

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 17–26 | 17

Reinforced Manta Ray Foraging Optimiser for Determining the

Optimal Number of Threads in Multithreaded Applications

S H Malave1, S K Shinde2

Submitted: 08/09/2022 Accepted: 26/12/2022

Abstract: Thread management affects operating system factors, resulting in execution time delays. These factors may improve or degrade

depending on the design of the program and the number of threads. Therefore, for any multithreaded application, changes in these factors

indicate whether the selected thread count is appropriate or not. This paper proposes a method that combines manta ray foraging

optimisation and the Thread-reinforcer algorithm. The new algorithm predicts the best thread count by using three manta ray foraging

strategies: chain, cyclone, and somersault; however, it selects the thread count with the highest fitness value as the best solution. The fitness

function computes the fitness value by analysing OS factors such as CPU utilisation, context switching rate, CPU migration rate, page fault

rate, and execution time. The multithreaded applications are run multiple times with a small data size to collect values for these factors.

We tested the proposed work on fifteen programs in the PARSEC 3.0 benchmark suit. The results show that the optimal thread count for

seven programs is greater than the number of processors and equal to the number of processors for the remaining eight programs. This

study also demonstrates that the proposed approach takes less time to determine the solution than the Thread-reinforcer.

Keywords: Parallel programs, threads, optimisation, nature-inspired.

1. Introduction

In high-performance computing, parallel programs try to

use most of the cores available in the machine to complete

the execution of tasks efficiently. The programmers suggest

the optimal number of threads before executing the program

on the target machine. They devote a significant amount of

time to understanding the issues in parallel programs and

determining the count of threads for which the program can

take less time to execute. The multithreaded applications are

designed to take advantage of high-performance computing

platforms to execute complex programs efficiently. In

today’s world, computers ranging from desktops to

mainframes use multiprocessor CPUs. Many applications

are developed using various parallel programming

languages and libraries to solve complex real-world

problems [1][2][3][4].

Multithreading is a technique in which an application can

have several threads that can run on different processors at

the same time [5]. The programmers should divide the code

into small independent sections and allocate them to

separate threads for execution. They mostly use a fork-join

model [6] to convert the serial programs into parallel

programs. In the fork-join model, a section of the program

where instructions can be executed independently is

searched, and then threads are created at runtime using

programming libraries like OpenMP. The threads are

terminated as soon as they finish the execution of their

assigned sections except for the main thread, which

continues to execute the remainder of the program.

Researchers have developed many tools [7][8] to detect

parallelism in serial programs, but these tools do not help to

determine how many threads are necessary at runtime. The

general rule is to create threads in proportion to the number

of processors in the system. This is true for a few CPU-

intensive applications but does not apply to memory and IO-

intensive applications. As a result, programmers must

perform some manual work and rely on profiling tools to

determine the number of threads. If they choose the wrong

number, it can have a negative impact on the execution time.

Thread management affects Operating System (OS) level

factors such as shared memory, semaphores locks,

scheduling time, waiting time, CPU migration, instructions

per second, context switching, page fault, CPU utilisation,

and so on [9][10]. It adds the overheads associated with

these factors during the execution. These factors may reveal

the internal working of the threads and help the programmer

__

1Research Scholar

Lokmanya Tilak College of Engineering, Koparkhirane, Navi Mumbai

sachinmalave@gmail.com
2Professor

Lokmanya Tilak College of Engineering, Koparkhirane, Navi Mumbai

skshinde@rediffmail.com

1 Lokmanya Tilak College of Engineering, Navi Mumbai-400709, INDIA

ORCID ID : 0000-0002-1731-7536
2 Lokmanya Tilak College of Engineering, Navi Mumbai-400709, INDIA

ORCID ID : 0000-0002-6709-3083

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 17–26 | 18

understand their behaviour. Furthermore, until the

programmer is sure of the number of threads required for the

given application to run on the target hardware, no more

threads than the number of cores should be tried. As a result,

parallel programmers need a framework or technique that

can analyse the activities of threads in multithreaded

programs and recommend the optimal thread count.

The CPU utilisation provides details about how much of the

CPU is used by the running program during its execution. A

decrease in this factor indicates that the threads are not fully

utilising the available CPUs and are spending more time in

the waiting state than in the running state.

The operating system uses context switching to suspend

thread execution and assign its processor to another thread.

The earlier thread must wait in a ready queue while the other

one is running in the system. Context switching is useful in

systems where multiple tasks must be performed

concurrently, but it has a negative impact on parallel

programming as it adds the waiting time to the total

execution time.

CPU migrations occur when a thread is ready and a CPU

other than the one where it was scheduled previously is

available for execution. In this case, OS schedules the thread

on the new CPU and resumes its execution. It causes the OS

to reload the program and its data into the cache and

memory close to the allocated CPU. This adds unnecessary

delay to the program and increases the total execution time.

It is observed that as the number of threads exceeds the

number of cores, the migration rate begins to increase.

