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Abstract: Attacks on mobile devices, such as smartphones and tablets, have been on the rise as their use has grown. Malware attacks are 

some of the most significant threats, resulting in a variety of security issues as well as financial losses. The feature space-restricted malware 

analysis helps to detect malware effectively. The purpose of this research is to find the most useful features of Application Programming 

Interface (API) calls to improve the detection accuracy of Android malware. Two Swarm Intelligence Optimization techniques, namely 

Bald Eagle Search (BES) & Sailfish Optimization (SFO) are evaluated with API Calls to identify the most promising features for Android 

Malware detection. The BES & SFO features selection techniques are assessed using machine learning classifiers such as K-Nearest 

Neighbour (KNN), Decision Tree (DT), Support Vector Machine (SVM), Linear Regression (LR) and Random Forest (RF). 

Experimentation resulted in an accuracy of 98.92% with 21 features out of 100 API call features. 

Keywords: Android Malware, API Calls, Bald Eagle Search, Sailfish Optimization, Feature Selection, Machine Learning 

 

1. Introduction 

The transition from traditional to smart technologies has 

changed the economy. Smart gadgets are currently growing at an 

exponential rate, both for personal and business use. In 2021, 

around 328 million smartphones were sold, according to a Gartner 

report [1][3]. Based on the popularity of smartphones, stakeholders 

have shown a strong desire to develop proprietary mobile operating 

systems (OS) [2]. Android is a leading giant in the 

telecommunications sector and a de facto standard for numerous 

smart phone makers since it is an open source and extensible 

platform. In 2019, With over 70% of the global smartphone market 

share, Android is the most popular platform. [4][6]. Apart from 

smartphones, Android is also gaining ground on smart watches and 

tablets. 

Android is becoming a possible target for cyber threats [5], [7] 

due to its open-source nature. Malware authors are primarily 

motivated to create intricate malware in order to take advantage of 

established OS flaws. Malware is a phrase that refers to a group of 

malicious software variations that are specifically designed (i.e., 

Trojans, Viruses, Adware, Ransomware, and Spyware) to cause 

substantial data and system harm, such as remote control, 

information theft, privacy breaches, and privilege escalation. 

Sophisticated malware is impeccably designed and has the 

potential to completely disrupt the industry. Furthermore, the fact 

that Android malware can have a significant impact on both 

enterprises and end-users continues to fuel malware proliferation 

[8][9]. 

Malware detection on Android smartphones has been attempted 

numerous times [10][12]. Traditional signature-based malware 

detection approaches compare the signature of an APK file to the 

signature of a harmful application in a malware database, 

excluding malware that isn't in the database. In this context, 

enhanced detection algorithms [11] [13] are required for effective 

malware detection [14]. This paper's primary contributions are as 

follows: 

Detecting suspicious APIs to accurately classify Android apps 

as goodware or malware.  

A hybrid classifier combining wrapper-based feature selection 

techniques and machine learning classifiers is designed and 

implemented.  

By penalising the learning process, an objective function for 

swarm intelligence optimization is defined, allowing for the 

efficient identification of near-optimal solutions.  

Using a range of parameters to determine the optimal algorithm 

for predicting Android malware. 

The remaining paper is structured as follows: Section 2 

elucidates the related work, Section describes the methodology, 

experimentation setup is detailed in Section 4, section 5 explains 

the performance analysis and experimental results, and Section 6 

gives out the conclusion & future work. 
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1. RELATED WORK 

In recent years, multiple strategies [15][16] for detecting 

Android malware utilising API calls have made substantial 

progress. Bibi et al. [17] elucidated Gated Recurrent Unit (GRU) 

based Android Malware detection system. A Deep Learning (DL) 

driven architecture is experimented using datasets such as 

AndroZoo, Android Malware Dataset (AMD), etc., and tested 

using multiple evaluation metrics. The results show-cased that 

GRU-based model outperformed other competing models with 

increased accuracy. W. Yuan et al. [18][19] addressed the 

challenge of on-device training for Android Malware detection by 

implementing a light-weight Android Malware detection 

architecture. The model includes Support Vector Machines 

(SVM), AdaBoost, and Deep Learning based architectures. The 

experimentation obtained a robust model with improved accuracy 

and reduced computation time. 

