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Abstract: Thread management affects operating system factors, resulting in execution time delays. These factors may improve or degrade 

depending on the design of the program and the number of threads. Therefore, for any multithreaded application, changes in these factors 

indicate whether the selected thread count is appropriate or not. This paper proposes a method that combines manta ray foraging 

optimisation and the Thread-reinforcer algorithm. The new algorithm predicts the best thread count by using three manta ray foraging 

strategies: chain, cyclone, and somersault; however, it selects the thread count with the highest fitness value as the best solution. The fitness 

function computes the fitness value by analysing OS factors such as CPU utilisation, context switching rate, CPU migration rate, page fault 

rate, and execution time. The multithreaded applications are run multiple times with a small data size to collect values for these factors. 

We tested the proposed work on fifteen programs in the PARSEC 3.0 benchmark suit. The results show that the optimal thread count for 

seven programs is greater than the number of processors and equal to the number of processors for the remaining eight programs. This 

study also demonstrates that the proposed approach takes less time to determine the solution than the Thread-reinforcer. 

Keywords: Parallel programs, threads, optimisation, nature-inspired. 

 

1. Introduction 

In high-performance computing, parallel programs try to 

use most of the cores available in the machine to complete 

the execution of tasks efficiently. The programmers suggest 

the optimal number of threads before executing the program 

on the target machine. They devote a significant amount of 

time to understanding the issues in parallel programs and 

determining the count of threads for which the program can 

take less time to execute. The multithreaded applications are 

designed to take advantage of high-performance computing 

platforms to execute complex programs efficiently. In 

today’s world, computers ranging from desktops to 

mainframes use multiprocessor CPUs. Many applications 

are developed using various parallel programming 

languages and libraries to solve complex real-world 

problems [1][2][3][4].  

Multithreading is a technique in which an application can 

have several threads that can run on different processors at 

the same time [5]. The programmers should divide the code 

into small independent sections and allocate them to 

separate threads for execution. They mostly use a fork-join 

model [6] to convert the serial programs into parallel 

programs. In the fork-join model, a section of the program 

where instructions can be executed independently is 

searched, and then threads are created at runtime using 

programming libraries like OpenMP. The threads are 

terminated as soon as they finish the execution of their 

assigned sections except for the main thread, which 

continues to execute the remainder of the program.  

Researchers have developed many tools [7][8] to detect 

parallelism in serial programs, but these tools do not help to 

determine how many threads are necessary at runtime. The 

general rule is to create threads in proportion to the number 

of processors in the system. This is true for a few CPU-

intensive applications but does not apply to memory and IO-

intensive applications. As a result, programmers must 

perform some manual work and rely on profiling tools to 

determine the number of threads. If they choose the wrong 

number, it can have a negative impact on the execution time. 

Thread management affects Operating System (OS) level 

factors such as shared memory, semaphores locks, 

scheduling time, waiting time, CPU migration, instructions 

per second, context switching, page fault, CPU utilisation, 

and so on [9][10]. It adds the overheads associated with 

these factors during the execution. These factors may reveal 

the internal working of the threads and help the programmer 
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understand their behaviour. Furthermore, until the 

programmer is sure of the number of threads required for the 

given application to run on the target hardware, no more 

threads than the number of cores should be tried. As a result, 

parallel programmers need a framework or technique that 

can analyse the activities of threads in multithreaded 

programs and recommend the optimal thread count.  

The CPU utilisation provides details about how much of the 

CPU is used by the running program during its execution. A 

decrease in this factor indicates that the threads are not fully 

utilising the available CPUs and are spending more time in 

the waiting state than in the running state. 

The operating system uses context switching to suspend 

thread execution and assign its processor to another thread. 

The earlier thread must wait in a ready queue while the other 

one is running in the system. Context switching is useful in 

systems where multiple tasks must be performed 

concurrently, but it has a negative impact on parallel 

programming as it adds the waiting time to the total 

execution time.  

CPU migrations occur when a thread is ready and a CPU 

other than the one where it was scheduled previously is 

available for execution. In this case, OS schedules the thread 

on the new CPU and resumes its execution. It causes the OS 

to reload the program and its data into the cache and 

memory close to the allocated CPU. This adds unnecessary 

delay to the program and increases the total execution time. 

It is observed that as the number of threads exceeds the 

number of cores, the migration rate begins to increase.  

