of those files or libraries

which may cause non-determinism (ex.

timestamp).

System Timestamp, Random

Number Generation

4 Map Range Iterations It avoids range iterations as they are non-

deterministic.

KVS Structure Iteration

5 Unchecked Input

Arguments

It checks several arguments before they

are used.

Unchecked Input Arguments,

unhandled Errors,

6 Unhandled Errors If errors are ignored or not handled

properly, it may lead to improper

execution.

Unhandled Errors,

Unchecked Input Arguments

7 Read After Write It is used to take care of the read and

write sequence of variables.

Read Your Write

8 Phantom Read of Ledger Results of phantom reads should not be

used to manipulate the ledger.

Range Query Risk

4.2 FORMAL VERIFICATION METHOD:

Writing correct code is very hard, and when it is said that

code is correct, it does precisely the same thing you think

it does. Formal verification is the process of checking if

the design satisfies the system requirements (properties)

to check if the code behaves as expected using some

formalism[45][49]. It is very hard to check the absence

of undesired behavior, and the formal verification

process helps in this regard. The formal verification is

different than testing. Testing is done only on a finite set

of specified inputs and checks the test cases where

formal verification covers all input scenarios and all

corner cases and detects bugs[49].

Formal verification is an effective method for ensuring

the accuracy of smart contracts. Verification results are

better when formal approaches are used. Formal

verification ensures that nothing is lost in translation and

the program is built to perform what it is supposed to

accomplish[50]. An unambiguous mathematical

language is used in this method to define the correctness

and security of smart contracts.

4.2.1 Various Approaches in Formalization

The code and execution of smart contracts can be

verified using two wide classifications such as contract-

level and program-level[51]. In the contract-level

approach, the transactions in smart contracts are

considered as a black box where it only concerned about

the smart contract’s high-level behaviour. The details

about implementation and execution are not verified in

depth. In the program-level approach, more focus is on

the implementation (i.e., source code) of smart contracts,

which makes it platform-dependent[51].

Contract Level

The examples of contract level[51] models are state-

transition systems, process algebra and set-based

methods. In process algebra, concurrency is achieved. In-

state transition systems, smart contracts are modelled in

timed automata and Markov decision processes. Model

checkers verifies state transition models concerning

contract-specific properties in the state transition

approach. Set theory and logic are used in the set-based

model in formalizing the contracts.

Program level

With the help of lower-level representation, the Program

level provides a white-box view of the smart

contracts[50]. The source code of the smart contract,

compiled bytecode, Abstract Syntax Tree (AST), control

flow graphs are also verified[51][52]

4.2.2 Formal Verification Framework

With the use of a rigorous mathematical model[53],

formal verification methods are utilized to validate and

verify smart contracts[54]. Theorem provers are used in

formal verification methods to prove specific features of

a code of programming language, for instance functional

correctness, runtime safety, soundness, and

dependability[51][53].

This is accomplished by converting both the code and

the specification into mathematical representations that

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 12

are then compared using mathematical proof. If they do

not match, then the problem is identified and fixed. The

main goal of formal verification is to make smart

contracts less complicated.

Figure 6. depicts the framework[55] for formal

verification.

Figure 6. Formal Verification Method

Framework[55]

4.3 Formal Verification Techniques

The Following are the techniques implied for formal

verification of the smart contracts[50]:

4.3.1 Model checking:

Checks finite-state systems[51]. It verifies a system

model by comparing it with smart contracts

specifications.

4.3.2 Theorem Proving:

This method encodes the contracts and their properties in

mathematical logic[56]. It Supports the verification of

infinite systems. As this approach is not totally

automatic, it requires human involvement and expertise.

4.3.3 Symbolic execution[57]:

It explores possible execution paths. Symbols are used

along with symbolic state. It performs symbolic

execution by traversing Control Flow graphs generated

from bytecode.

4.3.4 Runtime Verification and Testing[58]:

It verifies and tests the properties of an executing

program.

4.3.5 Program Based Formal Verification:

Program-based verification places a greater emphasis on

smart contract code. After translating smart contract

programming into formal languages, vulnerabilities are

discovered. The following are some instances and tools

used in program-based verification.

● VaaS Platform[59]: VaaS is used with

Blockchain platforms like EOS, Ethereum, and

Fabric.