The page fault usually causes an exception, which is used to

inform the operating system that the 'pages' from memory

space must be loaded to continue execution. The program

resumes normal function once all of the contents have been

loaded into physical memory. This generally happens in the

background and does not affect the normal execution.

However, a rapid increase in page faults may indicate that

the program is not behaving properly and prolong the

execution time due to a lack of data or code inside the

memory.

Determining optimal thread count is an optimisation

problem that can be solved using optimisation algorithms.

The researchers have developed many nature-inspired

algorithms to solve problems in the engineering domain,

such as ant colony, particle swarm, manta ray foraging,

symbiotic search, bird-swarm and so on

[11][12][13][14][15] manta ray foraging optimisation is a

technique that simulates the behaviour of manta rays. Thus,

rather than wasting time analysing the OS factors for the

programs manually, it is recommended to use optimisation

algorithms based on nature-inspired techniques. These

algorithms can find the best solution in a known search

space by mimicking the nature of organisms. The organisms

travel to various locations and attempt to arrive at the best

point as quickly as possible [16].

2. Motivations and Problem Statement

When we run a program with a single thread, it gets

executed serially on a single processor. When we run it with

two threads, we reduce the execution time by half by

dividing the task into two equal sub-tasks. Thus, it is

possible to reduce execution time by increasing the number

of threads. Figure 1, Figure 2, and Figure 3 show the

execution time taken by the three PARSEC benchmark [17]

programs: streamcluster, ferret, and swaptions. We executed

these programs at full load on a 12-core machine and

recorded their execution time. The sub-figure (a) depicts the

execution time for thread counts ranging from 2 to 24,

whereas the sub-figure (b) depicts the zoomed-in portion of

sub-figure (a) where the programs appear to be non-

scalable.

Figure 1 (a) and Figure 1 (b) show that the streamcluster

scales well up to 12 threads. After that, when the number of

threads exceeds the number of cores, the execution time

increases dramatically, demonstrating that the user should

not run this program with more threads than the number of

processors available in the system.

In Figure 2 (a) and Figure 2 (b), we can observe that beyond

12 threads, the performance of the ferret remains consistent,

but the lowest execution time is recorded at 14 threads.

However, in this case, even if the user decides to run the

program for more threads than the number of cores, it does

not affect the execution time.

Figure 3 (a) and Figure 3 (b) show that the swaptions have

the shortest execution time with 16 threads, which is not the

number of cores in the system. As a result, if the

programmer decides to run it with 12 threads, it will take

longer to complete than if it is run with 16 threads. As a

result, there are programs with optimal thread counts that

exceed the number of processors.

Figure 1 (a) Streamcluster benchmark execution time with thread counts

ranging from 2 to 24.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 17–26 | 19

Figure 1 (b) Streamcluster benchmark execution time with thread counts

ranging from 10 to 24.

Figure 2 (a) Ferret benchmark execution time with thread counts ranging

from 2 to 24.

Figure 3 (a) Swaptions benchmark execution time with thread counts

ranging from 2 to 24.

Figure 3 (b). Swaptions benchmark execution time with thread counts

ranging from 10 to 24.

The execution time depends on how OS-level factors

respond to running threads. Therefore, monitoring these

factors is essential for finding the optimal count. One needs

to change the thread count in each run and monitor activities

to obtain these factors. If the method is applied manually,

the user will undoubtedly lose a significant amount of time

repeating the executions actively. Therefore, if a computer

algorithm is developed to analyse these factors and predict

the number of threads, the user can find the optimal thread

count for multithreaded applications without wasting time.

3. Related Work

Pusukuri, et al [18] developed a simple technique called

thread reinforcer for proactively calculating the required

number of threads without redesigning the program or

changing Operating System rules. Since calculating the

proper number of threads for a multithreaded program

periodically is a difficult task. In their study, a few OS

factors are studied to get optimal thread count. Furthermore,

architectural specifications such as memory management

issues are not considered here.

Qin et al [19]. has presented a technique that delivers both

fast response time and throughput for programs with

threads. Based on the real-time system’s load, the running

programs decide how many cores they require for execution.

In this technique, the mapping between running threads and

processor is stored properly which makes it to easily manage

and control the threads and cores in the system. A central

core arbiter manages the CPU allocations for the threads of

all the programs running the system.

A technique called RPPM (rapid performance prediction of

multithreaded workloads) was proposed in [20] on

multicore processors. For multi-threaded applications, an

automatic logical performance design was developed on

multicore hardware. To detect performance on multicore

platforms, microarchitecture-independent features are

obtained for the multi-threaded workload.

AbdurRouf, et al [21] analyse the distribution of multiple

threads on available processors. The OpenMP style parallel

programming API is being used to create and spawn all the

threads. The performance parameters are checked in single

as well as multithreaded applications. They found in their

study that increasing the number of threads proportional to

the number of processors reduces program execution time

on different multicore architectures. Similarly, their studies

suggest that performance in these programs improves when

thread allocation is done properly. The thread count should

depend on the number of processors and cores in the

machine, and the programmer should spawn threads equal

to the processors available for use.