The page fault usually causes an exception, which is used to 

inform the operating system that the 'pages' from memory 

space must be loaded to continue execution. The program 

resumes normal function once all of the contents have been 

loaded into physical memory. This generally happens in the 

background and does not affect the normal execution. 

However, a rapid increase in page faults may indicate that 

the program is not behaving properly and prolong the 

execution time due to a lack of data or code inside the 

memory.  

Determining optimal thread count is an optimisation 

problem that can be solved using optimisation algorithms. 

The researchers have developed many nature-inspired 

algorithms to solve problems in the engineering domain, 

such as ant colony, particle swarm, manta ray foraging, 

symbiotic search, bird-swarm and so on 

[11][12][13][14][15] manta ray foraging optimisation is a 

technique that simulates the behaviour of manta rays. Thus, 

rather than wasting time analysing the OS factors for the 

programs manually, it is recommended to use optimisation 

algorithms based on nature-inspired techniques. These 

algorithms can find the best solution in a known search 

space by mimicking the nature of organisms. The organisms 

travel to various locations and attempt to arrive at the best 

point as quickly as possible [16].  

2. Motivations and Problem Statement 

When we run a program with a single thread, it gets 

executed serially on a single processor. When we run it with 

two threads, we reduce the execution time by half by 

dividing the task into two equal sub-tasks. Thus, it is 

possible to reduce execution time by increasing the number 

of threads. Figure 1, Figure 2, and Figure 3 show the 

execution time taken by the three PARSEC benchmark [17] 

programs: streamcluster, ferret, and swaptions. We executed 

these programs at full load on a 12-core machine and 

recorded their execution time. The sub-figure (a) depicts the 

execution time for thread counts ranging from 2 to 24, 

whereas the sub-figure (b) depicts the zoomed-in portion of 

sub-figure (a) where the programs appear to be non-

scalable. 

Figure 1 (a) and Figure 1 (b) show that the streamcluster 

scales well up to 12 threads. After that, when the number of 

threads exceeds the number of cores, the execution time 

increases dramatically, demonstrating that the user should 

not run this program with more threads than the number of 

processors available in the system.  

In Figure 2 (a) and Figure 2 (b), we can observe that beyond 

12 threads, the performance of the ferret remains consistent, 

but the lowest execution time is recorded at 14 threads. 

However, in this case, even if the user decides to run the 

program for more threads than the number of cores, it does 

not affect the execution time. 

Figure 3 (a) and Figure 3 (b) show that the swaptions have 

the shortest execution time with 16 threads, which is not the 

number of cores in the system. As a result, if the 

programmer decides to run it with 12 threads, it will take 

longer to complete than if it is run with 16 threads. As a 

result, there are programs with optimal thread counts that 

exceed the number of processors. 

 

 
Figure 1 (a) Streamcluster benchmark execution time with thread counts 

ranging from 2 to 24. 
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Figure 1 (b) Streamcluster benchmark execution time with thread counts 

ranging from 10 to 24. 

 

 
Figure 2 (a) Ferret benchmark execution time with thread counts ranging 

from 2 to 24. 

 
Figure 3 (a) Swaptions benchmark execution time with thread counts 

ranging from 2 to 24. 

 
Figure 3 (b). Swaptions benchmark execution time with thread counts 

ranging from 10 to 24. 

The execution time depends on how OS-level factors 

respond to running threads. Therefore, monitoring these 

factors is essential for finding the optimal count. One needs 

to change the thread count in each run and monitor activities 

to obtain these factors. If the method is applied manually, 

the user will undoubtedly lose a significant amount of time 

repeating the executions actively. Therefore, if a computer 

algorithm is developed to analyse these factors and predict 

the number of threads, the user can find the optimal thread 

count for multithreaded applications without wasting time. 

 

3. Related Work 

Pusukuri, et al [18] developed a simple technique called 

thread reinforcer for proactively calculating the required 

number of threads without redesigning the program or 

changing Operating System rules. Since calculating the 

proper number of threads for a multithreaded program 

periodically is a difficult task. In their study, a few OS 

factors are studied to get optimal thread count. Furthermore, 

architectural specifications such as memory management 

issues are not considered here. 

Qin et al [19]. has presented a technique that delivers both 

fast response time and throughput for programs with 

threads. Based on the real-time system’s load, the running 

programs decide how many cores they require for execution. 