In this method, smart contract code is translated

to Coq code, and then correctness is checked.

● Formal symbolic process virtual machine

(FSPVM): Yang and Lei[49][56] proposed this

method. The reliability and security properties

of smart contracts are verified in this method.

● Isabelle /HOL proof assistant model[59]: This

verifies the binary Ethereum code. So binary

code is extracted and then translated into an

AVL tree which is analysed for verification.

● F* Framework [60]: The Solidity language is

translated into a functional F* language where

the correctness of contract is verified. It also

analyses the EVM bytecode of the contracts.

4.3.6 Behavior-Based Formal Verification:

Behavior-based verification[51] is used to address issues

encountered during the execution of smart contracts. For

instance improper operations and malicious attacks are

identified. Following are the methods used in Behavior-

Based Formal Verification[51]

● Finite State Machine and PRISM Tool[61]

● Runtime verification method[58]

● Probabilistic formal models to verify

contracts[56]

● Promela language and SPIN tool to verify smart

contracts [51]

● Use BIP (Behavior Interaction Priorities)

Framework[51]

5. RESEARCH ISSUES AND CHALLENGES

Though Smart contacts are beneficial and immutable,

they are vulnerable to various attacks, which causes

significant financial loss or serious breach in security. If

the smart contracts are not written with proper care and

precautions, attackers can exploit them, leading to a

major financial crisis. The study found that there are

certain vulnerabilities in smart contracts at the design

level and code level. To address these issues, many tools

and methods have been invented[62], [63]. Certain

formal verification techniques are designed for

identifying the vulnerabilities in EVM bytecode as

well[64].But not all or maximum vulnerabilities are

addressed by a single tool or any single formal

verification method. Though there are plenty of tools

available to detect vulnerabilities, some vulnerabilities

are not yet discovered, specifically vulnerabilities caused

by programming languages used to write smart contracts

and EVM bytecode. Throughout this literature survey, it

is analyzed that tools like OYENTE, EthIR, SECURIFY,

MAIAN, SMARTCHECK, GASPER can detect the

majority of the vulnerabilities such as Reentrancy,

Integer Overflow and Underflow, Transaction Order

Dependency and so on[65]. But the vulnerabilities

present in the bytecode of smart contracts are not yet

detected by any of the tools and not by any formal

verification methods. So, there is a need for novel,

efficient and powerful techniques to detect the

vulnerabilities and resolve them to make the system

more secure. The loopholes present in EVM bytecode

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 13

are challenging to identify because it is in the form of

machine-level language. As bytecode is very difficult to

understand and interpret, it requires very highly skilled

resources to go through the details of bytecode and find

out the vulnerability. The Vulnerabilities present in EVM

bytecode result in some ruinous attacks for example the

Rubixi attack or Governmental attack.

By study, it can be stated that more focus should be

given to the programming of smart contracts. So,

program-level security is important. The root cause of

bugs should be identified, new vulnerabilities should be

discovered, and the generalization of maximum

vulnerabilities can be defined accordingly.

To address the vulnerabilities in Blockchain smart

contracts that are not detected by existing tools and

formal verification methods but are harmful to the

applications, there is a need for a novel approach or

framework. There is an urgent need for a thorough and

extensive method to ensure the security and correctness

of smart contracts. To achieve this, a mathematical

model of formal specification for identifying the

functional correctness of Blockchain Smart Contracts

can be proposed. Along with vulnerability scanning

discovering unknown vulnerabilities and optimizing

these methods can be achieved in the future. The

objective is to design a formal verification framework for

the effective verification of undetected smart contract

vulnerabilities. The expected outcomes will be an

efficient, improved formal verification method to detect

the vulnerabilities in smart contracts. Along with this

using safe language for writing smart contracts will help

to eliminate many security risks. The contract capable of

healing itself is also one of the prominent ways to reduce

risks.