T. Kim et al. [20] studied the multimodal deep learning models 

using similarity-based feature extraction method. The model 

outperformed traditional models w.r.t efficacy of the diverse 

features and feature extraction methods. P. Feng et al. [21][22] 

proposed a dynamic analysis-based ensemble learning method for 

Android Malware detection called EnDroid. The proposed method 

includes feature selection method to remove noisy features for 

learning. The model achieved better outcome in terms of 

classification performance with an improved efficiency in malware 

detection. K. Liu et al. [23] surveyed different research works 

pertaining to Android Malware detection in terms of processing the 

data, selection of features, and machine learning models, etc. 

Similar work comparison is presented in Table. 1. 

 

Paper, Year 
Dataset 

Used 
Classifier 

Feature 

Selection 
Accuracy 

[13], 2021 
Multiple 

Datasets 
CNN - 94.63 

[14], 2019 
Own 

Dataset 
MNN - 98 

[15], 2018 Drebin EnDroid Chi-Square 98.18 

[17], 2019 
Drebin, 

AMD 

A3CM-

DNN 

Static 

Analysis 
98 

[18], 2020 FARM RF K-Means 98.59 

[23], 2018 
Multiple 

Datasets 
FalDroid TF-IDF 97.2 

J. Qiu et al. [24][25] addressed the problem of Malware 

Capability Annotation (MCA) by introducing Automatic 

Capability Annotation for Android Malware (A3CM). A3CM 

extracts features automatically and applies statistical methods for 

feature mapping. Android Malware is identified using a multi-label 

classification technique. The results show-cased that experimented 

methodology outperformed other competitive algorithms in terms 

of accuracy. Q. Han et al. [26][27] developed method called 

Feature transformation based AndRoid Malware detector (FARM) 

to transform features into a new feature domain for efficient 

detection of Android Malware. The FARM confirmed its 

effectiveness by detecting two malwares in VirusTotal that had 

previously been missed by other approaches. 

As per the literature review, several researchers worked on 

different state-of-art [28], [29][30] and advanced techniques [31], 

[32] [33] for detection of malware in Android. The paper suggests 

a method focusing on wrapper-based feature selection techniques 

to identify the influential features for the detection of Android 

Malware. Bald Eagle Search and Sailfish Optimization techniques 

are extensively investigated for feature selection. Multiple 

machine learning classifiers are used for the classification of good 

ware from malware android applications. 

 

2. PROPOSED METHODOLOGY 

Fig. 1 depicts the suggested wrapper-based feature selection 

technique for Android Malware detection using a machine learning 

classifier. The dataset is divided in a 7:3 ratio of train and test sets. 

Initially, all the features are considered and a subset of features are 

selected iteratively using BES and SFO algorithms. The obtained 

reduced feature set is tested for its accuracy in classifying good 

ware applications from malware applications. Finally, the feature 

set with reduced feature dimensionality and improved accuracy is 

chosen for Android Malware detection. 

 

Fig. 1. Architecture of the proposed Android Malware Detection 

System 

When picking a good feature set, feature reduction and feature 

selection are critical in data pre-processing. A strategy for lowering 

the number of features in a feature space is feature reduction, often 

known as dimensionality reduction. Feature reduction reduces 

multicollinearity in the feature population. The feature selection 

technique, on the other hand, determines which aspects of the ML 

model are the most influential. It removes characteristics that are 

either irrelevant or redundant, reducing the performance of the ML 

model. By lowering the processing cost of the model learning 

phase and increasing model understandability, the ML model's 

performance is improved. It decreases the model's training time in 

half and reduces overfitting. 

 

In order to find an optimal solution with an underestimated 

feature set, the objective function used is crucial in converging the 

fitness throughout the optimization. The number of features chosen 

and the error achieved during the machine learning model 

evaluation affect the fitness of the selected feature subset, as 

indicated in Eq. (1). 