An energy-efficient model based on optimisation techniques

was introduced in [22] for parallel applications. This

proposed method concentrates on the DVFS (dynamic

voltage and frequency scaling) which can be for many

platforms. To capture the energy efficacy, mathematical

models were designed. Moreover, the effect of the number

of threads performing a multithreaded application was

studied.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 17–26 | 20

4. Proposed Methodology

Manta rays forage in groups and try to gather the maximum

food [13]. They choose a location systematically that has

more concentration of food. This type of behaviour can be

simulated to develop an algorithm for finding the best

solution in the available search space. The algorithm should

use a fixed number of manta rays to move around in the

search space and when a new position is discovered, it

should be evaluated for suitability. As a result, a fitness

function is also required. Here, the fitness function runs the

application for the recommended number of threads and

records the values for the various OS-level factors. These

factors may improve or deteriorate depending on how the

operating system reacts to the program.

The Reinforced Manta Ray Foraging Optimization

(RMRFO) algorithm presented in this paper works in two

steps. In the first step, the Thread count is obtained using

manta ray foraging. In a second step, the program is run for

a short period or with a limited amount of data by the fitness

function, as described in Thread-reinforcer\cite{ct13}.

During this step, the OS-level factors are analysed to

determine whether the selected thread count is optimal.

Then the application is executed with a full load with the

thread count found in step two.

The amount of data used during experiments is important

since too little data will not use all of the processors, but too

much data will cause the algorithm to take longer to process.

Because the input data is so little in comparison to its

original size, the executions take relatively little time. The

amount of data should be chosen in such a way that it should

keep all processors busy during executions.

MRFO has three stages: chain, cyclone, and somersault

foraging. The following sections explain the mathematical

representations of these stages, fitness function and

algorithms used in RMRFO.

4.1. Intialisation

At first, the count of the manta rays population and their

starting positions in the solution search space are initialised.

Here positions of these manta rays indicate the number of

threads.

𝑋 = 𝐿𝑏
𝑑 + 𝑅(𝑈𝑏

𝑑 − 𝐿𝑏
𝑑) (1)

In the search space, the location of the manta ray is denoted

as X. L and U represent the lower and upper limits, and a

random variable, R is defined in the range [0, 1].

4.2. Chain Foraging

Manta rays detect the location of plankton in this step and

travel in their direction. Even though the good solution of

RMRFO is not defined, the algorithm considers the position

with high concentration of food as the good solution. Manta

rays travel from head to tail to form a foraging chain. The

mathematical formula for chain foraging is represented by :

𝑋(𝑡 + 1) =

{

 𝑋𝑖

𝑑(𝑡) + 𝑅1 (
(𝑋𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑋𝑖
𝑑(𝑡)) +

𝛼(𝑋𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡))
) ,

𝑖 = 1

𝑋𝑖
𝑑(𝑡) + 𝑅1 (

(𝑋𝑖−1
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡)) +

𝛼 (𝑋𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡))
) ,

𝑖 = 2, … . , 𝑁

(2)

Here, the location of (i-1)th manta rays is denoted as Xi-1(t)

and also the location of ith manta ray is denoted as Xi(t). R1

represents a random number in the range [0,1] and the high

concentration place of food is denoted as Xbest(t) and the

constant is denoted as α that can be given as:

𝛼 = 2𝑅√|𝑙𝑜𝑔(𝑅1)| (3)

4.3. Cyclone Foraging

Following equation represents the cyclone foraging.

𝑋𝑖
𝑑(𝑡 + 1) =

{

𝑋𝑏𝑒𝑠𝑡
𝑑 + 𝑅1 (

(𝑋𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡)) +

𝛽 (𝑋𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡))
) ,

𝑖 = 1

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑅1 (

(𝑋𝑖−1
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡)) +

𝛽 (𝑋𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑋𝑖

𝑑(𝑡))
) ,

𝑖 = 2,… , 𝑁

 (4)

𝛽 = 2 𝑒𝑥𝑝 (𝑅1 × (
𝑇−𝑡+1

𝑇
)) × 𝑠𝑖𝑛(2𝜋𝑅1) (5)

Here, the maximum number of iterations is denoted as T, the

weight factor is denoted as beta and the random number is

denoted as R1 in the range of [0, 1].

Here, this process offers suitable exploitation to the good

solution region. Further, to enhance the exploration process,

this process can be designed by taking an arbitrary location

as the reference location.

4.4. Somersault Foraging

In this process, the individual position can be updated to

enhance the local ability which can be given as:

𝑋𝑖
𝑑(𝑡 + 1) = X(𝑡) + 𝑆 (𝑅2𝑋𝑏𝑒𝑠𝑡

𝑑 − 𝑅3𝑋𝑖
𝑑(𝑡)), (6)

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, , 𝑁

Here, the somersault coefficient is denoted as S which in this

case is 2. The arbitrary numbers are defined as R2 and R3

that lie in the range of [0, 1]

4.5. RMRFO Algorithm

The proposed optimal threads prediction model has the

following steps.