6. CONCLUSION AND RESEARCH

OPPORTUNITIES

Throughout this research, a systematic review is

performed on the introduction of smart contracts, various

Blockchain platforms, programming languages,

numerous vulnerabilities, and tools for security in

Ethereum and Hyperledger Fabric and formal

verification methods for smart contract correctness

assurance. The study discovered that there is a

significant need to improve the security and performance

of smart contracts to cope with practical and competitive

decentralized applications in our review. Ethereum is the

most popular blockchain platform and Solidity is widely

used programming language now a days. At the same

time, as the number of enterprise apps grows, private

Blockchain is becoming more important. According to

the study, permissioned blockchain platforms for

example Corda, Tendermint, Hyperledger Fabric, and

Quorum will be in more demand. As a result, executing

smart contracts, enhancing their security, correctness,

and performance, and implementing blockchain-

dependent apps all necessitate more and more study to

make blockchain-based applications competent in a real-

time context.

With the improved popularity and adoption of

Blockchain Technology, implementing formal

verification techniques for valid and error-free smart

contracts has been a demanding research topic in modern

age. In the future, the research in the direction of smart

contract designing and formulation along with security

awareness using formal verification methods will be

more fruitful for the Blockchain fraternity.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic

Cash System.” [Online]. Available: www.bitcoin.org

[2] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An

Overview of Blockchain Technology: Architecture,

Consensus, and Future Trends,” in Proceedings - 2017

IEEE 6th International Congress on Big Data,

BigData Congress 2017, Sep. 2017, pp. 557–564. doi:

10.1109/BigDataCongress.2017.85.

[3] X. Xu et al., “A Taxonomy of Blockchain-Based

Systems for Architecture Design,” in Proceedings -

2017 IEEE International Conference on Software

Architecture, ICSA 2017, May 2017, pp. 243–252. doi:

10.1109/ICSA.2017.33.

[4] X. Xu et al., “The blockchain as a software

connector,” in Proceedings - 2016 13th Working

IEEE/IFIP Conference on Software Architecture,

WICSA 2016, Jul. 2016, pp. 182–191. doi:

10.1109/WICSA.2016.21.

[5] O. Ali, A. Jaradat, A. Kulakli, and A. Abuhalimeh, “A

Comparative Study: Blockchain Technology

Utilization Benefits, Challenges and Functionalities,”

IEEE Access, vol. 9, pp. 12730–12749, 2021, doi:

10.1109/ACCESS.2021.3050241.

[6] Institute of Electrical and Electronics Engineers and

IEEE Technology and Engineering Management

Society, 2017 IEEE Technology and Engineering

Management Conference (TEMSCON).

[7] P. Bhattacharya, A. Singh, A. Srivastava, and A.

Mathur, “A Systematic Review on Evolution of

Blockchain Generations ITEE Journal A Systematic

Review on Evolution of Blockchain Generations,”

2018. [Online]. Available:

https://www.researchgate.net/publication/330358000

[8] M. H. Miraz and M. Ali, “Applications of blockchain

technology beyond cryptocurrency,” Annals of

Emerging Technologies in Computing, vol. 2, no. 1,

pp. 1–6, Jan. 2018, doi:

10.33166/AETiC.2018.01.001.

[9] International Conference on Electrical Engineering

and Computer Science 2017 Palembang, Institute of

Electrical and Electronics Engineers Indonesia

Section, International Conference on Electrical

Engineering and Computer Science 2017.08.22-23

Palembang, ICECOS Conference 2017.08.22-23

Palembang, and ICECOS 2017.08.22-23 Palembang,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 14

Sustaining the cultural heritage toward the smart

environment for better future ICECOS 2017

Conference : proceedings : August 22-23, 2017,

Horison Ultima Hotel, Palembang.

[10] I. Eyal, “COVER FEATURE BLOCKCHAIN

TECHNOLOGY IN FINANCE.”

[11] D. Magazzeni, P. McBurney, and W. Nash, “COVER

FEATURE BLOCKCHAIN TECHNOLOGY IN

FINANCE Validation and Verification of Smart

Contracts: A Research Agenda.” [Online]. Available:

www.nortonrosefulbright.com/knowledge/publica-

[12] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart

Contract Templates: foundations, design landscape

and research directions,” Aug. 2016, [Online].

Available: http://arxiv.org/abs/1608.00771

[13] G. W. Peters and E. Panayi, “Understanding Modern

Banking Ledgers through Blockchain Technologies:

Future of Transaction Processing and Smart Contracts

on the Internet of Money,” 2015. [Online]. Available:

http://ssrn.com/abstract=2692487

[14] K. Christidis and M. Devetsikiotis, “Blockchains and

Smart Contracts for the Internet of Things,” IEEE

Access, vol. 4. Institute of Electrical and Electronics

Engineers Inc., pp. 2292–2303, 2016. doi:

10.1109/ACCESS.2016.2566339.