𝑓(𝑥) = 𝜏 ∗ 𝑒𝑟𝑟𝑜𝑟 + (1 − 𝜏) ∗  
𝑢−𝑠(𝑙)

𝑢
   (1) 

Where 𝜏 𝜖 [0,1] represents the penalty given to error produced 

during feature subset fitness calculation, and an increase in 𝜏 value 

implies an increase in penalty. The length of the entire feature set 

is denoted by 𝑢, and the length of the solution is denoted by 𝑙. 

3.1 Wrapper-based Bald Eagle Search Optimized Feature 

Selection: 

To validate the co-sequences of each step of hunting, the BES 

algorithm simulates the hunting behaviour of bald eagles. As a 

result, there are three stages to this algorithm: picking the search 

space, searching inside the selected search space, and swooping. 
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Selection: During the select stage, bald eagles identify and select 

the optimal place (in terms of food volume) inside the designated 

search space where they can pursue prey. Eq. (2) is a mathematical 

representation of this behaviour. 

𝑃𝑛𝑒𝑤,𝑖 = 𝑃𝑏𝑒𝑠𝑡 + 𝛼 ∗ 𝑟 (𝑃𝑚𝑒𝑎𝑛 − 𝑃𝑖)   (2)

    

where, 𝛼 𝜖 [1.5, 2], controls the change in position. 𝑟 𝜖 [0, 1] is a 

random number, the current best selected search space is 

represented using 𝑃𝑏𝑒𝑠𝑡, the eagles that have used all the space 

previously is represented using 𝑃𝑚𝑒𝑎𝑛. 

Search: In the search stage, bald eagles look for prey inside a 

predetermined search zone and go in distinct ways within a spiral 

territory to speed up their search. Eq. (3) expresses the optimal 

swoop position mathematically. 

𝑃𝑖,𝑛𝑒𝑤 = 𝑃𝑖 + 𝑦(ⅈ) ∗ (𝑃𝑖 − 𝑃𝑖+1) + 𝑥(ⅈ) ∗ (𝑃𝑖 − 𝑃𝑚𝑒𝑎𝑛)      (3)

                                                             

𝑥(ⅈ) =
𝑥𝑟(ⅈ)

𝑚𝑎𝑥(|𝑥𝑟|)
, 𝑦(ⅈ) =

𝑦𝑟(ⅈ)

𝑚𝑎𝑥(|𝑦𝑟|)
   (4) 

𝑥𝑟(ⅈ) = 𝑟(ⅈ) ∗ 𝑠𝑖𝑛(𝜃(ⅈ)), 𝑦𝑟(ⅈ) = 𝑟(ⅈ) ∗ 𝑐𝑜𝑠(𝜃(ⅈ))      (5)

    

𝜃(ⅈ) = 𝑎 ∗ 𝜋 ∗ 𝑟𝑎𝑛𝑑, 𝑟(ⅈ) = 𝜃(ⅈ) + 𝑅 ∗  𝑟𝑎𝑛𝑑             (6) 

where, 𝑎 𝜖 [5, 10] is used to determine corner between point search 

in center point, no. of cycles is determined with 𝑅 𝜖 [0.5, 2], 

𝑟𝑎𝑛𝑑 𝜖 [0, 1] is a random number. 

 

Algorithm 1: WBESOFS 

Initialization of population (Pi) 

Fitness calculation of the population f(pi) 

While termination condition not met 

For every point i in population 

 𝑃𝑛𝑒𝑤,𝑖 = 𝑃𝑏𝑒𝑠𝑡 + 𝛼 ∗ 𝑟 (𝑃𝑚𝑒𝑎𝑛 − 𝑃𝑖) 

 If 𝑃𝑛𝑒𝑤 < 𝑓(𝑃𝑖) then 

  𝑃𝑖 =  𝑃𝑛𝑒𝑤 

  If 𝑓(𝑃𝑛𝑒𝑤) <  𝑓(𝑃𝑛𝑒𝑤) then 

   𝑃𝑏𝑒𝑠𝑡 =  𝑃𝑛𝑒𝑤 

  End If 

 End If 

End For 

For every point i in population 

 𝑃𝑖,𝑛𝑒𝑤 = 𝑃𝑖 + 𝑦(ⅈ) ∗ (𝑃𝑖 − 𝑃𝑖+1) + 𝑥(ⅈ) ∗

(𝑃𝑖 − 𝑃𝑚𝑒𝑎𝑛) 