In this technique, the mapping between running threads and 

processor is stored properly which makes it to easily manage 

and control the threads and cores in the system. A central 

core arbiter manages the CPU allocations for the threads of 

all the programs running the system.  

A technique called RPPM (rapid performance prediction of 

multithreaded workloads) was proposed in [20] on 

multicore processors. For multi-threaded applications, an 

automatic logical performance design was developed on 

multicore hardware. To detect performance on multicore 

platforms, microarchitecture-independent features are 

obtained for the multi-threaded workload. 

AbdurRouf, et al [21] analyse the distribution of multiple 

threads on available processors. The OpenMP style parallel 

programming API is being used to create and spawn all the 

threads. The performance parameters are checked in single 

as well as multithreaded applications. They found in their 

study that increasing the number of threads proportional to 

the number of processors reduces program execution time 

on different multicore architectures. Similarly, their studies 

suggest that performance in these programs improves when 

thread allocation is done properly. The thread count should 

depend on the number of processors and cores in the 

machine, and the programmer should spawn threads equal 

to the processors available for use. 

An energy-efficient model based on optimisation techniques 

was introduced in [22] for parallel applications. This 

proposed method concentrates on the DVFS (dynamic 

voltage and frequency scaling) which can be for many 

platforms. To capture the energy efficacy, mathematical 

models were designed. Moreover, the effect of the number 

of threads performing a multithreaded application was 

studied. 
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4. Proposed Methodology 

Manta rays forage in groups and try to gather the maximum 

food [13]. They choose a location systematically that has 

more concentration of food. This type of behaviour can be 

simulated to develop an algorithm for finding the best 

solution in the available search space. The algorithm should 

use a fixed number of manta rays to move around in the 

search space and when a new position is discovered, it 

should be evaluated for suitability. As a result, a fitness 

function is also required. Here, the fitness function runs the 

application for the recommended number of threads and 

records the values for the various OS-level factors. These 

factors may improve or deteriorate depending on how the 

operating system reacts to the program. 

The Reinforced Manta Ray Foraging Optimization 

(RMRFO) algorithm presented in this paper works in two 

steps. In the first step, the Thread count is obtained using 

manta ray foraging. In a second step, the program is run for 

a short period or with a limited amount of data by the fitness 

function, as described in Thread-reinforcer\cite{ct13}. 

During this step, the OS-level factors are analysed to 

determine whether the selected thread count is optimal. 

Then the application is executed with a full load with the 

thread count found in step two. 

The amount of data used during experiments is important 

since too little data will not use all of the processors, but too 

much data will cause the algorithm to take longer to process. 

Because the input data is so little in comparison to its 

original size, the executions take relatively little time. The 

amount of data should be chosen in such a way that it should 

keep all processors busy during executions.  

MRFO has three stages: chain, cyclone, and somersault 

foraging. The following sections explain the mathematical 

representations of these stages, fitness function and 

algorithms used in RMRFO. 

4.1. Intialisation 

At first, the count of the manta rays population and their 

starting positions in the solution search space are initialised. 

Here positions of these manta rays indicate the number of 

threads. 

 

𝑋 = 𝐿𝑏
𝑑 + 𝑅(𝑈𝑏

𝑑 − 𝐿𝑏
𝑑)    (1) 

 

In the search space, the location of the manta ray is denoted 

as X. L and U represent the lower and upper limits, and a 

random variable, R is defined in the range [0, 1]. 

4.2. Chain Foraging 

Manta rays detect the location of plankton in this step and 

travel in their direction. Even though the good solution of 

RMRFO is not defined, the algorithm considers the position 

with high concentration of food as the good solution. Manta 

rays travel from head to tail to form a foraging chain. The 

mathematical formula for chain foraging is represented by : 

 

𝑋(𝑡 + 1) =

{
 
 
 

 
 
 𝑋𝑖

𝑑(𝑡) + 𝑅1 (
(𝑋𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑋𝑖
𝑑(𝑡)) +

𝛼(𝑋𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡))
) ,

𝑖 = 1

𝑋𝑖
𝑑(𝑡) + 𝑅1 (

(𝑋𝑖−1
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡)) +

𝛼 (𝑋𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡))
) ,

𝑖 = 2, … . , 𝑁

(2) 

 

Here, the location of (i-1)th manta rays is denoted as Xi-1(t) 

and also the location of ith manta ray is denoted as Xi(t). R1 

represents a random number in the range [0,1] and the high 

concentration place of food is denoted as Xbest(t) and the 

constant is denoted as α that can be given as: 

𝛼 = 2𝑅√|𝑙𝑜𝑔( 𝑅1)|     (3) 

4.3. Cyclone Foraging 

Following equation represents the cyclone foraging. 