1. N = number of manta rays.

2. Calculate random positions for all the manta rays

using Eq. (1).

3. Xbest = number of cores.

4. Repeat the following steps until the maximum number

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 17–26 | 21

of iterations are completed or the optimal solution is

found.

a. X(t) = current position of manta ray; R = random

number between range [0,1].

b. For each manta ray

i. If (R< 0.5) then perform cyclone foraging using

Eq. (4), else perform chain foraging using Eq.

(2).

ii. X(t+1) = new position of manta ray.

iii. fitness_value = fitness_function (X(t+1)).

iv. If (fitness_value = 1) then Xbest = X(t+1).

c. For each manta ray

i. Perform the somersault foraging using Eq. (6).

ii. X(t+1) = new position of manta ray.

iii. fitness_value = fitness_function (X(t+1)).

iv. If (fitness_value = 1) then Xbest = X(t+1).

5. Optimal thread count = Xbest.

The Xbest variable holds the optimal thread count. For every

manta ray, the algorithm executes cyclon foraging at the

start and chain foraging in later iterations. The fitness

function determines whether the newly calculated position

X(t+1) is a better solution and, if so, assigns its value to

Xbest. The algorithm then executes somersault foraging for

all of the manta rays. This method is repeated until all

iterations have been completed or the exit condition has

been met.

4.6. The fitness function

In this study, three PARSEC programs, ferret, swaptions,

and streamcluster are chosen to analyse and record the

values of OS factors. These programs are executed with a

limited number of inputs. In this algorithm five factors

namely CPU utilisation(CU), context switching rate(CS),

CPU migration rate(CM) and page faults(PF) and execution

time(ET) were studied to identify various upper and lower

thresholds. The thresholds are the values from where the

performance of these algorithms started to cease. Therefore,

a software tool that can collect information related to

various OS factors is required. The perf is a reliable tool for

analysing multithreaded applications and multi-core system

performance on Linux. It provides several useful command-

line options for monitoring hardware counters across all

processors. It collects information about the activities inside

the processor so that the user can monitor and record the

performance of the running program. The perf tool provides

r migrations, page faults, cycles used, instructions per

second, branches, and branch misses. These are extremely

useful parameters that have been discussed previously and

are being used here to see how they relate to thread

count.eal-time values of CPU utilisation, context switches,

CPU

Table 1. Effect if thread count on OS-level factors for

streamcluster program.

Thread

count

CU CW

(M/sec)

CM

(K/sec)

PF

(M/sec)

ET

(sec)

6 2.056 0.004 0.128 0.033 1.6807

7 2.283 0.004 0.113 0.03 1.6994

10 3.54 0.005 0.069 0.017 1.8912

12 5.307 0.004 0.139 0.008 2.5849

13 7.927 0.004 0.233 0.002 7.115

16 7.715 0.005 0.001 0.002 7.4923

17 7.618 0.005 0.001 0.002 9.224

20 7.793 0.005 0.001 0.001 10.1678

21 7.762 0.005 0.002 0.001 11.9304

23 8.088 0.005 0.001 0.001 12.0144

24 8.326 0.005 0.001 0.001 11.7726

27 8.26 0.005 0.002 0.968 14.3681

32 8.34 0.005 0.002 0.807 17.1076

The PARSEC has included four types of input datasets:

simsmall, simmedium, simlarge and native. The 'simsmall'

is the smallest dataset and the 'native' is the largest dataset

in the group. To decide various thresholds and exit

conditions the selected three programs are executed on the

target hardware with 'simlarge' input types. The programs

are executed on a 12-core machine and the OS-level factors

are noted using the perf tool. The effect of thread count on

OS factors for the streamcluster program is shown in Table

1. It can be seen that as the number of threads increases, the

CPU utilisation also increases. It can be also observed that

context switching rate and CPU migration rate, show a

significant change when the number of threads exceeds 12.

The context switching rate is 0.001, which indicates that

either no context switching occurred during the execution or

the operating system was unable to schedule the threads

waiting in the waiting state. In this case, the overheads of

locks are so high that the program is almost come to a halt,

resulting in a rapid increase in execution time. At the same

time, the CPU migration rate is reduced to 0.001, indicating

that almost no threads are migrated to other CPUs.

Therefore, if the context switching rate and CPU migration

rate both fall below 0.001, the execution time increases

rapidly, and the programmer should not set the number of

threads greater than this point.

Table 2. Effect if thread count on OS-level factors for

ferret program.