 If 𝑃𝑛𝑒𝑤 < 𝑓(𝑃𝑖) then 

  𝑃𝑖 =  𝑃𝑛𝑒𝑤 

  If 𝑓(𝑃𝑛𝑒𝑤) <  𝑓(𝑃𝑛𝑒𝑤) then 

   𝑃𝑏𝑒𝑠𝑡 =  𝑃𝑛𝑒𝑤 

  End If 

 End If 

End For 

For every point i in population 

 𝑃𝑖,𝑛𝑒𝑤 = 𝑟𝑎𝑛𝑑 ∗ 𝑃𝑏𝑒𝑠𝑡 + 𝑥1(ⅈ) ∗ (𝑃𝑖 − 𝐶1 ∗

𝑃𝑚𝑒𝑎𝑛) + 𝑦1(ⅈ) ∗ (𝑃𝑖 − 𝐶2 ∗ 𝑃𝑚𝑒𝑎𝑛) 

 If 𝑃𝑛𝑒𝑤 < 𝑓(𝑃𝑖) then 

  𝑃𝑖 =  𝑃𝑛𝑒𝑤 

  If 𝑓(𝑃𝑛𝑒𝑤) <  𝑓(𝑃𝑛𝑒𝑤) then 

   𝑃𝑏𝑒𝑠𝑡 =  𝑃𝑛𝑒𝑤 

  End If 

 End If 

End For 

𝐾 = 𝐾 + 1 

End While 

Swoop: During the swooping stage, bald eagles swoop from the 

prime location in the solution space to their targeted prey. All 

points are also moving in the direction of the best point. This 

behaviour is quantitatively illustrated in Eq. (7). 

𝑃𝑖,𝑛𝑒𝑤 = 𝑟𝑎𝑛𝑑 ∗ 𝑃𝑏𝑒𝑠𝑡 + 𝑥1(𝑖) ∗ (𝑃𝑖 − 𝐶1 ∗ 𝑃𝑚𝑒𝑎𝑛) + 𝑦1(𝑖) ∗

(𝑃𝑖 − 𝐶2 ∗ 𝑃𝑚𝑒𝑎𝑛)  (7) 

𝑥1(𝑖) =
𝑥𝑟(𝑖)

𝑚(|𝑥𝑟|)
, 𝑦1(𝑖) =

𝑦𝑟(𝑖)

𝑚(|𝑦𝑟|)
             (8)

    

𝑥𝑟(𝑖) = 𝑟(𝑖) ∗ 𝑠𝑖𝑛ℎ[(𝜃(𝑖))], 𝑦𝑟(𝑖) = 𝑟(𝑖) ∗ 𝑐𝑜𝑠ℎ[(𝜃(𝑖))] 

                                            (9) 

𝜃(𝑖) = 𝑎 ∗ 𝜋 ∗ 𝑟𝑎𝑛𝑑, 𝑟(𝑖) = 𝜃(𝑖)   (10)

   

here, 𝐶1, 𝐶2 𝜖 [1, 2]. 

3.2 Wrapper-based Sailfish Optimized Feature Selection: 

The SFO is a metaheuristic algorithm based on population. The 

sailfish are assumed to be candidate solutions in this technique, and 

the issue variables are the position of the sailfish in the search 

space. As a result, the population of the solution space is produced 

at random. With their changeable location vectors, sailfish can hunt 

in one, two, three, or hyper-dimensional space. 

