

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 67–74 | 67

Malware Detection in Android Mobile Devices by Applying Swarm

Intelligence Optimization and Machine Learning for API Calls

Suribabu Naick B1, Srinivasa Rao P2, Prakash Bethapudi3, Surya Prakash Rao Reddy4

Submitted: 10/09/2022 Accepted: 24/12/2022

Abstract: Attacks on mobile devices, such as smartphones and tablets, have been on the rise as their use has grown. Malware attacks are

some of the most significant threats, resulting in a variety of security issues as well as financial losses. The feature space-restricted malware

analysis helps to detect malware effectively. The purpose of this research is to find the most useful features of Application Programming

Interface (API) calls to improve the detection accuracy of Android malware. Two Swarm Intelligence Optimization techniques, namely

Bald Eagle Search (BES) & Sailfish Optimization (SFO) are evaluated with API Calls to identify the most promising features for Android

Malware detection. The BES & SFO features selection techniques are assessed using machine learning classifiers such as K-Nearest

Neighbour (KNN), Decision Tree (DT), Support Vector Machine (SVM), Linear Regression (LR) and Random Forest (RF).

Experimentation resulted in an accuracy of 98.92% with 21 features out of 100 API call features.

Keywords: Android Malware, API Calls, Bald Eagle Search, Sailfish Optimization, Feature Selection, Machine Learning

1. Introduction

The transition from traditional to smart technologies has

changed the economy. Smart gadgets are currently growing at an

exponential rate, both for personal and business use. In 2021,

around 328 million smartphones were sold, according to a Gartner

report [1][3]. Based on the popularity of smartphones, stakeholders

have shown a strong desire to develop proprietary mobile operating

systems (OS) [2]. Android is a leading giant in the

telecommunications sector and a de facto standard for numerous

smart phone makers since it is an open source and extensible

platform. In 2019, With over 70% of the global smartphone market

share, Android is the most popular platform. [4][6]. Apart from

smartphones, Android is also gaining ground on smart watches and

tablets.

Android is becoming a possible target for cyber threats [5], [7]

due to its open-source nature. Malware authors are primarily

motivated to create intricate malware in order to take advantage of

established OS flaws. Malware is a phrase that refers to a group of

malicious software variations that are specifically designed (i.e.,

Trojans, Viruses, Adware, Ransomware, and Spyware) to cause

substantial data and system harm, such as remote control,

information theft, privacy breaches, and privilege escalation.

Sophisticated malware is impeccably designed and has the

potential to completely disrupt the industry. Furthermore, the fact

that Android malware can have a significant impact on both

enterprises and end-users continues to fuel malware proliferation

[8][9].

Malware detection on Android smartphones has been attempted

numerous times [10][12]. Traditional signature-based malware

detection approaches compare the signature of an APK file to the

signature of a harmful application in a malware database,

excluding malware that isn't in the database. In this context,

enhanced detection algorithms [11] [13] are required for effective

malware detection [14]. This paper's primary contributions are as

follows:

Detecting suspicious APIs to accurately classify Android apps

as goodware or malware.

A hybrid classifier combining wrapper-based feature selection

techniques and machine learning classifiers is designed and

implemented.

By penalising the learning process, an objective function for

swarm intelligence optimization is defined, allowing for the

efficient identification of near-optimal solutions.

Using a range of parameters to determine the optimal algorithm

for predicting Android malware.

The remaining paper is structured as follows: Section 2

elucidates the related work, Section describes the methodology,

experimentation setup is detailed in Section 4, section 5 explains

the performance analysis and experimental results, and Section 6

gives out the conclusion & future work.

__

1Assistant Professor, Department of ECE, GITAM (Deemed to be

University) Visakhapatnam, Andhra Pradesh- 530045. India.

sbhukya@gitam.edu
2Associate Professor, Department of CSE, MVGR College of

Engineering (A), Vizianagaram, Andhra Pradesh, India.

psr.sri@gmail.com
3Associate professor, Department of CSE GITAM School of

Technology, GITAM Deemed to be University, Visakhapatnam,

Andhra Pradesh, India. prakash.vza@gmail.com
4Assistant Professor, Department of ECE, GVP College of

Engineering(A), Visakhapatnam,

Andhra Pradesh, India. drspreddi4u@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 67–74 | 68

1. RELATED WORK

In recent years, multiple strategies [15][16] for detecting

Android malware utilising API calls have made substantial

progress. Bibi et al. [17] elucidated Gated Recurrent Unit (GRU)

based Android Malware detection system. A Deep Learning (DL)

driven architecture is experimented using datasets such as

AndroZoo, Android Malware Dataset (AMD), etc., and tested

using multiple evaluation metrics. The results show-cased that

GRU-based model outperformed other competing models with

increased accuracy. W. Yuan et al. [18][19] addressed the

challenge of on-device training for Android Malware detection by

implementing a light-weight Android Malware detection

architecture. The model includes Support Vector Machines

(SVM), AdaBoost, and Deep Learning based architectures. The

experimentation obtained a robust model with improved accuracy

and reduced computation time.