Thread

count

CU CW

(M/sec)

CM

(K/sec)

PF

(M/sec)

ET

(sec)

6 5.102 0.421 0.093 0.013 2.9665

7 5.149 0.424 0.1 0.013 2.9688

10 5.07 0.431 0.112 0.013 3.0584

12 5.121 0.459 0.117 0.013 3.0671

13 5.122 0.462 0.117 0.013 3.0566

16 5.1 0.482 0.118 0.013 3.0588

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 17–26 | 22

17 5.162 0.511 0.12 0.013 3.017

20 5.127 0.496 0.131 0.013 3.0529

21 5.095 0.504 0.126 0.013 3.0815

23 5.107 0.524 0.121 0.013 3.072

24 5.166 0.523 0.133 0.013 3.0385

27 5.077 0.569 0.15 0.013 3.1139

32 5.095 0.573 0.142 0.013 3.0745

Table 2 shows the ferret program's behaviour for different

thread counts. There is no significant change in context

switching rate, CPU migration rate, or page faults observed

during its execution. As a result, these parameters do not

affect the program's execution time. The execution time is

increased rapidly up to 12 threads, after which no changes

are observed. This also implies that if all other parameters

are constant, the programmer should select the number of

threads with the highest CPU utilisation. The CPU

utilisation is at its peak at 14 threads. This proves that, while

the ferret program can be executed with 12 threads without

loss, it is preferable to have 14 threads for better

performance.

Table 3 shows the behaviour of swaptions. The CPU

migration, context switching and page fault rates do not

change significantly during execution. CPU utilisation is

increased at thread count 16 and reached a peak at 23. We

can see that the execution time increased at thread count 16,

but not as much as it did at thread count 23. As a result,

swaptions should be run with 16 threads because CPU

utilisation is higher and execution time is not excessively

increased.

Table 3. Effect if thread count on OS-level factors for

swaptions program.

Thread

count

CU CW

(M/sec)

CM

(K/sec)

PF

(M/sec)

ET (s)

6 2.403 0.402 0.101 0.027 1.8051

7 2.495 0.385 0.101 0.027 1.7177

10 2.868 0.51 0.095 0.025 1.6377

12 2.828 0.411 0.102 0.026 1.5812

13 2.848 0.003 0.106 0.026 1.5749

16 3.271 0.025 0.1 0.021 1.6588

17 3.222 0.018 0.094 0.022 1.6457

20 3.39 0.042 0.109 0.02 1.698

21 3.263 0.028 0.108 0.021 1.6513

23 3.759 0.067 0.112 0.017 1.7652

24 3.327 0.039 0.121 0.021 1.6682

27 3.525 0.065 0.136 0.019 1.7333

32 3.3 0.046 0.131 0.02 1.727

The programmer can set conditions and threshold values for

OS-level factors by observing executions of streamcluster,

ferret and swaption benchmarks. These conditions can be

implemented in the fitness function, which tells whether or

not the given thread count is a better solution.

The following steps are performed to obtain fitness values

for manta rays

1. Get the multithreaded application and input data

for which the thread count is to be determined.

2. Run the application with the same number of

threads as indicated by manta rays's present

position.

3. Set num_cores = number of cores, Xt = current

position of a manta ray.

4. Collect the values for Xcu, Xcs, Xcm, Xpf and Xet.

5. Ipf = Xpf - Xbest-pf; Icu = Xcu - Xbest-cu; Iet = Xet - Xbest-

et.

6. If (Xcs<= N0) and (Xcm <= N1) then return 0.

7. Else if (Ipf > N2 * Xpf) then return 0.

8. Else if (Xt > num_cores) and (Icu > 0) and (Xt <

Xbest) and (Xet < Xbest-et) then Xbest =Xt; return 1.

9. Else if (Icu > N3 * num_cores)) and (Iet < N4 * Xet

)$ then Xbest=Xt; return 1.

10. Return 0.

If the fitness function finds a new Xbest it returns 1 else it

returns 0. Xcu, Xcs, Xcm, Xpf and Xet indicate the CPU

utilisation, context switching rate, CPU migration rate, page

fault rate and execution time respectively. Programmer need

to set values for N0, N1, N2 and N3 after observing the

executions of sample programs. The lower threshold for CS

is n0, and the lower threshold for CM is N1. If CU and CM

are less than the thresholds, the function returns 0. After

that, it checks for any drastic changes in PF, which means

that if it is greater than (N2 * Xpf), it returns 0. If the current

thread count is less than Xbest and CU is greater than Xbest-cu

and ET is less than Xbest-et, the current thread count becomes

new Xbest and the function returns 1. Finally, if CU is greater

than Xbest-cu by N3 times num_cores and no other factors are

affected and all are under the thresholds, it returns 1.

5. Results and Discussions

Table 4. Experimental setup.