 

𝑋𝑖
𝑑(𝑡 + 1) =

{
 
 
 
 

 
 
 
 
𝑋𝑏𝑒𝑠𝑡
𝑑 + 𝑅1 (

(𝑋𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡)) +

𝛽 (𝑋𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡))
) ,

𝑖 = 1

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑅1 (

(𝑋𝑖−1
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡)) +

𝛽 (𝑋𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡))
) ,

𝑖 = 2,… , 𝑁

 (4) 

𝛽 = 2 𝑒𝑥𝑝 (𝑅1 × (
𝑇−𝑡+1

𝑇
)) × 𝑠𝑖𝑛( 2𝜋𝑅1)    (5) 

Here, the maximum number of iterations is denoted as T, the 

weight factor is denoted as beta and the random number is 

denoted as R1 in the range of [0, 1].  

Here, this process offers suitable exploitation to the good 

solution region. Further, to enhance the exploration process, 

this process can be designed by taking an arbitrary location 

as the reference location. 

4.4. Somersault Foraging 

In this process, the individual position can be updated to 

enhance the local ability which can be given as: 

𝑋𝑖
𝑑(𝑡 + 1) = X(𝑡) + 𝑆 (𝑅2𝑋𝑏𝑒𝑠𝑡

𝑑 − 𝑅3𝑋𝑖
𝑑(𝑡)),  (6) 

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, . . . . , 𝑁 

Here, the somersault coefficient is denoted as S which in this 

case is 2. The arbitrary numbers are defined as R2 and R3 

that lie in the range of [0, 1] 

4.5. RMRFO Algorithm 

The proposed optimal threads prediction model has the 

following steps. 

1. N = number of manta rays.  

2. Calculate random positions for all the manta rays 

using Eq. (1).  

3. Xbest = number of cores. 

4. Repeat the following steps until the maximum number 
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of iterations are completed or the optimal solution is 

found. 

a. X(t) = current position of manta ray; R = random 

number between range [0,1]. 

b. For each manta ray 

i. If (R< 0.5) then perform cyclone foraging using 

Eq. (4), else perform chain foraging using Eq. 

(2). 

ii. X(t+1) = new position of manta ray. 

iii. fitness_value = fitness_function (X(t+1)). 

iv. If (fitness_value = 1) then Xbest = X(t+1). 

c. For each manta ray  

i. Perform the somersault foraging using Eq. (6).  

ii. X(t+1) = new position of manta ray. 

iii. fitness_value = fitness_function (X(t+1)). 

iv. If (fitness_value = 1) then Xbest = X(t+1). 

5. Optimal thread count = Xbest. 

 

The Xbest variable holds the optimal thread count. For every 

manta ray, the algorithm executes cyclon foraging at the 

start and chain foraging in later iterations. The fitness 

function determines whether the newly calculated position 

X(t+1) is a better solution and, if so, assigns its value to 

Xbest. The algorithm then executes somersault foraging for 

all of the manta rays. This method is repeated until all 

iterations have been completed or the exit condition has 

been met. 

4.6. The fitness function 

In this study, three PARSEC programs, ferret, swaptions, 

and streamcluster are chosen to analyse and record the 

values of OS factors. These programs are executed with a 

limited number of inputs. In this algorithm five factors 

namely CPU utilisation(CU), context switching rate(CS), 

CPU migration rate(CM) and page faults(PF) and execution 

time(ET) were studied to identify various upper and lower 

thresholds. The thresholds are the values from where the 

performance of these algorithms started to cease. Therefore, 

a software tool that can collect information related to 

various OS factors is required. The perf is a reliable tool for 

analysing multithreaded applications and multi-core system 

performance on Linux. It provides several useful command-

line options for monitoring hardware counters across all 

processors. It collects information about the activities inside 

the processor so that the user can monitor and record the 

performance of the running program. The perf tool provides 

r migrations, page faults, cycles used, instructions per 

second, branches, and branch misses. These are extremely 

useful parameters that have been discussed previously and 

are being used here to see how they relate to thread 

count.eal-time values of CPU utilisation, context switches, 

CPU  

 

Table 1. Effect if thread count on OS-level factors for 

streamcluster program. 