T. Kim et al. [20] studied the multimodal deep learning models

using similarity-based feature extraction method. The model

outperformed traditional models w.r.t efficacy of the diverse

features and feature extraction methods. P. Feng et al. [21][22]

proposed a dynamic analysis-based ensemble learning method for

Android Malware detection called EnDroid. The proposed method

includes feature selection method to remove noisy features for

learning. The model achieved better outcome in terms of

classification performance with an improved efficiency in malware

detection. K. Liu et al. [23] surveyed different research works

pertaining to Android Malware detection in terms of processing the

data, selection of features, and machine learning models, etc.

Similar work comparison is presented in Table. 1.

Paper, Year
Dataset

Used
Classifier

Feature

Selection
Accuracy

[13], 2021
Multiple

Datasets
CNN - 94.63

[14], 2019
Own

Dataset
MNN - 98

[15], 2018 Drebin EnDroid Chi-Square 98.18

[17], 2019
Drebin,

AMD

A3CM-

DNN

Static

Analysis
98

[18], 2020 FARM RF K-Means 98.59

[23], 2018
Multiple

Datasets
FalDroid TF-IDF 97.2

J. Qiu et al. [24][25] addressed the problem of Malware

Capability Annotation (MCA) by introducing Automatic

Capability Annotation for Android Malware (A3CM). A3CM

extracts features automatically and applies statistical methods for

feature mapping. Android Malware is identified using a multi-label

classification technique. The results show-cased that experimented

methodology outperformed other competitive algorithms in terms

of accuracy. Q. Han et al. [26][27] developed method called

Feature transformation based AndRoid Malware detector (FARM)

to transform features into a new feature domain for efficient

detection of Android Malware. The FARM confirmed its

effectiveness by detecting two malwares in VirusTotal that had

previously been missed by other approaches.

As per the literature review, several researchers worked on

different state-of-art [28], [29][30] and advanced techniques [31],

[32] [33] for detection of malware in Android. The paper suggests

a method focusing on wrapper-based feature selection techniques

to identify the influential features for the detection of Android

Malware. Bald Eagle Search and Sailfish Optimization techniques

are extensively investigated for feature selection. Multiple

machine learning classifiers are used for the classification of good

ware from malware android applications.

2. PROPOSED METHODOLOGY

Fig. 1 depicts the suggested wrapper-based feature selection

technique for Android Malware detection using a machine learning

classifier. The dataset is divided in a 7:3 ratio of train and test sets.

Initially, all the features are considered and a subset of features are

selected iteratively using BES and SFO algorithms. The obtained

reduced feature set is tested for its accuracy in classifying good

ware applications from malware applications. Finally, the feature

set with reduced feature dimensionality and improved accuracy is

chosen for Android Malware detection.

Fig. 1. Architecture of the proposed Android Malware Detection

System

When picking a good feature set, feature reduction and feature

selection are critical in data pre-processing. A strategy for lowering

the number of features in a feature space is feature reduction, often

known as dimensionality reduction. Feature reduction reduces

multicollinearity in the feature population. The feature selection

technique, on the other hand, determines which aspects of the ML

model are the most influential. It removes characteristics that are

either irrelevant or redundant, reducing the performance of the ML

model. By lowering the processing cost of the model learning

phase and increasing model understandability, the ML model's

performance is improved. It decreases the model's training time in

half and reduces overfitting.

In order to find an optimal solution with an underestimated

feature set, the objective function used is crucial in converging the

fitness throughout the optimization. The number of features chosen

and the error achieved during the machine learning model

evaluation affect the fitness of the selected feature subset, as

indicated in Eq. (1).

𝑓(𝑥) = 𝜏 ∗ 𝑒𝑟𝑟𝑜𝑟 + (1 − 𝜏) ∗
𝑢−𝑠(𝑙)

𝑢
 (1)

Where 𝜏 𝜖 [0,1] represents the penalty given to error produced

during feature subset fitness calculation, and an increase in 𝜏 value

implies an increase in penalty. The length of the entire feature set

is denoted by 𝑢, and the length of the solution is denoted by 𝑙.

3.1 Wrapper-based Bald Eagle Search Optimized Feature

Selection:

To validate the co-sequences of each step of hunting, the BES

algorithm simulates the hunting behaviour of bald eagles. As a

result, there are three stages to this algorithm: picking the search

space, searching inside the selected search space, and swooping.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 67–74 | 69

Selection: During the select stage, bald eagles identify and select

the optimal place (in terms of food volume) inside the designated

search space where they can pursue prey. Eq. (2) is a mathematical

representation of this behaviour.