Server Dual Socket Server

Processor Intel Xeon E5 2603 v3

Number of Cores 12

Primary Memory 42GB

Operating System Linux

The proposed method was evaluated on an Intel Xeon E5-

2603 v3 server, a 12 cores system. Table 4 shows the

experimental setup used in this study. Blackscholes, ferret,

radiosity, swaptions, water_nsquared, water_spatial, x264,

bodytrack, canneal, freqmine, raytrace, fmm, lu_cb,

streamcluster and vips are among the 15 PARSEC

benchmark programs tested using RMRFO. We selected a

Linux-based system for our research because it provides a

variety of tools for analysing application behaviour, such as

perf. After determining the optimal thread count, the

programs are tested with 'native' type input data, which is a

large dataset available in the group. The algorithm's

recommended thread count is found to be correct since all

programs took less time to execute.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 17–26 | 23

Table 5. Values for various variables and calculations

done by RMRFO for water_spatial program

The results obtained in 16 iterations for water_spatial

benchmark is shown in Table 5 and Table 4. Table 5 shows

the calculations done by RMRFO while searching for an

optimal solution. CH, CC and SS indicate the three phases

of algorithm: chain, cyclone and somersault respectively.

The initial best position Xbest is set to an integer number

equal to the number of cores in the system, which in this

experiment is 12. The “I” column shows the iteration

number and the “TY” column shows the type of foraging

technique used by manta rays. The random numbers “R1” is

used by cyclone and chain foraging while the random

numbers “R2” and “R3” are used by somersault foraging.

The columns “ID” and “PO” indicate the manta rays’s

identification number, number of threads and execution

time respectively. The “F” column indicates whether the

current manta ray is fit for the optimal solution. A value of

1 in this column indicates that a new solution is found.

Table 6. Values obtained by fitness functions for OS-level

factors for different number of threads

I N CU
CW

(M/sec)

CM

(K/sec)

PF

(M/sec)
ET (s)

0 12 3.714 0.258 0.046 0.012 2.667

1 27 3.942 0.306 0.065 0.012 2.537

2 16 3.916 0.265 0.054 0.012 2.533

3 17 3.744 0.269 0.053 0.012 2.686

4 12 3.714 0.258 0.046 0.012 2.667

5 5 2.663 0.235 0.047 0.013 3.627

6 14 3.61 0.264 0.049 0.012 2.76

7 24 3.943 0.298 0.062 0.012 2.536

8 20 3.953 0.279 0.058 0.012 2.523

9 23 3.629 0.283 0.056 0.012 2.778

10 10 3.563 0.251 0.045 0.012 2.776

11 9 3.198 0.25 0.047 0.013 3.053

12 17 3.744 0.269 0.053 0.012 2.686

13 11 3.267 0.254 0.045 0.012 3.058

14 12 3.71 0.258 0.046 0.012 2.667

15 12 3.71 0.258 0.046 0.012 2.667

The results obtained in 16 iterations for water_spatial

benchmark is shown in Table 5 and Table 4. Table 5 shows

the calculations done by RMRFO while searching for an

optimal solution. CH, CC and SS indicate the three phases

of algorithm: chain, cyclone and somersault respectively.

The initial best position Xbest is set to an integer number

equal to the number of cores in the system, which in this

experiment is 12. The “I” column shows the iteration

number and the “TY” column shows the type of foraging

technique used by manta rays. The random numbers “R1” is

used by cyclone and chain foraging while the random

numbers “R2” and “R3” are used by somersault foraging.

The columns “ID” and “PO” indicate the manta rays’s

identification number, number of threads and execution

time respectively. The “F” column indicates whether the

current manta ray is fit for the optimal solution. A value of

1 in this column indicates that a new solution is found.

Table 6 shows calculations done by the fitness function for

the same program. The Xbest is initially set to 12 with a CU

of 3.714. The Xbest is changed to 27 in the next iteration

because it has a higher CU value than the current Xbest-cu.

The algorithm discovered a better solution with 24 threads

in the seventh iteration. In this case, the reason for selecting

the said thread count is the higher CU value. In the following

iteration, number 20 is chosen as Xbest because it has a better

CU and smaller ET than the corresponding values of the

current Xbest and all other parameters are almost unchanged.

Finally, the algorithm returns the number 20 as the optimal

solution which is much greater than the number of

processors.

The performance of a parallel program is measured in terms

of speedup. If a sequential program on a single core takes

T(1) seconds to complete and a parallel version of the same

program with N number of threads takes T(N) seconds, then

speedup, S(N) is defined as

S(N) = T(1) / T(N) (7)

I TY R1 R2 R3 ID PO F

0 IN 12 1

1 CC 0.707 1 27 1

2 CC 0.17 2 16 0

3 CC 0.066 3 17 0

4 CC 0.902 4 12 0

5 SS 0.731 0.73 1 5 0

6 SS 0.241 0.258 2 14 0

7 SS 0.637 0.059 3 24 1

8 SS 0.55 0.244 4 20 1

9 CH 0.837 1 23 0

10 CH 0.063 2 10 0

11 CH 0.083 3 9 0

12 CH 0.392 4 17 0

13 SS 0.598 0.819 1 11 0

14 SS 0.333 0.371 2 12 0

15 SS 0.385 0.856 3 12 0

16 SS 0.985 0.715 4 15 0

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 17–26 | 24

Table 7. Performance comparisons of PARSEC programs

The speedup is calculated for all the benchmark programs

to estimate the prediction accuracy of the proposed

RMRFO prediction model. The speedup obtained with the

new thread count is compared to the system's best thread

count as shown in Table 7. Here N is the thread count

obtained using RMRFO and considered an optimal

solution. The improvement(I) in a speedup in RMRFO

over the num_cores is defined as

I = (S(N) - S(num_cores)) / S(num_cores) (8)

where, num_cores = number of cores.