Sailfish, in fact, attack the prey school when none of their peers 

are attacking. The position of sailfish 𝑋𝑛𝑒𝑤_𝑆𝐹
𝑖  at 𝑖𝑡ℎ iteration is 

updated using Eq. (11) 

𝑋𝑛𝑒𝑤_𝑆𝐹
𝑖 = 𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹

𝑖 − 𝜆𝑖 ∗ (𝑟(0,1) ∗

                    
𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹

𝑖 +𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑_𝑆
𝑖

2
−  𝑋𝑜𝑙𝑑_𝑆𝐹

𝑖 )         (11)  

where, 𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹
𝑖  represents the elite sailfish position, 

𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑_𝑆
𝑖  indicates the best injured sardine. The 𝑋𝑜𝑙𝑑_𝑆𝐹

𝑖  

represents current sailfish position, 𝑟 𝜖 [0, 1], 𝜆𝑖 represents 𝑖𝑡ℎ 

iteration coefficient obtained using Eq. (XX) 

𝜆𝑖 = 2 ∗ 𝑟(0,1) ∗ 𝑃𝐷 − 𝑃𝐷   (12) 

Here, 𝑃𝐷 indicates total preys at each iteration. 𝑃𝐷 is 

calculated using Eq. (xx) 

𝑃𝐷 = 1 − (
𝑁𝑆𝐹

𝑁𝑆𝐹+𝑁𝑆
)    (13) 

In each cycle, total sailfish and total sardines are represented 

using 𝑁𝑆𝐹 & 𝑁𝑆. Each sardine is required to update its position in 

relation to the current best position of the sailfish and the power of 

its attack at each iteration in order to imitate the haunting and 

catching process. The position of new sardine 𝑋𝑛𝑒𝑤_𝑆
𝑖  is updated 

using Eq. (xx). 

𝑋𝑛𝑒𝑤_𝑆
𝑖 = 𝑟 ∗ (𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹

𝑖 −  𝑋𝑜𝑙𝑑_𝑆
𝑖 ) + 𝐴𝑃  (14) 

Here, 𝐴𝑃 represents the attack power of sailfish, which is 

generated using Eq. (xx). 

𝐴𝑃 = 𝐴 ∗ (1 − (2 ∗ 𝐼𝑡𝑟 ∗  𝜀))   (15) 

To linearly decrease power attack value from 𝐴 to 0, 𝐴 & 𝜀 are 

considered as coefficients. Furthermore, the sailfish attack strength 

decides the number of sardines that adjust their locations and the 
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amount of dispersion they cause (AP). You can use the parameter 

𝐴𝑃 to calculate the number of sardines (𝛼) and the number of 

variables (𝛽) to update their position as follows: 

𝛼 = 𝑁𝑆 ∗ 𝐴𝑃
𝛽 = 𝑑𝑖 ∗ 𝐴𝑃

     (16) 

Here, 𝑑𝑖 indicates the total variables at 𝑖𝑡ℎ iteration. Finally, 

for increasing the chances of hunting new prey, sailfish position is 

updated with available best sardine hunted using Eq. (17). 

𝑋𝑆𝐹
𝑖 = 𝑋𝑆

𝑖  𝑖𝑓 𝑓(𝑆𝑖) <  𝑓(𝑆𝐹𝑖)   (17) 

where, 𝑋𝑆
𝑖  indicates the sardine’s current position at 𝑖𝑡ℎ 

iteration and 𝑋𝑆𝐹
𝑖  represents the sailfish current position at 𝑖𝑡ℎ 

iteration. 

Algorithm 1: WSFOFS 

Sailfish and Sardine population initialization 

Fitness calculation for sailfish and sardines 

Obtain best sailfish and sardine and consider as elite 

While end criterion not obtained 

 For every sailfish 

  Calculate 𝜆𝑖 using Eq. (12) 

  Sailfish position updation using Eq. (11) 

 End For 

 𝐴𝑡𝑡𝑎𝑐𝑘 𝑃𝑜𝑤𝑒𝑟 Calculation using Eq. (15) 

 If 𝐴𝑡𝑡𝑎𝑐𝑘 𝑃𝑜𝑤𝑒𝑟 < 0.5 

  𝛼 is calculated using Eq. (16) 

  𝛽 is calculated using Eq. (16) 

Sardine position updated using selected 𝛼 and 𝛽 with Eq.(14) 

 Else 

 All sardine positions are updated using Eq. (14) 

 End If 

 If superior solution for sardine is found 

Sailfish is used to replace injured sardines with Eq. (17) 

  Hunted sardine is removed 

  Best sailfish and sardine updation 

 End If 

End While 

4.  Experimental Setup 

All experiments are run on a 64-bit Windows 10 operating system 

with a 2.30 GHz Intel® CoreTM i5 processor, 8 GB RAM, and 

2TB hard drive as well as a Jupyter platform that supports machine 

learning and matplotlib packages. Python 3.7 is the programming 

language utilised. 