𝑃𝑛𝑒𝑤,𝑖 = 𝑃𝑏𝑒𝑠𝑡 + 𝛼 ∗ 𝑟 (𝑃𝑚𝑒𝑎𝑛 − 𝑃𝑖) (2)

where, 𝛼 𝜖 [1.5, 2], controls the change in position. 𝑟 𝜖 [0, 1] is a

random number, the current best selected search space is

represented using 𝑃𝑏𝑒𝑠𝑡, the eagles that have used all the space

previously is represented using 𝑃𝑚𝑒𝑎𝑛.

Search: In the search stage, bald eagles look for prey inside a

predetermined search zone and go in distinct ways within a spiral

territory to speed up their search. Eq. (3) expresses the optimal

swoop position mathematically.

𝑃𝑖,𝑛𝑒𝑤 = 𝑃𝑖 + 𝑦(ⅈ) ∗ (𝑃𝑖 − 𝑃𝑖+1) + 𝑥(ⅈ) ∗ (𝑃𝑖 − 𝑃𝑚𝑒𝑎𝑛) (3)

𝑥(ⅈ) =
𝑥𝑟(ⅈ)

𝑚𝑎𝑥(|𝑥𝑟|)
, 𝑦(ⅈ) =

𝑦𝑟(ⅈ)

𝑚𝑎𝑥(|𝑦𝑟|)
 (4)

𝑥𝑟(ⅈ) = 𝑟(ⅈ) ∗ 𝑠𝑖𝑛(𝜃(ⅈ)), 𝑦𝑟(ⅈ) = 𝑟(ⅈ) ∗ 𝑐𝑜𝑠(𝜃(ⅈ)) (5)

𝜃(ⅈ) = 𝑎 ∗ 𝜋 ∗ 𝑟𝑎𝑛𝑑, 𝑟(ⅈ) = 𝜃(ⅈ) + 𝑅 ∗ 𝑟𝑎𝑛𝑑 (6)

where, 𝑎 𝜖 [5, 10] is used to determine corner between point search

in center point, no. of cycles is determined with 𝑅 𝜖 [0.5, 2],

𝑟𝑎𝑛𝑑 𝜖 [0, 1] is a random number.

Algorithm 1: WBESOFS

Initialization of population (Pi)

Fitness calculation of the population f(pi)

While termination condition not met

For every point i in population

 𝑃𝑛𝑒𝑤,𝑖 = 𝑃𝑏𝑒𝑠𝑡 + 𝛼 ∗ 𝑟 (𝑃𝑚𝑒𝑎𝑛 − 𝑃𝑖)

 If 𝑃𝑛𝑒𝑤 < 𝑓(𝑃𝑖) then

 𝑃𝑖 = 𝑃𝑛𝑒𝑤

 If 𝑓(𝑃𝑛𝑒𝑤) < 𝑓(𝑃𝑛𝑒𝑤) then

 𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑛𝑒𝑤

 End If

 End If

End For

For every point i in population

 𝑃𝑖,𝑛𝑒𝑤 = 𝑃𝑖 + 𝑦(ⅈ) ∗ (𝑃𝑖 − 𝑃𝑖+1) + 𝑥(ⅈ) ∗

(𝑃𝑖 − 𝑃𝑚𝑒𝑎𝑛)

 If 𝑃𝑛𝑒𝑤 < 𝑓(𝑃𝑖) then

 𝑃𝑖 = 𝑃𝑛𝑒𝑤

 If 𝑓(𝑃𝑛𝑒𝑤) < 𝑓(𝑃𝑛𝑒𝑤) then

 𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑛𝑒𝑤

 End If

 End If

End For

For every point i in population

 𝑃𝑖,𝑛𝑒𝑤 = 𝑟𝑎𝑛𝑑 ∗ 𝑃𝑏𝑒𝑠𝑡 + 𝑥1(ⅈ) ∗ (𝑃𝑖 − 𝐶1 ∗

𝑃𝑚𝑒𝑎𝑛) + 𝑦1(ⅈ) ∗ (𝑃𝑖 − 𝐶2 ∗ 𝑃𝑚𝑒𝑎𝑛)

 If 𝑃𝑛𝑒𝑤 < 𝑓(𝑃𝑖) then

 𝑃𝑖 = 𝑃𝑛𝑒𝑤

 If 𝑓(𝑃𝑛𝑒𝑤) < 𝑓(𝑃𝑛𝑒𝑤) then

 𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑛𝑒𝑤

 End If

 End If

End For

𝐾 = 𝐾 + 1

End While

Swoop: During the swooping stage, bald eagles swoop from the

prime location in the solution space to their targeted prey. All

points are also moving in the direction of the best point. This

behaviour is quantitatively illustrated in Eq. (7).