Seven of the fifteen programs tested from the benchmark

had optimal thread counts greater than the number of

processors in the system. Table 7 shows these programs

and their speedup comparisons. We can see that swaptions

have an optimal thread count of 23, with a more than 11.57

per cent improvement when compared to S(12). The water

spatial and x264 programs both show a 5% improvement.

Radiosity and water_nsquared have seen average

improvements. There is no improvement in blackscholes

and ferret, even though the algorithm suggested a thread

count greater than 12, implying that it is safe to run these

programs with the 27 and 14 threads.

Figure 4 shows the comparison of speedups between S(N)

and S(12). The graph clearly shows that the speedup

obtained from optimal thread count is greater than if the

program was run with the number of threads equal to the

number of cores. The graph in Figure 5 compares the

number of iterations taken by the RMRFO and Thread-

reinforcer to achieve the optimal thread count. The

RMRFO has a fixed number of iterations, whereas the

Thread-reinforcer starts with two threads and adds one

thread in each iteration until it reaches the optimal count.

The RMRFO in our study has taken 16 iterations.

Therefore, if the number of processors is more than 16, the

RMRFO will always perform better than Thread-

reinforcer.

Table 8 lists the eight PARSEC programs for which the

RMRFO has recommended a thread count equal to the

number of processors. The freqmine has the maximum

speedup of about 10, whereas raytrace and canneal have

the lowest speedup of about 3. Except for streamcluster,

all applications exhibit maximum CPU utilisation and

minimal execution time at the optimal thread count. In the

case of streamcluster, the context switching rate and CPU

migration rate are below 0.001 for the number of threads

more than 12.

Sr. No. Benchmark

Program

T(1) T(12) S(12) N T(N) S(N) I (%)

1 blackscholes (bs) 297.05 57.67 5.16 27 57.53 5.17 0.2

2 ferret (ft) 559.56 62.37 8.98 14 62.28 8.99 0.12

3 radiosity (rs) 300.34 272.1 1.11 17 266.6 1.13 1.81

4 swaptions (sw) 493.08 48.91 10.09 16 43.8 11.26 11.57

5 water nsquared

(wn)

656.71 73.86 8.9 20 71.58 9.18 3.15

6 water spatial (ws) 268.5 38.15 7.04 20 36.36 7.39 4.98

7 x264 (x) 221.55 20.25 10.95 27 19.2 11.54 5.39

Figure 4 Comparisons of speedups obtained between optimal

thread count and threads equal to number of cores.

Figure 1. Comparisons of number of iterations performed by

the RMRFO and Thread-reinforcer to obtain optimal thread

count.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 17–26 | 25

Table 8. list of the eight PARSEC programs for which the

RMRFO has recommended a thread count equal to the

number of processors and their performance.

6. Conclusion

The simulation results show that the proposed RMRFO

model explores the solution space and finds optimal

solutions efficiently compared to the original Thread-

reinforcer algorithm. In this study, the fitness function

uses CPU utilisation, context switching rate, CPU

migration rate, page fault rate and execution time to

determine fitness value. The user must first run the

programs with a small amount of data before running them

with the actual input data to collect values of these factors.

The fitness function uses streamcluser, ferret, and

swaptions programs to determine various conditions and

thresholds for the target hardware. We also discovered

that 7 of the 15 programs examined have a higher optimal

thread count than the number of processors. This method

can be extended in the future by utilising deep learning

strategies to analyse OS-level factors in real-time.

References

[1]. Navarro, Cristobal, et al. A Survey on Parallel

Computing and its Applications in Data-Parallel

Problems Using GPU Architectures. Com-

munications in Computational Physics; 2013.

[2]. V.A. Chouliaras,T.R. Jacobs, J.L. Nu´n˜ez-Yanez, K.

Manolopoulos, K. Nakos, D. Reisis. Thread-Parallel

MPEG-2 and MPEG-4 Encoders for Shared-Memory

System-On-Chip Multiprocessors. International

Journal of Computers and Applications: Taylor &

Francis; 2007. vol. 29. no. 4. p. 353–361.

[3]. S H Malave. Squid-SMP: Design & implementation of

squid proxy server for the parallel platform.

International Conference on Information

Communication and Embedded Systems

(ICICES2014); 2014. p. 1–6

[4]. Sajib Barua, Ruppa K. Thulasiram, Parimala

Thulasiraman. High- Performance Computing for a

Financial Application Using Fast Fourier Transform.