Thread 

count 

CU CW 

(M/sec) 

CM 

(K/sec) 

PF 

(M/sec) 

ET 

(sec) 

6 2.056 0.004 0.128 0.033 1.6807 

7 2.283 0.004 0.113 0.03 1.6994 

10 3.54 0.005 0.069 0.017 1.8912 

12 5.307 0.004 0.139 0.008 2.5849 

13 7.927 0.004 0.233 0.002 7.115 

16 7.715 0.005 0.001 0.002 7.4923 

17 7.618 0.005 0.001 0.002 9.224 

20 7.793 0.005 0.001 0.001 10.1678 

21 7.762 0.005 0.002 0.001 11.9304 

23 8.088 0.005 0.001 0.001 12.0144 

24 8.326 0.005 0.001 0.001 11.7726 

27 8.26 0.005 0.002 0.968 14.3681 

32 8.34 0.005 0.002 0.807 17.1076 

 

The PARSEC has included four types of input datasets: 

simsmall, simmedium, simlarge and native. The 'simsmall' 

is the smallest dataset and the 'native' is the largest dataset 

in the group. To decide various thresholds and exit 

conditions the selected three programs are executed on the 

target hardware with 'simlarge' input types. The programs 

are executed on a 12-core machine and the OS-level factors 

are noted using the perf tool. The effect of thread count on 

OS factors for the streamcluster program is shown in Table 

1. It can be seen that as the number of threads increases, the 

CPU utilisation also increases. It can be also observed that 

context switching rate and CPU migration rate, show a 

significant change when the number of threads exceeds 12. 

The context switching rate is 0.001, which indicates that 

either no context switching occurred during the execution or 

the operating system was unable to schedule the threads 

waiting in the waiting state. In this case, the overheads of 

locks are so high that the program is almost come to a halt, 

resulting in a rapid increase in execution time. At the same 

time, the CPU migration rate is reduced to 0.001, indicating 

that almost no threads are migrated to other CPUs. 

Therefore, if the context switching rate and CPU migration 

rate both fall below 0.001, the execution time increases 

rapidly, and the programmer should not set the number of 

threads greater than this point. 

 

Table 2. Effect if thread count on OS-level factors for 

ferret program. 

Thread 

count 

CU CW 

(M/sec) 

CM 

(K/sec) 

PF 

(M/sec) 

ET 

(sec) 

6 5.102 0.421 0.093 0.013 2.9665 

7 5.149 0.424 0.1 0.013 2.9688 

10 5.07 0.431 0.112 0.013 3.0584 

12 5.121 0.459 0.117 0.013 3.0671 

13 5.122 0.462 0.117 0.013 3.0566 

16 5.1 0.482 0.118 0.013 3.0588 
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17 5.162 0.511 0.12 0.013 3.017 

20 5.127 0.496 0.131 0.013 3.0529 

21 5.095 0.504 0.126 0.013 3.0815 

23 5.107 0.524 0.121 0.013 3.072 

24 5.166 0.523 0.133 0.013 3.0385 

27 5.077 0.569 0.15 0.013 3.1139 

32 5.095 0.573 0.142 0.013 3.0745 

 

Table 2 shows the ferret program's behaviour for different 

thread counts. There is no significant change in context 

switching rate, CPU migration rate, or page faults observed 

during its execution. As a result, these parameters do not 

affect the program's execution time. The execution time is 

increased rapidly up to 12 threads, after which no changes 

are observed. This also implies that if all other parameters 

are constant, the programmer should select the number of 

threads with the highest CPU utilisation. The CPU 

utilisation is at its peak at 14 threads. This proves that, while 

the ferret program can be executed with 12 threads without 

loss, it is preferable to have 14 threads for better 

performance. 

Table 3 shows the behaviour of swaptions. The CPU 

migration, context switching and page fault rates do not 

change significantly during execution. CPU utilisation is 

increased at thread count 16 and reached a peak at 23. We 

can see that the execution time increased at thread count 16, 

but not as much as it did at thread count 23. As a result, 

swaptions should be run with 16 threads because CPU 

utilisation is higher and execution time is not excessively 

increased. 