𝑃𝑖,𝑛𝑒𝑤 = 𝑟𝑎𝑛𝑑 ∗ 𝑃𝑏𝑒𝑠𝑡 + 𝑥1(𝑖) ∗ (𝑃𝑖 − 𝐶1 ∗ 𝑃𝑚𝑒𝑎𝑛) + 𝑦1(𝑖) ∗

(𝑃𝑖 − 𝐶2 ∗ 𝑃𝑚𝑒𝑎𝑛) (7)

𝑥1(𝑖) =
𝑥𝑟(𝑖)

𝑚(|𝑥𝑟|)
, 𝑦1(𝑖) =

𝑦𝑟(𝑖)

𝑚(|𝑦𝑟|)
 (8)

𝑥𝑟(𝑖) = 𝑟(𝑖) ∗ 𝑠𝑖𝑛ℎ[(𝜃(𝑖))], 𝑦𝑟(𝑖) = 𝑟(𝑖) ∗ 𝑐𝑜𝑠ℎ[(𝜃(𝑖))]

 (9)

𝜃(𝑖) = 𝑎 ∗ 𝜋 ∗ 𝑟𝑎𝑛𝑑, 𝑟(𝑖) = 𝜃(𝑖) (10)

here, 𝐶1, 𝐶2 𝜖 [1, 2].

3.2 Wrapper-based Sailfish Optimized Feature Selection:

The SFO is a metaheuristic algorithm based on population. The

sailfish are assumed to be candidate solutions in this technique, and

the issue variables are the position of the sailfish in the search

space. As a result, the population of the solution space is produced

at random. With their changeable location vectors, sailfish can hunt

in one, two, three, or hyper-dimensional space.

Sailfish, in fact, attack the prey school when none of their peers

are attacking. The position of sailfish 𝑋𝑛𝑒𝑤_𝑆𝐹
𝑖 at 𝑖𝑡ℎ iteration is

updated using Eq. (11)

𝑋𝑛𝑒𝑤_𝑆𝐹
𝑖 = 𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹

𝑖 − 𝜆𝑖 ∗ (𝑟(0,1) ∗

𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹

𝑖 +𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑_𝑆
𝑖

2
− 𝑋𝑜𝑙𝑑_𝑆𝐹

𝑖) (11)

where, 𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹
𝑖 represents the elite sailfish position,

𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑_𝑆
𝑖 indicates the best injured sardine. The 𝑋𝑜𝑙𝑑_𝑆𝐹

𝑖

represents current sailfish position, 𝑟 𝜖 [0, 1], 𝜆𝑖 represents 𝑖𝑡ℎ

iteration coefficient obtained using Eq. (XX)

𝜆𝑖 = 2 ∗ 𝑟(0,1) ∗ 𝑃𝐷 − 𝑃𝐷 (12)

Here, 𝑃𝐷 indicates total preys at each iteration. 𝑃𝐷 is

calculated using Eq. (xx)

𝑃𝐷 = 1 − (
𝑁𝑆𝐹

𝑁𝑆𝐹+𝑁𝑆
) (13)

In each cycle, total sailfish and total sardines are represented

using 𝑁𝑆𝐹 & 𝑁𝑆. Each sardine is required to update its position in

relation to the current best position of the sailfish and the power of

its attack at each iteration in order to imitate the haunting and

catching process. The position of new sardine 𝑋𝑛𝑒𝑤_𝑆
𝑖 is updated

using Eq. (xx).

𝑋𝑛𝑒𝑤_𝑆
𝑖 = 𝑟 ∗ (𝑋𝑒𝑙𝑖𝑡𝑒_𝑆𝐹

𝑖 − 𝑋𝑜𝑙𝑑_𝑆
𝑖) + 𝐴𝑃 (14)

Here, 𝐴𝑃 represents the attack power of sailfish, which is

generated using Eq. (xx).

𝐴𝑃 = 𝐴 ∗ (1 − (2 ∗ 𝐼𝑡𝑟 ∗ 𝜀)) (15)

To linearly decrease power attack value from 𝐴 to 0, 𝐴 & 𝜀 are

considered as coefficients. Furthermore, the sailfish attack strength

decides the number of sardines that adjust their locations and the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 67–74 | 70

amount of dispersion they cause (AP). You can use the parameter

𝐴𝑃 to calculate the number of sardines (𝛼) and the number of

variables (𝛽) to update their position as follows:

𝛼 = 𝑁𝑆 ∗ 𝐴𝑃
𝛽 = 𝑑𝑖 ∗ 𝐴𝑃

 (16)

Here, 𝑑𝑖 indicates the total variables at 𝑖𝑡ℎ iteration. Finally,

for increasing the chances of hunting new prey, sailfish position is

updated with available best sardine hunted using Eq. (17).

𝑋𝑆𝐹
𝑖 = 𝑋𝑆

𝑖 𝑖𝑓 𝑓(𝑆𝑖) < 𝑓(𝑆𝐹𝑖) (17)

where, 𝑋𝑆
𝑖 indicates the sardine’s current position at 𝑖𝑡ℎ

iteration and 𝑋𝑆𝐹
𝑖 represents the sailfish current position at 𝑖𝑡ℎ

iteration.