[15] M. A. Khan and K. Salah, “IoT security: Review,

blockchain solutions, and open challenges,” Future

Generation Computer Systems, vol. 82, pp. 395–411,

May 2018, doi: 10.1016/j.future.2017.11.022.

[16] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman,

“MedRec: Using blockchain for medical data access

and permission management,” in Proceedings - 2016

2nd International Conference on Open and Big Data,

OBD 2016, Sep. 2016, pp. 25–30. doi:

10.1109/OBD.2016.11.

[17] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du,

and M. Guizani, “MeDShare: Trust-Less Medical Data

Sharing among Cloud Service Providers via

Blockchain,” IEEE Access, vol. 5, pp. 14757–14767,

Jul. 2017, doi: 10.1109/ACCESS.2017.2730843.

[18] M. Hölbl, M. Kompara, A. Kamišalić, and L. N.

Zlatolas, “A systematic review of the use of

blockchain in healthcare,” Symmetry, vol. 10, no. 10,

2018, doi: 10.3390/sym10100470.

[19] T. Mikula and R. H. Jacobsen, “Identity and access

management with blockchain in electronic healthcare

records,” in Proceedings - 21st Euromicro Conference

on Digital System Design, DSD 2018, Oct. 2018, pp.

699–706. doi: 10.1109/DSD.2018.00008.

[20] Hawaii International Conference on System Sciences

2020.

[21] P. Mccorry, S. F. Shahandashti, and F. Hao, “A Smart

Contract for Boardroom Voting with Maximum Voter

Privacy.”

[22] N. Kshetri and J. Voas, “Blockchain-Enabled E-

Voting,” IEEE Software, vol. 35, no. 4, pp. 95–99, Jul.

2018, doi: 10.1109/MS.2018.2801546.

[23] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K.

Smolander, “Where is current research on Blockchain

technology? - A systematic review,” PLoS ONE, vol.

11, no. 10, Oct. 2016, doi:

10.1371/journal.pone.0163477.

[24] I. C. Lin and T. C. Liao, “A survey of blockchain

security issues and challenges,” International Journal

of Network Security, vol. 19, no. 5, pp. 653–659, Sep.

2017, doi: 10.6633/IJNS.201709.19(5).01.

[25] Y. Hu, M. Liyanage, A. Mansoor, K. Thilakarathna,

G. Jourjon, and A. Seneviratne, “Blockchain-based

Smart Contracts - Applications and Challenges,” Sep.

2018, [Online]. Available:

http://arxiv.org/abs/1810.04699

[26] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F.

Y. Wang, “Blockchain-Enabled Smart Contracts:

Architecture, Applications, and Future Trends,” IEEE

Transactions on Systems, Man, and Cybernetics:

Systems, vol. 49, no. 11, pp. 2266–2277, Nov. 2019,

doi: 10.1109/TSMC.2019.2895123.

[27] W. Egbertsen, G. Hardeman, M. van den Hoven, G.

van der Kolk, and A. van Rijsewijk, “Replacing Paper

Contracts With Ethereum Smart Contracts Contract

Innovation with Ethereum,” 2016.

[28] L. W. Cong and Z. He, “Blockchain Disruption and

Smart Contracts,” Review of Financial Studies, vol.

32, no. 5. Oxford University Press, pp. 1754–1797,

May 01, 2019. doi: 10.1093/rfs/hhz007.

[29] S. Rouhani and R. Deters, “Security, performance, and

applications of smart contracts: A systematic survey,”

IEEE Access, vol. 7. Institute of Electrical and

Electronics Engineers Inc., pp. 50759–50779, 2019.

doi: 10.1109/ACCESS.2019.2911031.

[30] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E.

Shi, “Step by Step Towards Creating a Safe Smart

Contract: Lessons and Insights from a Cryptocurrency

Lab,” 2015.

[31] M. Alharby and A. van Moorsel, “Blockchain Based

Smart Contracts : A Systematic Mapping Study,” Aug.

2017, pp. 125–140. doi: 10.5121/csit.2017.71011.