Table 3. Effect if thread count on OS-level factors for 

swaptions program. 

Thread 

count 

CU CW 

(M/sec) 

CM 

(K/sec) 

PF 

(M/sec) 

ET (s) 

6 2.403 0.402 0.101 0.027 1.8051 

7 2.495 0.385 0.101 0.027 1.7177 

10 2.868 0.51 0.095 0.025 1.6377 

12 2.828 0.411 0.102 0.026 1.5812 

13 2.848 0.003 0.106 0.026 1.5749 

16 3.271 0.025 0.1 0.021 1.6588 

17 3.222 0.018 0.094 0.022 1.6457 

20 3.39 0.042 0.109 0.02 1.698 

21 3.263 0.028 0.108 0.021 1.6513 

23 3.759 0.067 0.112 0.017 1.7652 

24 3.327 0.039 0.121 0.021 1.6682 

27 3.525 0.065 0.136 0.019 1.7333 

32 3.3 0.046 0.131 0.02 1.727 

The programmer can set conditions and threshold values for 

OS-level factors by observing executions of streamcluster, 

ferret and swaption benchmarks. These conditions can be 

implemented in the fitness function, which tells whether or 

not the given thread count is a better solution. 

The following steps are performed to obtain fitness values 

for manta rays 

1. Get the multithreaded application and input data 

for which the thread count is to be determined. 

2. Run the application with the same number of 

threads as indicated by manta rays's present 

position. 

3. Set num_cores = number of cores, Xt = current 

position of a manta ray. 

4. Collect the values for Xcu, Xcs, Xcm, Xpf and Xet. 

5. Ipf = Xpf - Xbest-pf; Icu = Xcu - Xbest-cu; Iet = Xet - Xbest-

et. 

6. If (Xcs<= N0) and (Xcm <= N1) then return 0. 

7. Else if (Ipf > N2 * Xpf ) then return 0. 

8. Else if (Xt > num_cores) and ( Icu > 0 ) and ( Xt < 

Xbest ) and ( Xet < Xbest-et ) then Xbest =Xt; return 1. 

9. Else if ( Icu > N3 * num_cores) ) and ( Iet < N4 * Xet 

)$ then Xbest=Xt; return 1. 

10. Return 0. 

If the fitness function finds a new Xbest it returns 1 else it 

returns 0. Xcu, Xcs, Xcm, Xpf and Xet indicate the CPU 

utilisation, context switching rate, CPU migration rate, page 

fault rate and execution time respectively. Programmer need 

to set values for N0, N1, N2 and N3 after observing the 

executions of sample programs. The lower threshold for CS 

is n0, and the lower threshold for CM is N1. If CU and CM 

are less than the thresholds, the function returns 0. After 

that, it checks for any drastic changes in PF, which means 

that if it is greater than (N2 * Xpf), it returns 0. If the current 

thread count is less than Xbest and CU is greater than Xbest-cu 

and ET is less than Xbest-et, the current thread count becomes 

new Xbest and the function returns 1. Finally, if CU is greater 

than Xbest-cu by N3 times num_cores and no other factors are 

affected and all are under the thresholds, it returns 1. 

5. Results and Discussions 

Table 4. Experimental setup. 

Server Dual Socket Server 

Processor Intel Xeon E5 2603 v3 

Number of Cores 12 

Primary Memory 42GB 

Operating System Linux 

The proposed method was evaluated on an Intel Xeon E5-

2603 v3 server, a 12 cores system. Table 4 shows the 

experimental setup used in this study. Blackscholes, ferret, 

radiosity, swaptions, water_nsquared, water_spatial, x264, 

bodytrack, canneal, freqmine, raytrace, fmm, lu_cb, 

streamcluster and vips are among the 15 PARSEC 

benchmark programs tested using RMRFO. We selected a 

Linux-based system for our research because it provides a 

variety of tools for analysing application behaviour, such as 

perf. After determining the optimal thread count, the 

programs are tested with 'native' type input data, which is a 

large dataset available in the group. The algorithm's 

recommended thread count is found to be correct since all 

programs took less time to execute. 
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Table 5. Values for various variables and calculations 

done by RMRFO for water_spatial program 

 

The results obtained in 16 iterations for water_spatial 

benchmark is shown in Table 5 and Table 4. Table 5 shows 

the calculations done by RMRFO while searching for an 

optimal solution. CH, CC and SS indicate the three phases 

of algorithm: chain, cyclone and somersault respectively. 