 

Table. 2. Description of API Call Sequence dataset 

Dataset 
No. of 

Features 
No. of Samples 

Dataset 

Size 

API Call  100 43,876 

Sequence 

Data 
Goodware Malware 17.1 

MB 
1,079 42,797 

 

IEEE Dataport provided API call sequence data used in the 

investigation. The data contains 43,876 API call sequences, with 

42,797 being malware API call sequences and 1,079 being 

goodware API call sequences. The Cuckoo Sandbox environment 

was used to collect the experimented data, which was then 

confirmed using Virus Total [24]. The data for API call sequences 

is described in Table. 2. 

 

5. Performance Analysis and Experimentation Results: 

To confirm classification accuracy, the suggested system for 

android malware detection employs various classification 

assessment metrics such as MSE, RMSE, Precision, Recall, F-

Score, and Accuracy: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝𝑜𝑠

𝐹𝑝𝑜𝑠
 + 𝑇𝑝𝑜𝑠

      (18) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝𝑜𝑠

𝐹𝑛𝑒𝑔
 + 𝑇𝑝𝑜𝑠

                                     (19) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
   

  (20) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝𝑜𝑠 + 𝑇𝑛𝑒𝑔

 𝑇𝑝𝑜𝑠+𝐹𝑝𝑜𝑠+ 𝑇𝑛𝑒𝑔
 + 𝐹𝑛𝑒𝑔

   

  (21) 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛

𝑖=1
    

  (22) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛

𝑖=1
   (23)

  

Here, 𝑇𝑝𝑜𝑠 denotes the samples correctly classified as goodware, 

 𝑇𝑛𝑒𝑔 denotes the samples correctly classified as malware, 𝐹𝑝𝑜𝑠 

denotes the samples incorrectly classified as goodware, and 𝐹𝑛𝑒𝑔 

denotes the samples incorrectly classified as malware. 𝑌̂𝑖 denotes 

the predicted output, 𝑌𝑖 denotes the actual output, and 𝑛 represents 

the no. of samples. 

On the API calls sequence dataset, the BES and SFO 

algorithms wrapped with LR, DT, SVM, KNN, and RF are tested 

for their performance. All of the experiments are conducted for a 

total of 10 iterations with a total of 10 agents. The analysis findings 

are listed in Table. 3. with a graphical representation in Fig. 2. The 

SFO optimizer when wrapped with RF classifier stemmed better 

results with 79% reduced feature space and an accuracy of 98.92%. 

The experimental results show that utilising a wrapper-based 

sailfish optimised feature selection approach, the dimensionality of 

feature space was lowered while classification accuracy was 

maintained using an RF Classifier. Fig. 3 shows the RF Classifier's 

evaluation metrics using the WSFOFS algorithm. Table. 4. shows 

the list of 21 features selected by the wrapper-based firefly feature 

selection technique utilising the RF Classifier. 
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Fig. 2. Performance comparison of BES & SFO wrapped with LR, DT, SVM, KNN & RF 

 

Table. 3. Accuracy comparison of BES & SFO wrapped with LR, DT, SVM, KNN & RF 

S. No Classifier 

Accuracy 

Before 

Feature 

Selection 

Feature 

Selection 

Method 

Accuracy 

After 

Feature 

Selection 

% 

Change 

in 

Accuracy 

Features 

Selected 

% 

Decrease 

in 

Features 

1 LR 94.6311 
BES 98.1654 3.7348 23 77% 

SFO 98.211 3.783 42 58% 

2 DT 95.5485 
BES 98.0173 2.5838 25 75% 

SFO 98.3705 2.9534 42 58% 

3 SVM 95.2654 
BES 98.1882 3.068 34 66% 

SFO 98.2547 3.1378 39 61% 

4 KNN 95.3586 
BES 98.5525 3.3493 28 72% 

SFO 98.4529 3.2449 42 58% 

5 RF 95.6485 
BES 98.9061 3.4058 37 63% 

SFO 98.9236 3.4241 21 79% 

 