Algorithm 1: WSFOFS

Sailfish and Sardine population initialization

Fitness calculation for sailfish and sardines

Obtain best sailfish and sardine and consider as elite

While end criterion not obtained

 For every sailfish

 Calculate 𝜆𝑖 using Eq. (12)

 Sailfish position updation using Eq. (11)

 End For

 𝐴𝑡𝑡𝑎𝑐𝑘 𝑃𝑜𝑤𝑒𝑟 Calculation using Eq. (15)

 If 𝐴𝑡𝑡𝑎𝑐𝑘 𝑃𝑜𝑤𝑒𝑟 < 0.5

 𝛼 is calculated using Eq. (16)

 𝛽 is calculated using Eq. (16)

Sardine position updated using selected 𝛼 and 𝛽 with Eq.(14)

 Else

 All sardine positions are updated using Eq. (14)

 End If

 If superior solution for sardine is found

Sailfish is used to replace injured sardines with Eq. (17)

 Hunted sardine is removed

 Best sailfish and sardine updation

 End If

End While

4. Experimental Setup

All experiments are run on a 64-bit Windows 10 operating system

with a 2.30 GHz Intel® CoreTM i5 processor, 8 GB RAM, and

2TB hard drive as well as a Jupyter platform that supports machine

learning and matplotlib packages. Python 3.7 is the programming

language utilised.

Table. 2. Description of API Call Sequence dataset

Dataset
No. of

Features
No. of Samples

Dataset

Size

API Call 100 43,876

Sequence

Data
Goodware Malware 17.1

MB
1,079 42,797

IEEE Dataport provided API call sequence data used in the

investigation. The data contains 43,876 API call sequences, with

42,797 being malware API call sequences and 1,079 being

goodware API call sequences. The Cuckoo Sandbox environment

was used to collect the experimented data, which was then

confirmed using Virus Total [24]. The data for API call sequences

is described in Table. 2.

5. Performance Analysis and Experimentation Results:

To confirm classification accuracy, the suggested system for

android malware detection employs various classification

assessment metrics such as MSE, RMSE, Precision, Recall, F-

Score, and Accuracy:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝𝑜𝑠

𝐹𝑝𝑜𝑠
 + 𝑇𝑝𝑜𝑠

 (18)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝𝑜𝑠

𝐹𝑛𝑒𝑔
 + 𝑇𝑝𝑜𝑠

 (19)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙

 (20)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝𝑜𝑠 + 𝑇𝑛𝑒𝑔

 𝑇𝑝𝑜𝑠+𝐹𝑝𝑜𝑠+ 𝑇𝑛𝑒𝑔
 + 𝐹𝑛𝑒𝑔

 (21)

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛

𝑖=1

 (22)

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛

𝑖=1
 (23)

Here, 𝑇𝑝𝑜𝑠 denotes the samples correctly classified as goodware,

 𝑇𝑛𝑒𝑔 denotes the samples correctly classified as malware, 𝐹𝑝𝑜𝑠

denotes the samples incorrectly classified as goodware, and 𝐹𝑛𝑒𝑔

denotes the samples incorrectly classified as malware. 𝑌̂𝑖 denotes

the predicted output, 𝑌𝑖 denotes the actual output, and 𝑛 represents

the no. of samples.

On the API calls sequence dataset, the BES and SFO

algorithms wrapped with LR, DT, SVM, KNN, and RF are tested

for their performance. All of the experiments are conducted for a

total of 10 iterations with a total of 10 agents. The analysis findings

are listed in Table. 3. with a graphical representation in Fig. 2. The

SFO optimizer when wrapped with RF classifier stemmed better

results with 79% reduced feature space and an accuracy of 98.92%.

The experimental results show that utilising a wrapper-based

sailfish optimised feature selection approach, the dimensionality of

feature space was lowered while classification accuracy was

maintained using an RF Classifier. Fig. 3 shows the RF Classifier's

evaluation metrics using the WSFOFS algorithm. Table. 4. shows

the list of 21 features selected by the wrapper-based firefly feature

selection technique utilising the RF Classifier.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 67–74 | 71