The initial best position Xbest is set to an integer number 

equal to the number of cores in the system, which in this 

experiment is 12. The “I” column shows the iteration 

number and the “TY” column shows the type of foraging 

technique used by manta rays. The random numbers “R1” is 

used by cyclone and chain foraging while the random 

numbers “R2” and “R3” are used by somersault foraging. 

The columns “ID” and “PO” indicate the manta rays’s 

identification number, number of threads and execution 

time respectively. The “F” column indicates whether the 

current manta ray is fit for the optimal solution. A value of 

1 in this column indicates that a new solution is found. 

 

Table 6. Values obtained by fitness functions for OS-level 

factors for different number of threads 

I N CU 
CW 

(M/sec) 

CM 

(K/sec) 

PF 

(M/sec) 
ET (s) 

0 12 3.714 0.258 0.046 0.012 2.667 

1 27 3.942 0.306 0.065 0.012 2.537 

2 16 3.916 0.265 0.054 0.012 2.533 

3 17 3.744 0.269 0.053 0.012 2.686 

4 12 3.714 0.258 0.046 0.012 2.667 

5 5 2.663 0.235 0.047 0.013 3.627 

6 14 3.61 0.264 0.049 0.012 2.76 

7 24 3.943 0.298 0.062 0.012 2.536 

8 20 3.953 0.279 0.058 0.012 2.523 

9 23 3.629 0.283 0.056 0.012 2.778 

10 10 3.563 0.251 0.045 0.012 2.776 

11 9 3.198 0.25 0.047 0.013 3.053 

12 17 3.744 0.269 0.053 0.012 2.686 

13 11 3.267 0.254 0.045 0.012 3.058 

14 12 3.71 0.258 0.046 0.012 2.667 

15 12 3.71 0.258 0.046 0.012 2.667 

 

The results obtained in 16 iterations for water_spatial 

benchmark is shown in Table 5 and Table 4. Table 5 shows 

the calculations done by RMRFO while searching for an 

optimal solution. CH, CC and SS indicate the three phases 

of algorithm: chain, cyclone and somersault respectively. 

The initial best position Xbest is set to an integer number 

equal to the number of cores in the system, which in this 

experiment is 12. The “I” column shows the iteration 

number and the “TY” column shows the type of foraging 

technique used by manta rays. The random numbers “R1” is 

used by cyclone and chain foraging while the random 

numbers “R2” and “R3” are used by somersault foraging. 

The columns “ID” and “PO” indicate the manta rays’s 

identification number, number of threads and execution 

time respectively. The “F” column indicates whether the 

current manta ray is fit for the optimal solution. A value of 

1 in this column indicates that a new solution is found.  

Table 6 shows calculations done by the fitness function for 

the same program. The Xbest is initially set to 12 with a CU 

of 3.714. The Xbest is changed to 27 in the next iteration 

because it has a higher CU value than the current Xbest-cu. 

The algorithm discovered a better solution with 24 threads 

in the seventh iteration. In this case, the reason for selecting 

the said thread count is the higher CU value. In the following 

iteration, number 20 is chosen as Xbest because it has a better 

CU and smaller ET than the corresponding values of the 

current Xbest and all other parameters are almost unchanged. 

Finally, the algorithm returns the number 20 as the optimal 

solution which is much greater than the number of 

processors. 

The performance of a parallel program is measured in terms 

of speedup. If a sequential program on a single core takes 

T(1) seconds to complete and a parallel version of the same 

program with N number of threads takes T(N) seconds, then 

speedup, S(N) is defined as 

 

S(N) = T(1) / T(N)   (7) 

 
 

 

I TY R1 R2 R3 ID PO F 

0 IN     12 1 

1 CC 0.707   1 27 1 

2 CC 0.17   2 16 0 

3 CC 0.066   3 17 0 

4 CC 0.902   4 12 0 

5 SS  0.731 0.73 1 5 0 

6 SS  0.241 0.258 2 14 0 

7 SS  0.637 0.059 3 24 1 

8 SS  0.55 0.244 4 20 1 

9 CH 0.837   1 23 0 

10 CH 0.063   2 10 0 

11 CH 0.083   3 9 0 

12 CH 0.392   4 17 0 

13 SS  0.598 0.819 1 11 0 

14 SS  0.333 0.371 2 12 0 

15 SS  0.385 0.856 3 12 0 

16 SS  0.985 0.715 4 15 0 
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Table 7. Performance comparisons of PARSEC programs 