[32] M. Bartoletti and L. Pompianu, “An Empirical

analysis of smart contracts: Platforms, applications,

and design patterns,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics), 2017, vol. 10323 LNCS, pp. 494–

509. doi: 10.1007/978-3-319-70278-0_31.

[33] D. Harz and W. Knottenbelt, “Towards Safer Smart

Contracts: A Survey of Languages and Verification

Methods,” Sep. 2018, [Online]. Available:

http://arxiv.org/abs/1809.09805

[34] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of

attacks on Ethereum smart contracts.” [Online].

Available:

https://coinmarketcap.com/currencies/ethereum

[35] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart

Contract: Attacks and Protections,” IEEE Access, vol.

8, pp. 24416–24427, 2020, doi:

10.1109/ACCESS.2020.2970495.

[36] “ETHEREUM: A SECURE DECENTRALISED

GENERALISED TRANSACTION LEDGER EIP-150

REVISION.”

[37] E. Androulaki et al., “Hyperledger Fabric: A

Distributed Operating System for Permissioned

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 15

Blockchains,” Jan. 2018, doi:

10.1145/3190508.3190538.

[38] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi,

“Smart contract security: A software lifecycle

perspective,” IEEE Access, vol. 7. Institute of

Electrical and Electronics Engineers Inc., pp. 150184–

150202, 2019. doi: 10.1109/ACCESS.2019.2946988.

[39] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss,

“Security Analysis Methods on Ethereum Smart

Contract Vulnerabilities: A Survey,” Aug. 2019,

[Online]. Available: http://arxiv.org/abs/1908.08605

[40] R. Gupta, S. Tanwar, F. Al-Turjman, P. Italiya, A.

Nauman, and S. W. Kim, “Smart Contract Privacy

Protection Using AI in Cyber-Physical Systems:

Tools, Techniques and Challenges,” IEEE Access, vol.

8, pp. 24746–24772, 2020, doi:

10.1109/ACCESS.2020.2970576.

[41] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss,

“Security Analysis Methods on Ethereum Smart

Contract Vulnerabilities: A Survey,” Aug. 2019,

[Online]. Available: http://arxiv.org/abs/1908.08605

[42] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A.

Bracciali, and R. Hierons, “Smart contracts

vulnerabilities: A call for blockchain software

engineering?,” in 2018 IEEE 1st International

Workshop on Blockchain Oriented Software

Engineering, IWBOSE 2018 - Proceedings, Mar.

2018, vol. 2018-January, pp. 19–25. doi:

10.1109/IWBOSE.2018.8327567.

[43] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart

Contract: Attacks and Protections,” IEEE Access, vol.

8, pp. 24416–24427, 2020, doi:

10.1109/ACCESS.2020.2970495.

[44] R. Tonelli, IEEE Computer Society, Institute of

Electrical and Electronics Engineers, and E. IEEE

International Conference on Software Analysis,

IWBOSE ’19 : 2019 IEEE 2nd International Workshop

on Blockchain Oriented Software Engineering

(IWBOSE ’19) : February 24, 2019, Hangzhou, China.

[45] X. Bai, Z. Cheng, Z. Duan, and K. Hu, “Formal

modeling and verification of smart contracts,” in ACM

International Conference Proceeding Series, Feb.

2018, pp. 322–326. doi: 10.1145/3185089.3185138.

[46] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi,

“Smart contract security: A software lifecycle

perspective,” IEEE Access, vol. 7. Institute of

Electrical and Electronics Engineers Inc., pp. 150184–

150202, 2019. doi: 10.1109/ACCESS.2019.2946988.

[47] J. Liu and Z. Liu, “A Survey on Security Verification

of Blockchain Smart Contracts,” IEEE Access, vol. 7.

Institute of Electrical and Electronics Engineers Inc.,

pp. 77894–77904, 2019. doi:

10.1109/ACCESS.2019.2921624.

[48] A. L. Vivar, A. T. Castedo, A. L. S. Orozco, and L. J.

G. Villalba, “An analysis of smart contracts security

threats alongside existing solutions,” Entropy, vol. 22,

no. 2, Feb. 2020, doi: 10.3390/e22020203.

[49] Z. Yang and H. Lei, “Formal process virtual machine

for smart contracts verification,” International Journal

of Performability Engineering, vol. 14, no. 8, pp.