Fig. 2. Performance comparison of BES & SFO wrapped with LR, DT, SVM, KNN & RF

Table. 3. Accuracy comparison of BES & SFO wrapped with LR, DT, SVM, KNN & RF

S. No Classifier

Accuracy

Before

Feature

Selection

Feature

Selection

Method

Accuracy

After

Feature

Selection

%

Change

in

Accuracy

Features

Selected

%

Decrease

in

Features

1 LR 94.6311
BES 98.1654 3.7348 23 77%

SFO 98.211 3.783 42 58%

2 DT 95.5485
BES 98.0173 2.5838 25 75%

SFO 98.3705 2.9534 42 58%

3 SVM 95.2654
BES 98.1882 3.068 34 66%

SFO 98.2547 3.1378 39 61%

4 KNN 95.3586
BES 98.5525 3.3493 28 72%

SFO 98.4529 3.2449 42 58%

5 RF 95.6485
BES 98.9061 3.4058 37 63%

SFO 98.9236 3.4241 21 79%

Fig. 3. Evaluation Metrics of WSFOFS with RF

Table. 4. Features Selected by WSFOFS wrapped with RF

S. No API No. API Description

1 2 ExitWindowsEx

2 3 FindResourceW
 5 CreateRemoteThreadEx

4 6 MessageBoxTimeoutW

5 7 InternetCrackUrlW

6 8 StartServiceW

7 9 GetFileSize

8 11 GetFileInformationByHandle

9 14 SetWindowsHookExA

10 15 RegSetValueExW

11 16 LookupAccountSidW

12 17 SetUnhandledExceptionFilter

13 19 GetComputerNameW

14 20 RegEnumValueA

15 24 Recv

16 25 GetFileSizeEx

17 27 SetInformationJobObject

18 29 CryptDecrypt

19 31 InternetOpenW

20 32 CoInitializeEx

21 34 GetAsyncKeyState

The AUC_ROC curves for the SFO method wrapped with machine

learning Classifiers were created because SFO outperformed the

comparison algorithm. When compared to the area under the

complete feature set, the area under the AUC_ROC curve of the

SFO classifier embedded with RF is smaller when utilising a

reduced feature set. Fig. 4-8. show the AUC_ROC graphs for all

of the machine learning classifiers.

0
10
20
30
40
50

92
93
94
95
96
97
98
99

N
o
.

o
f

F
ea

tu
re

s
S

el
ec

te
d

A
cc

u
ra

cy

Algorithms

Acc Before Feature Selection Acc After Feature Selection Features Selected

0.9862 0.9871 0.9734 0.9892

0.0161 0.1258

-0.5

0

0.5

1

1.5

Precision Recall F1-Score Accuracy MSR RMSR

S
co

re
s

Evaluation Metrics

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 67–74 | 72

Fig. 4. AUC_ROC Curve of SFO with DT

Fig. 5. AUC_ROC Curve of SFO with SVM

Fig. 6. AUC_ROC Curve of SFO with LR

Fig. 7. AUC_ROC Curve of SFO with RF

Fig. 8. AUC_ROC Curve of SFO with SVM

There is no feature selection approach that uses wrapper-based

sailfish optimization on API call sequence data, according to the

literature review. As a result, Table. 5. shows a comparison of

accuracy based on relevant work.

Table. 5. Related Work Accuracy Comparison

Paper, Year Classifier Feature Selection Accuracy

[13], 2021 CNN - 94.63%

[14], 2019 MNN - 98.00%

[15], 2018 EnDroid Chi-Square 98.18%

[17], 2019 A3CM-DNN Static Analysis 98.00%

[18], 2020 RF K-Means 98.59%

[23], 2018 FalDroid TF-IDF 97.20%

This Paper RF WSFOFS 98.92%

6. Conclusion & Future Work

On Android, malware threats are increasing, and evasion

methods are becoming more intricate. Android mobile systems and

applications are widely used in smart cities and industries. One of

the most powerful and effective techniques for maintaining

Android system security, particularly for smart cities and industrial

platforms, is malware detection. Malware detection research based

on machine learning has recently received a lot of interest.

However, the bulk of accessible solutions need feature analysis and

selection, which is a time-consuming process known as feature

engineering that is based on simulated experience. As a result,

feature selection and detection performance must be constantly

improved.

In this scenario, the wrapper-based feature selection techniques

WBESOFS & WSFOFS are explored in this paper. Initially,

complete feature set is passed onto the wrapper-based feature

selection methods. The obtained reduced feature set is then used to

classify the good ware from malware android malware

applications. Among the BES & SFO, the SFO when wrapped with

RF classifier achieved superior results in minimizing the

dimensionality of the feature space to 79% with an improved

accuracy of 98.92%.

Designing and implementing a hybrid architecture that

incorporates advanced deep learning techniques to improve the

efficiency of Android malware detection and classification, as well

as other optimizations for systematic feature reduction using a

high-dimensional feature space as considered as future work.

References:

[1] https://www.gartner.com/en/newsroom/press-

releases/2021-09-01-2q21-smartphone-market-share.

[Online – Accessed 21 Feb. 22].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 67–74 | 73

[2] C. Zhang, P. Patras and H. Haddadi, "Deep Learning in

Mobile and Wireless Networking: A Survey," in IEEE

Communications Surveys & Tutorials, vol. 21, no. 3, pp.

2224-2287, third quarter 2019, doi:

10.1109/COMST.2019.2904897.