 

Fig. 3. Evaluation Metrics of WSFOFS with RF 

 

Table. 4. Features Selected by WSFOFS wrapped with RF 

S. No API No. API Description 

1 2 ExitWindowsEx 

2 3 FindResourceW 
 5 CreateRemoteThreadEx 

4 6 MessageBoxTimeoutW 

5 7 InternetCrackUrlW 

6 8 StartServiceW 

7 9 GetFileSize 

8 11 GetFileInformationByHandle 

9 14 SetWindowsHookExA 

10 15 RegSetValueExW 

11 16 LookupAccountSidW 

12 17 SetUnhandledExceptionFilter 

13 19 GetComputerNameW 

14 20 RegEnumValueA 

15 24 Recv 

16 25 GetFileSizeEx 

17 27 SetInformationJobObject 

18 29 CryptDecrypt 

19 31 InternetOpenW 

20 32 CoInitializeEx 

21 34 GetAsyncKeyState 

The AUC_ROC curves for the SFO method wrapped with machine 

learning Classifiers were created because SFO outperformed the 

comparison algorithm. When compared to the area under the 

complete feature set, the area under the AUC_ROC curve of the 

SFO classifier embedded with RF is smaller when utilising a 

reduced feature set. Fig. 4-8. show the AUC_ROC graphs for all 

of the machine learning classifiers. 
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Fig. 4. AUC_ROC Curve of SFO with DT 

 
Fig. 5. AUC_ROC Curve of SFO with SVM 

 
Fig. 6. AUC_ROC Curve of SFO with LR 

 
Fig. 7. AUC_ROC Curve of SFO with RF 

 

Fig. 8. AUC_ROC Curve of SFO with SVM 

There is no feature selection approach that uses wrapper-based 

sailfish optimization on API call sequence data, according to the 

literature review. As a result, Table. 5. shows a comparison of 

accuracy based on relevant work. 

 

Table. 5. Related Work Accuracy Comparison 

Paper, Year Classifier Feature Selection Accuracy 

[13], 2021 CNN - 94.63% 

[14], 2019 MNN - 98.00% 

[15], 2018 EnDroid Chi-Square 98.18% 

[17], 2019 A3CM-DNN Static Analysis 98.00% 

[18], 2020 RF K-Means 98.59% 

[23], 2018 FalDroid TF-IDF 97.20% 

This Paper RF WSFOFS 98.92% 

6. Conclusion & Future Work 

On Android, malware threats are increasing, and evasion 

methods are becoming more intricate. Android mobile systems and 

applications are widely used in smart cities and industries. One of 

the most powerful and effective techniques for maintaining 

Android system security, particularly for smart cities and industrial 

platforms, is malware detection. Malware detection research based 

on machine learning has recently received a lot of interest. 

However, the bulk of accessible solutions need feature analysis and 

selection, which is a time-consuming process known as feature 

engineering that is based on simulated experience. As a result, 

feature selection and detection performance must be constantly 

improved. 

In this scenario, the wrapper-based feature selection techniques 

WBESOFS & WSFOFS are explored in this paper. Initially, 

complete feature set is passed onto the wrapper-based feature 

selection methods. The obtained reduced feature set is then used to 

classify the good ware from malware android malware 

applications. Among the BES & SFO, the SFO when wrapped with 

RF classifier achieved superior results in minimizing the 

dimensionality of the feature space to 79% with an improved 

accuracy of 98.92%. 

Designing and implementing a hybrid architecture that 

incorporates advanced deep learning techniques to improve the 

efficiency of Android malware detection and classification, as well 

as other optimizations for systematic feature reduction using a 

high-dimensional feature space as considered as future work. 
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