1726–1734, Aug. 2018, doi:

10.23940/ijpe.18.08.p9.17261734.

[50] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, “A

Survey of Smart Contract Formal Specification and

Verification,” ACM Computing Surveys, vol. 54, no. 7,

pp. 1–38, Sep. 2022, doi: 10.1145/3464421.

[51] T. Abdellatif, K.-L. Brousmiche, and K.-L.

Brousmiche, “Formal verification of smart contracts

based on users and blockchain behaviors models.”

[Online]. Available: https://hal.archives-

ouvertes.fr/hal-01760787

[52] W. Ahrendt et al., “Verification of Smart Contract

Business Logic Exploiting a Java Source Code

Verifier.” [Online]. Available: https://git.io/fx6cn.

[53] W. Xu and G. A. Fink, “Building Executable Secure

Design Models for Smart Contracts with Formal

Methods.”

[54] L. Alt and C. Reitwiessner, “SMT-based verification

of solidity smart contracts,” in Lecture Notes in

Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2018, vol. 11247 LNCS, pp. 376–

388. doi: 10.1007/978-3-030-03427-6_28.

[55] T. Sun and W. Yu, “A formal verification framework

for security issues of blockchain smart contracts,”

Electronics (Switzerland), vol. 9, no. 2, Feb. 2020,

doi: 10.3390/electronics9020255.

[56] Z. Yang and H. Lei, “Lolisa: Formal syntax and

semantics for a subset of the solidity programming

language in Mathematical Tool Coq,” Mathematical

Problems in Engineering, vol. 2020, 2020, doi:

10.1155/2020/6191537.

[57] I. Grishchenko, M. Maffei, and C. Schneidewind, “A

Semantic Framework for the Security Analysis of

Ethereum smart contracts,” Feb. 2018, doi:

10.1007/978-3-319-89722-6_10.

[58] J. Ellul and G. J. Pace, “Runtime Verification of

Ethereum Smart Contracts,” in Proceedings - 2018

14th European Dependable Computing Conference,

EDCC 2018, Nov. 2018, pp. 158–163. doi:

10.1109/EDCC.2018.00036.

[59] S. Amani, M. Bortin, M. Bégel, and M. Staples,

“Towards verifying ethereum smart contract bytecode

in Isabelle/HOL,” in CPP 2018 - Proceedings of the

7th ACM SIGPLAN International Conference on

Certified Programs and Proofs, Co-located with

POPL 2018, Jan. 2018, vol. 2018-January, pp. 66–77.

doi: 10.1145/3167084.

[60] Karthikeyan Bhargavan, Antoine Delignat-Lavaud,

C´edric Fournet, Anitha Gollamudi, Georges Gonthier,

and Nadim Kobeissi, “F star Bhargavan formal

verification paper”.

[61] A. Mavridou and A. Laszka, “Designing Secure

Ethereum Smart Contracts: A Finite State Machine

Based Approach,” Nov. 2017, [Online]. Available:

http://arxiv.org/abs/1711.09327

[62] S. Akca, A. Rajan, and C. Peng, “SolAnalyser: A

Framework for Analysing and Testing Smart

Contracts,” in Proceedings - Asia-Pacific Software

Engineering Conference, APSEC, Dec. 2019, vol.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 01–16 | 16

2019-December, pp. 482–489. doi:

10.1109/APSEC48747.2019.00071.

[63] E. Albert, J. Correas, P. Gordillo, G. Román-Díez, and

A. Rubio, “SAFEVM: A Safety Verifier for Ethereum

Smart Contracts,” Jun. 2019, [Online]. Available:

http://arxiv.org/abs/1906.04984

[64] E. Hildenbrandt et al., “KEVM: A complete formal

semantics of the ethereum virtual machine,” in

Proceedings - IEEE Computer Security Foundations

Symposium, Aug. 2018, vol. 2018-July, pp. 204–217.

doi: 10.1109/CSF.2018.00022.

[65] J. Liu and Z. Liu, “A Survey on Security Verification

of Blockchain Smart Contracts,” IEEE Access, vol. 7.

Institute of Electrical and Electronics Engineers Inc.,

pp. 77894–77904, 2019. doi:

10.1109/ACCESS.2019.2921624.