[3] Pradeep Bheemavarapu, P S Latha Kalyampudi and

T V Madhusudhana Rao, “An Efficient Method for

Coronavirus Detection Through X-rays using deep Neural

Network”, Journal of Current Medical Imaging, [online

Available] Vol.18, No. 6, with ISSN: 1875-6603,2022.

[4] Statista. Mobile OS market share 2021 -

https://www.statista.com/statistics/272698/global-market-

share-held-by-mobile-operating-systems-since-2009/

[Online – Accessed 21 Feb. 22].

[5] Y. Zhang et al., "Familial Clustering for Weakly-Labeled

Android Malware Using Hybrid Representation

Learning," in IEEE Transactions on Information Forensics

and Security, vol. 15, pp. 3401-3414, 2020, doi:

10.1109/TIFS.2019.2947861.

[6] S Satyanarayana, “Privacy Preserving Data Publishing

Based On Sensitivity in Context of Big Data Using Hive”,

Journal of Bigdata (Springer), Volume:5, Issue:20, ISSN:

2196-1115, July 2018.

[7] K. Xu, Y. Li and R. H. Deng, "ICCDetector: ICC-Based

Malware Detection on Android," in IEEE Transactions on

Information Forensics and Security, vol. 11, no. 6, pp.

1252-1264, June 2016, doi: 10.1109/TIFS.2016.2523912.

[8] G. Meng, M. Patrick, Y. Xue, Y. Liu and J. Zhang,

"Securing Android App Markets via Modeling and

Predicting Malware Spread Between Markets," in IEEE

Transactions on Information Forensics and Security, vol.

14, no. 7, pp. 1944-1959, July 2019, doi:

10.1109/TIFS.2018.2889924.

[9] P.Mahesh Kumar,P. Srinivasa Rao, “Frequent Pattern

Retrieval on Data Streams by using Sliding Window”,

EAI Endorsed Transactions on Energy

web,Volume:5,issue:35,2021.

[10] K. Tian, D. Yao, B. G. Ryder, G. Tan and G. Peng,

"Detection of Repackaged Android Malware with Code-

Heterogeneity Features," in IEEE Transactions on

Dependable and Secure Computing, vol. 17, no. 1, pp. 64-

77, 1 Jan.-Feb. 2020, doi: 10.1109/TDSC.2017.2745575.

[11] H. Zhu, Y. Li, R. Li, J. Li, Z. You and H. Song,

"SEDMDroid: An Enhanced Stacking Ensemble

Framework for Android Malware Detection," in IEEE

Transactions on Network Science and Engineering, vol. 8,

no. 2, pp. 984-994, 1 April-June 2021, doi:

10.1109/TNSE.2020.2996379.

[12] T.V. Madhusudhana Rao, Suresh Kurumalla, Bethapudi

Prakash, “Matrix Factorization Based Recommendation

System using Hybrid Optimization Technique, EAI

Endorsed Transactions on Energy Web, Volume:5,

issue:35, 2021.

[13] Demontis, Ambra et al. “Yes, Machine Learning Can Be

More Secure! A Case Study on Android Malware

Detection.” IEEE Transactions on Dependable and Secure

Computing, 16 (2019): 711-724.

[14] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song

and H. Yu, "SAMADroid: A Novel 3-Level Hybrid

Malware Detection Model for Android Operating System,"

in IEEE Access, vol. 6, pp. 4321-4339, 2018, doi:

10.1109/ACCESS.2018.2792941.

[15] T.V. Madhusudhana Rao, P.S. Latha Kalyampudi,

“Iridology based Vital Organs Malfunctioning

identification using Machine learning Techniques”,

International Journal of Advanced Science and

Technology, Volume: 29, No. 5,PP: 5544 – 5554,2020.

[16] P. Faruki et al., "Android Security: A Survey of Issues,

Malware Penetration, and Defenses," in IEEE

Communications Surveys & Tutorials, vol. 17, no. 2, pp.

998-1022, Secondquarter 2015, doi:

10.1109/COMST.2014.2386139.

[17] Bibi, A. Akhunzada, J. Malik, J. Iqbal, A. Musaddiq and

S. Kim, "A Dynamic DL-Driven Architecture to Combat

Sophisticated Android Malware," in IEEE Access, vol. 8,

pp. 129600-129612, 2020, doi:

10.1109/ACCESS.2020.3009819.

[18] S.Vidya sagar Appaji, P. V. Lakshmi, “Maximizing Joint

Probability in Visual Question Answering Models”,

International Journal of Advanced Science and

Technology Vol. 29, No. 3, pp. 3914 – 3923,2020.

[19] W. Yuan, Y. Jiang, H. Li and M. Cai, "A Lightweight On-

Device Detection Method for Android Malware," in IEEE

Transactions on Systems, Man, and Cybernetics: Systems,

vol. 51, no. 9, pp. 5600-5611, Sept. 2021, doi:

10.1109/TSMC.2019.2958382.