 

 

 

 

 

 

 

 

 

 

 

The speedup is calculated for all the benchmark programs 

to estimate the prediction accuracy of the proposed 

RMRFO prediction model. The speedup obtained with the 

new thread count is compared to the system's best thread 

count as shown in Table 7. Here N is the thread count 

obtained using RMRFO and considered an optimal 

solution. The improvement(I) in a speedup in RMRFO 

over the num_cores is defined as 

 

I = (S(N) - S(num_cores)) / S(num_cores)  (8) 

where, num_cores = number of cores. 

 

Seven of the fifteen programs tested from the benchmark 

had optimal thread counts greater than the number of 

processors in the system. Table 7 shows these programs 

and their speedup comparisons. We can see that swaptions 

have an optimal thread count of 23, with a more than 11.57 

per cent improvement when compared to S(12). The water 

spatial and x264 programs both show a 5% improvement. 

Radiosity and water_nsquared have seen average 

improvements. There is no improvement in blackscholes 

and ferret, even though the algorithm suggested a thread 

count greater than 12, implying that it is safe to run these 

programs with the 27 and 14 threads. 

Figure 4 shows the comparison of speedups between S(N) 

and S(12). The graph clearly shows that the speedup 

obtained from optimal thread count is greater than if the 

program was run with the number of threads equal to the 

number of cores. The graph in Figure 5 compares the 

number of iterations taken by the RMRFO and Thread-

reinforcer to achieve the optimal thread count. The 

RMRFO has a fixed number of iterations, whereas the 

Thread-reinforcer starts with two threads and adds one 

thread in each iteration until it reaches the optimal count. 

The RMRFO in our study has taken 16 iterations. 

Therefore, if the number of processors is more than 16, the 

RMRFO will always perform better than Thread-

reinforcer. 

Table 8 lists the eight PARSEC programs for which the 

RMRFO has recommended a thread count equal to the 

number of processors. The freqmine has the maximum 

speedup of about 10, whereas raytrace and canneal have 

the lowest speedup of about 3. Except for streamcluster, 

all applications exhibit maximum CPU utilisation and 

minimal execution time at the optimal thread count. In the 

case of streamcluster, the context switching rate and CPU 

migration rate are below 0.001 for the number of threads 

more than 12. 

 

Sr. No. Benchmark 

Program 

T(1) T(12) S(12) N T(N) S(N) I (%) 

1 blackscholes (bs) 297.05 57.67 5.16 27 57.53 5.17 0.2 

2 ferret (ft) 559.56 62.37 8.98 14 62.28 8.99 0.12 

3 radiosity (rs) 300.34 272.1 1.11 17 266.6 1.13 1.81 

4 swaptions (sw) 493.08 48.91 10.09 16 43.8 11.26 11.57 

5 water nsquared 

(wn) 

656.71 73.86 8.9 20 71.58 9.18 3.15 

6 water spatial (ws) 268.5 38.15 7.04 20 36.36 7.39 4.98 

7 x264 (x) 221.55 20.25 10.95 27 19.2 11.54 5.39 

Figure 4 Comparisons of speedups obtained between optimal 

thread count and threads equal to number of cores. 

Figure 1. Comparisons of number of iterations performed by 

the RMRFO and Thread-reinforcer to obtain optimal thread 

count. 
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Table 8. list of the eight PARSEC programs for which the 

RMRFO has recommended a thread count equal to the 

number of processors and their performance. 

 

6. Conclusion 

The simulation results show that the proposed RMRFO 

model explores the solution space and finds optimal 

solutions efficiently compared to the original Thread-

reinforcer algorithm. In this study, the fitness function 

uses CPU utilisation, context switching rate, CPU 

migration rate, page fault rate and execution time to 

determine fitness value. The user must first run the 

programs with a small amount of data before running them 

with the actual input data to collect values of these factors. 

The fitness function uses streamcluser, ferret, and 

swaptions programs to determine various conditions and 

thresholds for the target hardware. We also discovered 

that 7 of the 15 programs examined have a higher optimal 

thread count than the number of processors. This method 

can be extended in the future by utilising deep learning 

strategies to analyse OS-level factors in real-time. 
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