Quality Technology & Quantitative Management:

Taylor & Francis; 2014. vol 11. no, 1. p. 185–202

[5]. Ching-Kuang Shene. Multithreaded Programming

Can Strengthen an Operating Systems Course.

Computer Science Education: Routledge; 2002. vo.

12. no. 4. p. 275-299

[6]. Sethuraman S. Analysis of Fork-Join Systems.

Network of Queues with Precedence Constraints (1st

ed.) CRC Press; 2022.

[7]. Bhabani Shankar, Prasad Mishra, Satchidananda

Dehuri. Parallel Com- puting Environments: A

Review. IETE Technical Review: Taylor & Francis;

2011. vol. 28 no. 43 p. 240–247.

[8]. Mattson Tim. An introduction to openMP.

Conference: Cluster Com- puting and the Grid, 2001.

Proceedings. First IEEE/ACM International

Symposium; 2001.

[9]. Randell, Brian. Operating Systems: The Problems Of

Performance and Reliability. 1971. p. 281–290.

[10]. Torsten Hoefler,Timo Schneider,Andrew Lumsdaine.

Accurately mea- suring overhead, communication

time and progression of blocking and nonblocking

collective operations at a massive scale. International

Journal of Parallel, Emergent and Distributed

Systems: Taylor & Francis; 2010. vol. 24. no. 4. p.

241–258.

[11]. M. Dorigo, M. Birattari, T. Stutzle, Ant colony

optimization. in IEEE Computational Intelligence

Magazine; 2006. vol. 1. no. 4. p. 28–39.

[12]. Xin-She Yang, Particle Swarm Optimization. in IEEE

Computational Intelligence Magazine. Academic

Press; 2021. chapter 8. p. 111–121.

[13]. Weiguo Zhao, Zhenxing Zhang, Liying Wang. Manta

ray foraging optimization: An effective bio-inspired

optimizer for engineering appli- cations. Engineering

Applications of Artificial Intelligence: 2020. vol. 87.

[14]. Min-Yuan Cheng, Doddy Prayogo. Symbiotic

Organisms Search: A new metaheuristic optimization

algorithm. Computers & Structures; 2014. vol 139. p.

98–112.

[15]. Xian-Bing Meng, X.Z. Gao, et al. A new bio-inspired

optimisation al- gorithm: Bird Swarm Algorithm.

Journal of Experimental & Theoretical Artificial

Intelligence: Taylor & Francis; 2016. vol. 28 no. 4. p.

673–687.

[16]. Sukhpal Singh Gill, Rajkumar Buyya. Bio-Inspired

Algorithms for Big Data Analytics: A Survey,

Taxonomy, and Open Challenges. Big Data Analytics

for Intelligent Healthcare Management, Academic

Press; 2019. p. 1–17

[17]. C. Bienia, S. Kumar, J. P. Singh and K. Li. The

PARSEC benchmark suite: Characterization and

architectural implications. 2008 Interna- tional

Conference on Parallel Architectures and Compilation

Techniques (PACT): IEEE; 2008. p. 72–81.

[18]. Pusukuri Kishore Kumar, Gupta Rajiv, Bhuyan Laxmi

N. Thread Reinforcer: Dynamically Determining

Number of Threads via OS Level Monitoring. IEEE

Computer Society: 2011.

[19]. Qin Henry, et al. Arachne: Core-aware thread

management. 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18). 2018.

[20]. S. De Pestel, S. Van den Steen, S. Akram and L

Sr.

No.

Benchmark T(1) N T(N) S(N)

1 bodytrack 259.04 12 49.37 5.25

2 canneal 335.63 12 116.3

1

2.89

3 freqmine 827.78 12 82.96 9.98

4 raytrace 412.79 12 150.0

8

2.76

5 Fmm 248.64 12 66.28 3.76

6 lu cb 242.12 12 27.42 8.84

7 streamcluster 1030.8

5

12 128.3

6

8.04

8 Vips 190.99 12 23.5 8.13

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 17–26 | 26

Eeckhout. RPPM: Rapid Performance Prediction of

Multithreaded Workloads on Multicore Processors.

2019 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS); 2019, p.

257–267.

[21]. Xin Wei, Liang Ma, Huizhen Zhang, Yong Liu. Multi-

core multi- thread-based optimization algorithm for

large-scale travelling salesman problem. Alexandria

Engineering Journal; 2021. vol. 60. no 1. p. 189–197,

[22]. R. Nath, D. Tullsen. Accurately modelling GPGPU

frequency scaling with the CRISP performance model.

In Emerging Trends in Computer Science and Applied

Computing, Advances in GPU Research and Prac- tice

Morgan Kaufmann. 2017. chapter 18. p. 471-505.[22]

R. Nath, D. Tullsen. Accurately modelling GPGPU

frequency scaling with the CRISP performance model.

In Emerging Trends in Computer Science and Applied

Computing, Advances in GPU Research and Prac- tice

Morgan Kaufmann. 2017. chapter 18. p. 471-505.