[20] T. Kim, B. Kang, M. Rho, S. Sezer and E. G. Im, "A

Multimodal Deep Learning Method for Android Malware

Detection Using Various Features," in IEEE Transactions

on Information Forensics and Security, vol. 14, no. 3, pp.

773-788, March 2019, doi: 10.1109/TIFS.2018.2866319.

[21] Vidya sagar Appaji setti ,P Srinivasa Rao , “A Novel

Scheme For Red Eye Removal With Image Matching”,

Journal of Advanced Research in Dynamical & Control

Systems, Vol. 10, 13-Special Issue, 2018.

[22] P. Feng, J. Ma, C. Sun, X. Xu and Y. Ma, "A Novel

Dynamic Android Malware Detection System with

Ensemble Learning," in IEEE Access, vol. 6, pp. 30996-

31011, 2018, doi: 10.1109/ACCESS.2018.2844349.

[23] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun and H. Liu, "A

Review of Android Malware Detection Approaches Based

on Machine Learning," in IEEE Access, vol. 8, pp.

124579-124607, 2020, doi:

10.1109/ACCESS.2020.3006143.

[24] P Srinivasa Rao, Krishna Prasad, P.E.S.N, “A Secure and

Efficient Temporal Features Based Framework for Cloud

Using MapReduce”, springer, 17th International

Conference on Intelligent Systems Design and

Applications.

[25] J. Qiu et al., "A3CM: Automatic Capability Annotation for

Android Malware," in IEEE Access, vol. 7, pp. 147156-

147168, 2019, doi: 10.1109/ACCESS.2019.2946392.

[26] Q. Han, V. S. Subrahmanian and Y. Xiong, "Android

Malware Detection via (Somewhat) Robust Irreversible

Feature Transformations," in IEEE Transactions on

Information Forensics and Security, vol. 15, pp. 3511-

3525, 2020, doi: 10.1109/TIFS.2020.2975932.

[27] Madhusudhana Rao, T.V., Srinivas, Y, "A Secure

Framework For Cloud Using Map Reduce”, Journal Of

Advanced Research In Dynamical.

https://eudl.eu/doi/10.4108/eai.19-2-2021.168725
https://eudl.eu/doi/10.4108/eai.19-2-2021.168725

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 67–74 | 74

[28] T. Chakraborty, F. Pierazzi and V. S. Subrahmanian,

"EC2: Ensemble Clustering and Classification for

Predicting Android Malware Families," in IEEE

Transactions on Dependable and Secure Computing, vol.

17, no. 2, pp. 262-277, 1 March-April 2020, doi:

10.1109/TDSC.2017.2739145.

[29] H. Bai, N. Xie, X. Di and Q. Ye, "FAMD: A Fast

Multifeature Android Malware Detection Framework,

Design, and Implementation," in IEEE Access, vol. 8, pp.

194729-194740, 2020, doi:

10.1109/ACCESS.2020.3033026.

[30] P Srinivasa Rao, Sushma Rani N, “An Efficient Statistical

Computation Technique for Health Care Big Data using

R”, Scopus, IOP Conference Series: Materials Science and

Engineering, Volume: 225, ISSN:1757-8981, ISSUE NO

:012159,2017.

[31] J. Singh, D. Thakur, T. Gera, B. Shah, T. Abuhmed and F.

Ali, "Classification and Analysis of Android Malware

Images Using Feature Fusion Technique," in IEEE Access,

vol. 9, pp. 90102-90117, 2021, doi:

10.1109/ACCESS.2021.3090998.

[32] Z. Yuan, Y. Lu and Y. Xue, "Droiddetector: android

malware characterization and detection using deep

learning," in Tsinghua Science and Technology, vol. 21,

no. 1, pp. 114-123, Feb. 2016, doi:

10.1109/TST.2016.7399288.

[33] Krishna Prasad, M.H.M., Thammi Reddy, K, “A Efficient

Data Integration Framework in Hadoop Using

MapReduce" Published in Computational Intelligence

Techniques for Comparative Genomics

[34] M. Fan et al., "Android Malware Familial Classification

and Representative Sample Selection via Frequent

Subgraph Analysis," in IEEE Transactions on Information

Forensics and Security, vol. 13, no. 8, pp. 1890-1905, Aug.

2018, doi: 10.1109/TIFS.2018.2806891.

[35] Angelo Oliveira.Malware Analysis Datasets: API Call

Sequences. 2019.doi: 10.21227/tqqm-aq14.url:

http://dx.doi.org/10.21227/tqqm-aq14.

[36] Nagesh Vadaparthi, Srinivas Yarramalle, “A Novel

clustering approach using Hadoop Distributed

Environment”, Springer, (Applied Science and

Technology), ISSN:2191-530X, Volume:9, pp:113-119,

October 2014

